1
|
Wang X, Yang H, Sun T, Zhang J, Wang L, Zhang Y, Zhou N. A fluorescence and SERS dual-mode biosensor for quantification and imaging of Mucin1 in living cells. Biosens Bioelectron 2025; 270:116964. [PMID: 39579679 DOI: 10.1016/j.bios.2024.116964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/06/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024]
Abstract
Mucin1 (MUC1) is a cell surface transmembrane protein overexpressed in multiple types of tumor cells, which is generally considered as a tumor-associated biomarker. Thus, quantifying and imaging of MUC1 in tumor cells is of great significance for the diagnosis and biological therapy of tumors. Herein, a fluorescence (FL) and surface-enhanced Raman scattering (SERS) dual-mode biosensor was developed for sensitive detection and imaging of MUC1 in living cells. The FL-SERS biosensor was based on self-assembled satellite structures mediated by the competition of MUC1 and complementary DNA modified on Au nanostars (AuNS-cDNA-PEG) with aptamer modified on quantum dots (QD-PDDA-Apt). This biosensor achieved dual-mode quantification and imaging of MUC1 by quenching the FL signal of QD and significantly enhancing the SERS signal of PDDA through the metal FL quenching effect and hotspot effect of AuNS, respectively. The dual-mode biosensor exhibited high sensitivity to MUC1, with a detection limit of 1.19 fg/mL under FL mode and 1.16 fg/mL under SERS mode. Moreover, this biosensor displayed good selectivity, nice biological stability and low cytotoxicity. Importantly, this biosensor possessed an excellent MUC1 dual-mode imaging capability with high specificity in different tumor cells, providing a new idea for clinical diagnosis of tumors.
Collapse
Affiliation(s)
- Xiaoli Wang
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Huiru Yang
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Tao Sun
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jiale Zhang
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Lixuan Wang
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Yuting Zhang
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China.
| | - Nandi Zhou
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
2
|
Pan X, Zhao X, Lu Y, Xie P, Liu L, Chu X. Harnessing Nanomaterials for Enhanced DNA-Based Biosensing and Therapeutic Performance. Chembiochem 2024:e202400936. [PMID: 39655520 DOI: 10.1002/cbic.202400936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/09/2024] [Accepted: 12/09/2024] [Indexed: 12/19/2024]
Abstract
The integration of nanomaterials with DNA-based systems has emerged as a transformative approach in biosensing and therapeutic applications. Unique features of DNA, like its programmability and specificity, complement the diverse functions of nanomaterials, leading to the creation of advanced systems for detecting biomarkers and delivering treatments. Here, we review the developments in DNA-nanomaterial conjugates, emphasizing their enhanced functionalities and potential across various biomedical applications. We first discuss the methodologies for synthesizing these conjugates, distinguishing between covalent and non-covalent interactions. We then categorize DNA-nanomaterials conjugates based on the properties of the DNA and nanomaterials involved, respectively. DNA probes are classified by their application into biosensing or therapeutic uses, and, several nanomaterials are highlighted by their recent progress in living biological. Finally, we discuss the current challenges and future prospects in this field, anticipating that significant progress in DNA-nanomaterial conjugates will greatly enhance precision medicine.
Collapse
Affiliation(s)
- Xumin Pan
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Xiaoman Zhao
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Yanhong Lu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Ping Xie
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Lan Liu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Xia Chu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| |
Collapse
|
3
|
Peng X, Liu Y, Peng F, Wang T, Cheng Z, Chen Q, Li M, Xu L, Man Y, Zhang Z, Tan Y, Liu Z. Aptamer-controlled stimuli-responsive drug release. Int J Biol Macromol 2024; 279:135353. [PMID: 39245104 DOI: 10.1016/j.ijbiomac.2024.135353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
Aptamers have been widely researched and applied in nanomedicine due to their programmable, activatable, and switchable properties. However, there are few reviews on aptamer-controlled stimuli-responsive drug delivery. This article highlights the mechanisms and advantages of aptamers in the construction of stimuli-responsive drug delivery systems. We summarize the assembly/reconfiguration mechanisms of aptamers in controlled release systems. The assembly and drug release strategies of drug delivery systems are illustrated. Specifically, we focus on the binding mechanisms to the target and the factors that induce/inhibit the binding to the stimuli, such as strand, pH, light, and temperature. The applications of aptamer-based stimuli-responsive drug release are elaborated. The challenges are discussed, and the future directions are proposed.
Collapse
Affiliation(s)
- Xingxing Peng
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan Province, PR China
| | - Feicheng Peng
- Hunan Institute for Drug Control, Changsha 410001, Hunan Province, PR China
| | - Ting Wang
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Zhongyu Cheng
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Qiwen Chen
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan Province, PR China
| | - Mingfeng Li
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Lishang Xu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Yunqi Man
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Zhirou Zhang
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Yifu Tan
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China; Molecular Imaging Research Center of Central South University, Changsha 410008, Hunan, PR China.
| |
Collapse
|
4
|
Cui M, Zhang D, Zheng X, Zhai H, Xie M, Fan Q, Wang L, Fan C, Chao J. Intelligent Modular DNA Lysosome-Targeting Chimera Nanodevice for Precision Tumor Therapy. J Am Chem Soc 2024; 146:29609-29620. [PMID: 39428706 DOI: 10.1021/jacs.4c10010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Lysosome targeting chimeras (LYTACs) have emerged as a powerful modality that can eliminate traditionally undruggable extracellular tumor-related pathogenic proteins, but their low bioavailability and nonspecific distribution significantly restrict their efficacy in precision tumor therapy. Developing a LYTAC system that can selectively target tumor tissues and enable a modular design is crucial but challenging. We here report a programmable nanoplatform for tumor-specific degradation of multipathogenic proteins using an intelligent modular DNA LYTAC (IMTAC) nanodevice. We employ circular DNA origami to integrate predesigned modular multitarget protein binding sites and pH-responsive protein degradation promoters that specifically recognize cell-surface lysosome-shuttling receptors in tumor tissues. By precisely manipulating the stoichiometry and modularity of promoters and ligands targeting diverse proteins, the IMTAC nanodevice enables accurate localization and delivery into tumor tissues, where the acidic tumor microenvironment triggers degradation switch activation, multivalent binding, and efficient degradation of various prespecified proteins. The tissue-specificity and multiple ligands in IMTACs significantly improve the drug utilization rate while reducing off-target effects. Importantly, this system demonstrates the capability of collabo-rative degradation of EGFR and PDL1 in tumor tissue for combined targeting and immunity therapy of hepatocellular carcinoma (HCC), resulting in obvious tumor necrosis and inhibition of tumor growth in vivo even at low concentrations. This study presents a unique strategy for building a general, intelligent, modular, and simple encoded nanoplatform for designing precision medicine degraders and developing proprietary antitumor drugs.
Collapse
Affiliation(s)
- Meirong Cui
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Dan Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Xian Zheng
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Huan Zhai
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Mo Xie
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Qin Fan
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Lianhui Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jie Chao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
5
|
Zhong Y, Li Z, Li Z, Li B, Xin H, Wang C. Remotely Activated DNA Probe System for the Detection and Imaging of Dual miRNAs. ACS APPLIED BIO MATERIALS 2024; 7:462-471. [PMID: 38151236 DOI: 10.1021/acsabm.3c01079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Cancers remain the leading cause of mortality worldwide. It is crucial to detect cancer at an early stage for improving survival rates. Biomarkers have precise implications for cancer progression. Here, we built a straightforward DNA probe system that could be activated by near-infrared light to detect dual miRNAs with a high specificity. This probe is built on the basis of upconversion nanoparticles, which could emit ultraviolet light and activate DNA probes adsorbed on the outer layer. The DNA probe system is remotely controlled through manipulation of the near-infrared (NIR) light, enabling simultaneous detection of dual miRNAs. The DNA nanosystem could be effectively endocytosed by cancer cells and reflect expression levels of dual miRNAs. Overall, this study demonstrates a promising remote-controlled DNA nanoplatform for the simultaneous detection of dual miRNAs, which has tremendous potential for precise cancer diagnostics and therapies.
Collapse
Affiliation(s)
- Yan Zhong
- Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010020, China
| | - Zhihao Li
- Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010020, China
| | - Zheng Li
- Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010020, China
| | - Bo Li
- Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010020, China
| | - Hui Xin
- Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010020, China
| | - Chunyan Wang
- Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010020, China
| |
Collapse
|
6
|
Lin B, Xiao F, Jiang J, Zhao Z, Zhou X. Engineered aptamers for molecular imaging. Chem Sci 2023; 14:14039-14061. [PMID: 38098720 PMCID: PMC10718180 DOI: 10.1039/d3sc03989g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/07/2023] [Indexed: 12/17/2023] Open
Abstract
Molecular imaging, including quantification and molecular interaction studies, plays a crucial role in visualizing and analysing molecular events occurring within cells or organisms, thus facilitating the understanding of biological processes. Moreover, molecular imaging offers promising applications for early disease diagnosis and therapeutic evaluation. Aptamers are oligonucleotides that can recognize targets with a high affinity and specificity by folding themselves into various three-dimensional structures, thus serving as ideal molecular recognition elements in molecular imaging. This review summarizes the commonly employed aptamers in molecular imaging and outlines the prevalent design approaches for their applications. Furthermore, it highlights the successful application of aptamers to a wide range of targets and imaging modalities. Finally, the review concludes with a forward-looking perspective on future advancements in aptamer-based molecular imaging.
Collapse
Affiliation(s)
- Bingqian Lin
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| | - Feng Xiao
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| | - Jinting Jiang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| | - Zhengjia Zhao
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| |
Collapse
|
7
|
Zhang T, Liu J, Zhang L, Irfan M, Su X. Recent advances in aptamer-based biosensors for potassium detection. Analyst 2023; 148:5340-5354. [PMID: 37750217 DOI: 10.1039/d3an01053h] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Maintaining a stable level of potassium is crucial for proper bodily function because even a slight imbalance can result in serious disorders like hyperkalemia and hypokalemia. Therefore, detecting and monitoring potassium ion (K+) levels are of utmost importance. Various biosensors have been developed for rapid K+ detection, with aptamer-based biosensors garnering significant attention due to their high sensitivity and specificity. This review focuses on aptamer-based biosensors for K+ detection, providing an overview of their signal generation strategies, including electrochemical, field-effect transistor, nanopore, colorimetric, and fluorescent systems. The analytical performance of these biosensors is evaluated comprehensively. In addition, factors that affect their efficiency, such as their physicochemical properties, regeneration for reusability, and linkers/spacers, are listed. Lastly, this review examines the major challenges faced by aptamer-based biosensors in K+ detection and discusses potential future developments.
Collapse
Affiliation(s)
- Tengfang Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Jiajia Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Linghao Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Muhammad Irfan
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Xin Su
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
8
|
Fang L, Shi C, Wang Y, Xiong Z, Wang Y. Exploring the diverse biomedical applications of programmable and multifunctional DNA nanomaterials. J Nanobiotechnology 2023; 21:290. [PMID: 37612757 PMCID: PMC10464147 DOI: 10.1186/s12951-023-02071-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023] Open
Abstract
DNA nanoparticles hold great promise for a range of biological applications, including the development of cutting-edge treatments and diagnostic tests. Their subnanometer-level addressability enables precise, specific modifications with a variety of chemical and biological entities, making them ideal as diagnostic instruments and carriers for targeted delivery. This paper focuses on the potential of DNA nanomaterials, which offer scalability, programmability, and functionality. For example, they can be engineered to provide highly specific biosensing and bioimaging capabilities and show promise as a platform for disease diagnosis and treatment. Successful operation of various biomedical nanomaterials has been demonstrated both in vitro and in vivo. However, there are still significant challenges to overcome, including the need to improve the scalability and reliability of the technology, and to ensure safety in clinical applications. We discuss these challenges and opportunities in detail and highlight the progress and prospects of DNA nanotechnology for biomedical applications.
Collapse
Affiliation(s)
- Liuru Fang
- Hubei Province Key Laboratory of Systems Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Chen Shi
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China
| | - Yuhua Wang
- Hubei Province Key Laboratory of Systems Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan, 430081, China.
| | - Zuzhao Xiong
- Hubei Province Key Laboratory of Systems Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Yumei Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
9
|
Zhao SH, Liu L, Sun XR, Yu LJ, Ding CG. A cyanine dye probe for K + detection based on DNA construction of G-quadruplex. ANAL SCI 2023:10.1007/s44211-023-00325-5. [PMID: 37231185 DOI: 10.1007/s44211-023-00325-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/14/2023] [Indexed: 05/27/2023]
Abstract
Potassium ion (K+) plays an important role in the maintenance of cellular biological process for human health. Thus, the detection of K+ is very important. Here, based on the interaction between thiamonomethinecyanine dye and G-quadruplex formation sequence (PW17), K+ detection spectrum was characterized by UV-Vis spectrometry. The single-stranded sequence of PW17 can fold into G-quadruplex in the presence of K+. PW17 can induce a dimer-to-monomer transition of the absorption spectrum of cyanine dyes. This method shows high specificity against some other alkali cations, even at high concentrations of Na+. Further, this detection strategy can realize the detection of K+ in tap water.
Collapse
Affiliation(s)
- Shu-Hua Zhao
- North China University of Science and Technology, Tangshan, 063210, China
- National Center for Occupational Safety and Healthy, NHC, Beijing, 102308, China
| | - Lu Liu
- North China University of Science and Technology, Tangshan, 063210, China
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, China
| | - Xiao-Ran Sun
- North China University of Science and Technology, Tangshan, 063210, China
| | - Li-Jia Yu
- National Center for Occupational Safety and Healthy, NHC, Beijing, 102308, China.
- NHC Key Laboratory for Engineering Control of Dust Hazard, Beijing, 102308, China.
| | - Chun-Guang Ding
- National Center for Occupational Safety and Healthy, NHC, Beijing, 102308, China.
- NHC Key Laboratory for Engineering Control of Dust Hazard, Beijing, 102308, China.
| |
Collapse
|
10
|
Hu Y, Jia Y, Yang Y, Liu Y. Controllable DNA nanodevices regulated by logic gates for multi-stimulus recognition. RSC Adv 2023; 13:9003-9009. [PMID: 36950078 PMCID: PMC10025943 DOI: 10.1039/d3ra00295k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/13/2023] [Indexed: 03/22/2023] Open
Abstract
DNA biosensors have attracted considerable attention due to their great potential in environmental monitoring and medical diagnosis. Despite the great achievements, the single function and uncontrollability of the sensors restrict their further application. Therefore, it is necessary to construct controllable nanodevices with both sensing and responding capabilities to external stimuli. Herein, we develop a strategy to engineer structure-switching biosensors which can respond to external stimuli while preserving the sensing capability. The engineered nanodevice consists of an actuation module and a sensing module. Initially, the sensing module is disabled by a blocker strand which acts as an allosteric switch. Once the stimuli-responsive actuation module displaces the blocker DNA, the sensing module is activated. Based on the strategy, the engineered nanodevice could recognize both the target and external stimuli. As a demonstration of this strategy, a controllable Hg2+ sensor was designed, in which a 'YES', 'AND', and 'OR' logic gate is employed as the actuation module respectively to facilitate recognition of oligonucleotide inputs. The modular nature of the proposed strategy makes it easily generalizable to other structure-switching sensors. As a demonstration of this, we successfully apply it to the ATP sensor. The proposed strategy has potential in the fields of programmable biosensing, disease diagnosis, DNA computing, and intelligent nanodevices.
Collapse
Affiliation(s)
- Yingxin Hu
- School of Information Science and Technology, Shijiazhuang Tiedao University Shijiazhuang 050043 P. R. China
| | - Yufeng Jia
- School of Management, Shijiazhuang Tiedao University Shijiazhuang 050043 P. R. China
| | - Yuefei Yang
- School of Information Science and Technology, Shijiazhuang Tiedao University Shijiazhuang 050043 P. R. China
| | - Yanjun Liu
- School of Information Science and Technology, Shijiazhuang Tiedao University Shijiazhuang 050043 P. R. China
| |
Collapse
|
11
|
Chu LT, Kwong HK, Hartanto H, Chen TH. Detection of intracellular sodium ions based on phenotype-specific activation of NaA43 DNAzyme. Biosens Bioelectron 2022; 218:114753. [DOI: 10.1016/j.bios.2022.114753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/02/2022]
|
12
|
|
13
|
Liu X, Wang T, Wu Y, Tan Y, Jiang T, Li K, Lou B, Chen L, Liu Y, Liu Z. Aptamer based probes for living cell intracellular molecules detection. Biosens Bioelectron 2022; 208:114231. [PMID: 35390719 DOI: 10.1016/j.bios.2022.114231] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 12/21/2022]
Abstract
Biosensors have been employed for monitoring and imaging biological events and molecules. Sensitive detection of different biomolecules in vivo can reflect the changes of physiological conditions in real-time, which is of great significance for the diagnosis and treatment of diseases. The detection of intracellular molecules concentration change can indicate the occurrence and development of disease. But the analysis process of the existing detection methods, such as Western blot detection of intracellular protein, polymerase chain reaction (PCR) technique quantitative analysis of intracellular RNA and DNA, usually need to extract the cell lysis which is complex and time-consuming. Fluorescence bioimaging enables in situ monitoring of intracellular molecules in living cells. By combining the specificity of aptamer for intracellular molecules binding, and biocompatibility of fluorescent materials and nanomaterials, biosensors with different nanostructures have been developed to enter into living cells for analysis. This review summarizes the fluorescence detection methods based on aptamer for intracellular molecules detection. The principles, limit of detection, advantages, and disadvantages of different platforms for intracellular molecular fluorescent response are summarized and reviewed. Finally, the current challenges and future developments were discussed and proposed.
Collapse
Affiliation(s)
- Xiaoqin Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China
| | - Ting Wang
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Yuwei Wu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Yifu Tan
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China
| | - Ting Jiang
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China
| | - Ke Li
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Beibei Lou
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Liwei Chen
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China.
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China; Molecular Imaging Research Center of Central South University, Changsha, 410008, Hunan, PR China.
| |
Collapse
|
14
|
Liu J, Yan L, He S, Hu J. Engineering DNA quadruplexes in DNA nanostructures for biosensor construction. NANO RESEARCH 2021; 15:3504-3513. [PMID: 35401944 PMCID: PMC8983328 DOI: 10.1007/s12274-021-3869-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/28/2021] [Accepted: 09/04/2021] [Indexed: 06/14/2023]
Abstract
DNA quadruplexes are nucleic acid conformations comprised of four strands. They are prevalent in human genomes and increasing efforts are being directed toward their engineering. Taking advantage of the programmability of Watson-Crick base-pairing and conjugation methodology of DNA with other molecules, DNA nanostructures of increasing complexity and diversified geometries have been artificially constructed since 1980s. In this review, we investigate the interweaving of natural DNA quadruplexes and artificial DNA nanostructures in the development of the ever-prosperous field of biosensing, highlighting their specific roles in the construction of biosensor, including recognition probe, signal probe, signal amplifier and support platform. Their implementation in various sensing scenes was surveyed. And finally, general conclusion and future perspective are discussed for further developments.
Collapse
Affiliation(s)
- Jingxin Liu
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118 China
| | - Li Yan
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118 China
| | - Shiliang He
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118 China
| | - Junqing Hu
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118 China
- Shenzhen Bey Laboratory, Shenzhen, 518132 China
| |
Collapse
|
15
|
Li XQ, Liu XN, Jia YL, Luo XL, Chen HY, Xu JJ. Dual Recognition DNA Triangular Prism Nanoprobe: Toward the Relationship between K + and pH in Lysosomes. Anal Chem 2021; 93:14892-14899. [PMID: 34709789 DOI: 10.1021/acs.analchem.1c04056] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lysosomal acidification is essential for its degradative function, and the flux of H+ correlated with that of K+ in lysosomes. However, there is little research on their correlation due to the lack of probes that can simultaneously image these two ions. To deeply understand the role of K+ in lysosomal acidification, here, we designed and fabricated a nanodevice using a K+-aptamer and two pH-triggered nanoswitches incorporated into a DNA triangular prism (DTP) as a dual signal response platform to simultaneously visualize K+ and pH in lysosomes by a fluorescence method. This strategy could conveniently integrate two signal recognition modules into one probe, so as to achieve the goal of sensitive detection of two kinds of signals in the same time and space, which is suitable for the detection of various signals with the correlation of concentration. By co-imaging both K+ and H+ in lysosomes, we found that the efflux of K+ was accompanied by a decrease of pH, which is of great value in understanding lysosomal acidification. Moreover, this strategy also has broad prospects as a versatile optical sensing platform for multiplexed analysis of other biomolecules in living cells.
Collapse
Affiliation(s)
- Xiao-Qiong Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiang-Nan Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi-Lei Jia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xi-Liang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (MOE), College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
16
|
Feng H, Meng Q, Ta HT, Zhang R. Development of “dual-key-and-lock” responsive probes for biosensing and imaging. NEW J CHEM 2020. [DOI: 10.1039/d0nj02762f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Recent advances in the development of “dual-key-and-lock” responsive probes for accurate detection of various biomolecules are reviewed.
Collapse
Affiliation(s)
- Huan Feng
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- St. Lucia
- Australia
- School of Chemical Engineering, University of Science and Technology Liaoning
| | - Qingtao Meng
- School of Chemical Engineering, University of Science and Technology Liaoning
- Anshan
- P. R. China
| | - Hang T. Ta
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- St. Lucia
- Australia
- School of Environment and Science, Griffith University
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- St. Lucia
- Australia
| |
Collapse
|