1
|
Ciulla DA, Xu Z, Pezzullo JL, Dranchak P, Wang C, Giner JL, Inglese J, Callahan BP. Paracatalytic induction: Subverting specificity in hedgehog protein autoprocessing with small molecules. Methods Enzymol 2023; 685:1-41. [PMID: 37245899 PMCID: PMC10294009 DOI: 10.1016/bs.mie.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Paracatalytic inducers are antagonists that shift the specificity of biological catalysts, resulting in non-native transformations. In this Chapter we describe methods to discover paracatalytic inducers of Hedgehog (Hh) protein autoprocessing. Native autoprocessing uses cholesterol as a substrate nucleophile to assist in cleaving an internal peptide bond within a precursor form of Hh. This unusual reaction is brought about by HhC, an enzymatic domain that resides within the C-terminal region of Hh precursor proteins. Recently, we reported paracatalytic inducers as a novel class of Hh autoprocessing antagonists. These small molecules bind HhC and tilt the substrate specificity away from cholesterol in favor of solvent water. The resulting cholesterol-independent autoproteolysis of the Hh precursor generates a non-native Hh side product with substantially reduced biological signaling activity. Protocols are provided for in vitro FRET-based and in-cell bioluminescence assays to discover and characterize paracatalytic inducers of Drosophila and human hedgehog protein autoprocessing, respectively.
Collapse
Affiliation(s)
- Daniel A Ciulla
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States.
| | - Zihan Xu
- Chemistry Department, Binghamton University, Binghamton, NY, United States
| | - John L Pezzullo
- State University of New York, College of Environmental Science and Forestry, Syracuse, NY, United States
| | - Patricia Dranchak
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | - Chunyu Wang
- Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - José-Luis Giner
- State University of New York, College of Environmental Science and Forestry, Syracuse, NY, United States
| | - James Inglese
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States; National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Brian P Callahan
- Chemistry Department, Binghamton University, Binghamton, NY, United States
| |
Collapse
|
2
|
Callahan BP, Xu Z. There's more to enzyme antagonism than inhibition. Bioorg Med Chem 2023; 82:117231. [PMID: 36893527 PMCID: PMC10228466 DOI: 10.1016/j.bmc.2023.117231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023]
Abstract
A native enzyme's usual assurance in recognizing their physiological substrate(s) at the ground state and on going to the transition state can be undermined by interactions with selected small molecule antagonists, leading to the generation of abnormal products. We classify this mode of enzyme antagonism resulting in the gain-of-nonnative-function as paracatalytic induction. Enzymes bound by paracatalytic inducers exhibit new or enhanced activity toward transformations that appear aberrant or erroneous. The enzyme/ paracatalytic inducer complex may take up native substrate but then bring about a transformation that is chemically distinct from the normal reaction. Alternatively, the enzyme / paracatalytic inducer complex may exhibit abnormal ground state selectivity, preferentially interacting with and transforming a molecule outside the physiological substrate scope. Paracatalytic inducers can be cytotoxic, while in other cases they divert enzyme activity toward transformations that appear adaptive and even therapeutically useful. In this perspective, we highlight two noteworthy examples from recent literature.
Collapse
Affiliation(s)
- Brian P Callahan
- Chemistry Department, Binghamton University, Binghamton, NY 13902, United States.
| | - Zihan Xu
- Chemistry Department, Binghamton University, Binghamton, NY 13902, United States
| |
Collapse
|
3
|
Ciulla DA, Dranchak P, Pezzullo JL, Mancusi RA, Psaras AM, Rai G, Giner JL, Inglese J, Callahan BP. A cell-based bioluminescence reporter assay of human Sonic Hedgehog protein autoprocessing to identify inhibitors and activators. J Biol Chem 2022; 298:102705. [PMID: 36400200 PMCID: PMC9772569 DOI: 10.1016/j.jbc.2022.102705] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022] Open
Abstract
The Sonic Hedgehog (SHh) precursor protein undergoes biosynthetic autoprocessing to cleave off and covalently attach cholesterol to the SHh signaling ligand, a vital morphogen and oncogenic effector protein. Autoprocessing is self-catalyzed by SHhC, the SHh precursor's C-terminal enzymatic domain. A method to screen for small molecule regulators of this process may be of therapeutic value. Here, we describe the development and validation of the first cellular reporter to monitor human SHhC autoprocessing noninvasively in high-throughput compatible plates. The assay couples intracellular SHhC autoprocessing using endogenous cholesterol to the extracellular secretion of the bioluminescent nanoluciferase enzyme. We developed a WT SHhC reporter line for evaluating potential autoprocessing inhibitors by concentration response-dependent suppression of extracellular bioluminescence. Additionally, a conditional mutant SHhC (D46A) reporter line was developed for identifying potential autoprocessing activators by a concentration response-dependent gain of extracellular bioluminescence. The D46A mutation removes a conserved general base that is critical for the activation of the cholesterol substrate. Inducibility of the D46A reporter was established using a synthetic sterol, 2-α carboxy cholestanol, designed to bypass the defect through intramolecular general base catalysis. To facilitate direct nanoluciferase detection in the cell culture media of 1536-well plates, we designed a novel anionic phosphonylated coelenterazine, CLZ-2P, as the nanoluciferase substrate. This new reporter system offers a long-awaited resource for small molecule discovery for cancer and for developmental disorders where SHh ligand biosynthesis is dysregulated.
Collapse
Affiliation(s)
- Daniel A Ciulla
- Chemistry Department, Binghamton University, Binghamton, New York, USA
| | - Patricia Dranchak
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - John L Pezzullo
- State University of New York, College of Environmental Science and Forestry, Syracuse, New York, USA
| | - Rebecca A Mancusi
- Chemistry Department, Binghamton University, Binghamton, New York, USA
| | | | - Ganesha Rai
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - José-Luis Giner
- State University of New York, College of Environmental Science and Forestry, Syracuse, New York, USA.
| | - James Inglese
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA; National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA.
| | - Brian P Callahan
- Chemistry Department, Binghamton University, Binghamton, New York, USA.
| |
Collapse
|
4
|
Tharappel AM, Li Z, Zhu YC, Wu X, Chaturvedi S, Zhang QY, Li H. Calcimycin Inhibits Cryptococcus neoformans In Vitro and In Vivo by Targeting the Prp8 Intein Splicing. ACS Infect Dis 2022; 8:1851-1868. [PMID: 35948057 PMCID: PMC9464717 DOI: 10.1021/acsinfecdis.2c00137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Drug resistance is a significant concern in the treatment of diseases, including cryptococcosis caused by Cryptococcus neoformans (Cne) and Cryptococcus gattii (Cga). Alternative drug targets are necessary to overcome drug resistance before it attains a critical stage. Splicing of inteins from pro-protein precursors is crucial for activities of essential proteins hosting intein elements in many organisms, including human pathogens such as Cne and Cga. Through a high-throughput screening, we identified calcimycin (CMN) as a potent Prp8 intein splicing inhibitor with a minimum inhibitory concentration (MIC) of 1.5 μg/mL against the wild-type Cne-H99 (Cne-WT or Cne). In contrast, CMN inhibited the intein-less mutant strain (Cne-Mut) with a 16-fold higher MIC. Interestingly, Aspergillus fumigatus and a few Candida species were resistant to CMN. Further studies indicated that CMN reduced virulence factors such as urease activity, melanin production, and biofilm formation in Cne. CMN also inhibited Cne intracellular infection in macrophages. In a target-specific split nanoluciferase assay, the IC50 of CMN was 4.6 μg/mL. Binding of CMN to recombinant Prp8 intein was demonstrated by thermal shift assay and microscale thermophoresis. Treating Cne cells with CMN reduced intein splicing. CMN was fungistatic and showed a synergistic effect with the known antifungal drug amphotericin B. Finally, CMN treatment at 20 mg/kg body weight led to 60% reduction in lung fungal load in a cryptococcal pulmonary infection mouse model. Overall, CMN represents a potent antifungal with a novel mechanism of action to treat Cne and possibly Cga infections.
Collapse
Affiliation(s)
- Anil Mathew Tharappel
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson Arizona 85721-0207, United States
- Wadsworth Center, New York State Department of Health, Albany, New York 12208, United States
| | - Zhong Li
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson Arizona 85721-0207, United States
- Wadsworth Center, New York State Department of Health, Albany, New York 12208, United States
| | - Yan Chun Zhu
- Wadsworth Center, New York State Department of Health, Albany, New York 12208, United States
| | - Xiangmeng Wu
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson Arizona 85721-0207, United States
| | - Sudha Chaturvedi
- Wadsworth Center, New York State Department of Health, Albany, New York 12208, United States
| | - Qing-Yu Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson Arizona 85721-0207, United States
| | - Hongmin Li
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson Arizona 85721-0207, United States
- Wadsworth Center, New York State Department of Health, Albany, New York 12208, United States
- The BIO5 Institute, The University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
5
|
Wagner AG, Stagnitta RT, Xu Z, Pezzullo JL, Kandel N, Giner JL, Covey DF, Wang C, Callahan BP. Nanomolar, Noncovalent Antagonism of Hedgehog Cholesterolysis: Exception to the "Irreversibility Rule" for Protein Autoprocessing Inhibition. Biochemistry 2022; 61:1022-1028. [PMID: 34941260 PMCID: PMC9382716 DOI: 10.1021/acs.biochem.1c00697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hedgehog (Hh) signaling ligands undergo carboxy terminal sterylation through specialized autoprocessing, called cholesterolysis. Sterylation is brought about intramolecularly in a single turnover by an adjacent enzymatic domain, called HhC, which is found in precursor Hh proteins only. Previous attempts to identify antagonists of the intramolecular activity of HhC have yielded inhibitors that bind HhC irreversibly through covalent mechanisms, as is common for protein autoprocessing inhibitors. Here, we report an exception to the "irreversibility rule" for autoprocessing inhibition. Using a fluorescence resonance energy transfer-based activity assay for HhC, we screened a focused library of sterol-like analogues for noncovalent inhibitors and identified and validated four structurally related molecules, which were then used for structure-activity relationship studies. The most effective derivative, tBT-HBT, inhibits HhC noncovalently with an IC50 of 300 nM. An allosteric binding site for tBT-HBT, encompassing residues from the two subdomains of HhC, is suggested by kinetic analysis, mutagenesis studies, and photoaffinity labeling. The inhibitors described here resemble a family of noncovalent, allosteric inducers of HhC paracatalysis which we have described previously. The inhibition and the induction appear to be mediated by a shared allosteric site on HhC.
Collapse
Affiliation(s)
- Andrew G Wagner
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, New York 13902, United States
| | - Robert T Stagnitta
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, New York 13902, United States
| | - Zihan Xu
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, New York 13902, United States
| | - John L Pezzullo
- Department of Chemistry, SUNY-ESF, Syracuse, New York 13210, United States
| | - Nabin Kandel
- Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
| | - José-Luis Giner
- Department of Chemistry, SUNY-ESF, Syracuse, New York 13210, United States
| | - Douglas F Covey
- Department of Developmental Biology, Taylor Family Institute for Innovative Psychiatric Research, 660 South Euclid Avenue, St. Louis, Missouri 63110, United States
| | - Chunyu Wang
- Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
| | - Brian P Callahan
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, New York 13902, United States
| |
Collapse
|
6
|
Kandel N, Wang C. Hedgehog Autoprocessing: From Structural Mechanisms to Drug Discovery. Front Mol Biosci 2022; 9:900560. [PMID: 35669560 PMCID: PMC9163320 DOI: 10.3389/fmolb.2022.900560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Hedgehog (Hh) signaling plays pivotal roles in embryonic development. In adults, Hh signaling is mostly turned off but its abnormal activation is involved in many types of cancer. Hh signaling is initiated by the Hh ligand, generated from the Hh precursor by a specialized autocatalytic process called Hh autoprocessing. The Hh precursor consists of an N-terminal signaling domain (HhN) and a C-terminal autoprocessing domain (HhC). During Hh autoprocessing, the precursor is cleaved between N- and C-terminal domain followed by the covalent ligation of cholesterol to the last residue of HhN, which subsequently leads to the generation of Hh ligand for Hh signaling. Hh autoprocessing is at the origin of canonical Hh signaling and precedes all downstream signaling events. Mutations in the catalytic residues in HhC can lead to congenital defects such as holoprosencephaly (HPE). The aim of this review is to provide an in-depth summary of the progresses and challenges towards an atomic level understanding of the structural mechanisms of Hh autoprocessing. We also discuss drug discovery efforts to inhibit Hh autoprocessing as a new direction in cancer therapy.
Collapse
Affiliation(s)
- Nabin Kandel
- Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Chunyu Wang
- Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- *Correspondence: Chunyu Wang,
| |
Collapse
|
7
|
Wall DA, Tarrant SP, Wang C, Mills KV, Lennon CW. Intein Inhibitors as Novel Antimicrobials: Protein Splicing in Human Pathogens, Screening Methods, and Off-Target Considerations. Front Mol Biosci 2021; 8:752824. [PMID: 34692773 PMCID: PMC8529194 DOI: 10.3389/fmolb.2021.752824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/24/2021] [Indexed: 01/20/2023] Open
Abstract
Protein splicing is a post-translational process by which an intervening polypeptide, or intein, catalyzes its own removal from the flanking polypeptides, or exteins, concomitant with extein ligation. Although inteins are highly abundant in the microbial world, including within several human pathogens, they are absent in the genomes of metazoans. As protein splicing is required to permit function of essential proteins within pathogens, inteins represent attractive antimicrobial targets. Here we review key proteins interrupted by inteins in pathogenic mycobacteria and fungi, exciting discoveries that provide proof of concept that intein activity can be inhibited and that this inhibition has an effect on the host organism's fitness, and bioanalytical methods that have been used to screen for intein activity. We also consider potential off-target inhibition of hedgehog signaling, given the similarity in structure and function of inteins and hedgehog autoprocessing domains.
Collapse
Affiliation(s)
- Diana A Wall
- Department of Chemistry, College of the Holy Cross, Worcester, MA, United States
| | - Seanan P Tarrant
- Department of Chemistry, College of the Holy Cross, Worcester, MA, United States
| | - Chunyu Wang
- Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States.,Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Kenneth V Mills
- Department of Chemistry, College of the Holy Cross, Worcester, MA, United States
| | - Christopher W Lennon
- Department of Biological Sciences, Murray State University, Murray, KY, United States
| |
Collapse
|
8
|
Mafi A, Purohit R, Vielmas E, Lauinger AR, Lam B, Cheng YS, Zhang T, Huang Y, Kim SK, Goddard WA, Ondrus AE. Hedgehog proteins create a dynamic cholesterol interface. PLoS One 2021; 16:e0246814. [PMID: 33630857 PMCID: PMC7906309 DOI: 10.1371/journal.pone.0246814] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/26/2021] [Indexed: 12/27/2022] Open
Abstract
During formation of the Hedgehog (Hh) signaling proteins, cooperative activities of the Hedgehog INTein (Hint) fold and Sterol Recognition Region (SRR) couple autoproteolysis to cholesterol ligation. The cholesteroylated Hh morphogens play essential roles in embryogenesis, tissue regeneration, and tumorigenesis. Despite the centrality of cholesterol in Hh function, the full structure of the Hint-SRR ("Hog") domain that attaches cholesterol to the last residue of the active Hh morphogen remains enigmatic. In this work, we combine molecular dynamics simulations, photoaffinity crosslinking, and mutagenesis assays to model cholesterolysis intermediates in the human Sonic Hedgehog (hSHH) protein. Our results provide evidence for a hydrophobic Hint-SRR interface that forms a dynamic, non-covalent cholesterol-Hog complex. Using these models, we suggest a unified mechanism by which Hh proteins can recruit, sequester, and orient cholesterol, and offer a molecular basis for the effects of disease-causing hSHH mutations.
Collapse
Affiliation(s)
- Amirhossein Mafi
- Department of Chemistry, Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Rahul Purohit
- Department of Chemistry, Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Erika Vielmas
- Department of Chemistry, Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Alexa R. Lauinger
- Department of Chemistry, Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Brandon Lam
- Department of Chemistry, Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Yu-Shiuan Cheng
- Department of Chemistry, Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Tianyi Zhang
- Department of Chemistry, Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Yiran Huang
- Department of Chemistry, Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Soo-Kyung Kim
- Department of Chemistry, Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - William A. Goddard
- Department of Chemistry, Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America
- * E-mail: (AEO); (WAG)
| | - Alison E. Ondrus
- Department of Chemistry, Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America
- * E-mail: (AEO); (WAG)
| |
Collapse
|
9
|
Callahan BP, Ciulla DA, Wagner AG, Xu Z, Zhang X. Specificity Distorted: Chemical Induction of Biological Paracatalysis. Biochemistry 2020; 59:3517-3522. [PMID: 32931253 DOI: 10.1021/acs.biochem.0c00643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We define paracatalysis as the acceleration of a reaction that appears abnormal or nonphysiological. With the high specificity of enzymes, side reactivity of this kind is typically negligible. However, enzyme paracatalysis can be amplified to levels that are biologically significant through interactions with a special class of small molecule "antagonist", here termed a paracatalytic inducer. Compounds with this unusual mode of action tend to be natural products, identified by chance through phenotypic screens. In this Perspective, we suggest two general types of paracatalytic inducer. The first type promotes substrate ambiguity, where the enzyme's ground state selectivity is compromised, enabling the transformation of non-native substrates. The second type involves transition state ambiguity, where the paracatalytic inducer changes the enzyme's interactions with the activated substrate, giving rise to non-native bond making. Although they are unusual, small molecules that induce paracatalysis have established value as hypothesis-generating probes and a few substances, i.e., aspirin and the aminoglycosides, have proven to be translatable as medicines.
Collapse
Affiliation(s)
- Brian P Callahan
- Department of Chemistry, Binghamton University, the State University of New York, 4400 Vestal Parkway East, Binghamton, New York 13902, United States
| | - Daniel A Ciulla
- Department of Chemistry, Binghamton University, the State University of New York, 4400 Vestal Parkway East, Binghamton, New York 13902, United States
| | - Andrew G Wagner
- Department of Chemistry, Binghamton University, the State University of New York, 4400 Vestal Parkway East, Binghamton, New York 13902, United States
| | - Zihan Xu
- Department of Chemistry, Binghamton University, the State University of New York, 4400 Vestal Parkway East, Binghamton, New York 13902, United States
| | - Xiaoyu Zhang
- Department of Chemistry, Binghamton University, the State University of New York, 4400 Vestal Parkway East, Binghamton, New York 13902, United States
| |
Collapse
|
10
|
Dual roles of the sterol recognition region in Hedgehog protein modification. Commun Biol 2020; 3:250. [PMID: 32440000 PMCID: PMC7242414 DOI: 10.1038/s42003-020-0977-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/28/2020] [Indexed: 11/08/2022] Open
Abstract
Nature provides a number of mechanisms to encode dynamic information in biomolecules. In metazoans, there exist rare chemical modifications that occur in entirely unique regimes. One such example occurs in the Hedgehog (Hh) morphogens, proteins singular across all domains of life for the nature of their covalent ligation to cholesterol. The isoform- and context-specific efficiency of this ligation profoundly impacts the activity of Hh morphogens and represents an unexplored facet of Hh ligand-dependent cancers. To elucidate the chemical mechanism of this modification, we have defined roles of the uncharacterized sterol recognition region (SRR) in Hh proteins. We use a combination of sequence conservation, directed mutagenesis, and biochemical assays to specify residues of the SRR participate in cellular and biochemical aspects of Hh cholesterolysis. Our investigations offer a functional portrait of this region, providing opportunities to identify parallel reactivity in nature and a template to design tools in chemical biology.
Collapse
|