1
|
Kloet MS, Mukhopadhyay R, Mukherjee R, Misra M, Jeong M, Talavera Ormeño CMP, Moutsiopoulou A, Tjokrodirijo RTN, van Veelen PA, Shin D, Đikić I, Sapmaz A, Kim RQ, van der Heden van Noort GJ. Covalent Probes To Capture Legionella pneumophila Dup Effector Enzymes. J Am Chem Soc 2024; 146:26957-26964. [PMID: 39288007 PMCID: PMC11450808 DOI: 10.1021/jacs.4c08168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024]
Abstract
Upon infection of host cells, Legionella pneumophila releases a multitude of effector enzymes into the cell's cytoplasm that hijack a plethora of cellular activities, including the host ubiquitination pathways. Effectors belonging to the SidE-family are involved in noncanonical serine phosphoribosyl ubiquitination of host substrate proteins contributing to the formation of a Legionella-containing vacuole that is crucial in the onset of Legionnaires' disease. This dynamic process is reversed by effectors called Dups that hydrolyze the phosphodiester in the phosphoribosyl ubiquitinated protein. We installed reactive warheads on chemically prepared ribosylated ubiquitin to generate a set of probes targeting these Legionella enzymes. In vitro tests on recombinant DupA revealed that a vinyl sulfonate warhead was most efficient in covalent complex formation. Mutagenesis and X-ray crystallography approaches were used to identify the site of covalent cross-linking to be an allosteric cysteine residue. The subsequent application of this probe highlights the potential to selectively enrich the Dup enzymes from Legionella-infected cell lysates.
Collapse
Affiliation(s)
- Max S. Kloet
- Department
of Cell and Chemical Biology, Leiden University
Medical Centre, 2333 ZC, Leiden, The Netherlands
| | - Rishov Mukhopadhyay
- Department
of Cell and Chemical Biology, Leiden University
Medical Centre, 2333 ZC, Leiden, The Netherlands
| | - Rukmini Mukherjee
- Buchmann
Institute for Molecular Life Sciences, Goethe
University Frankfurt am Main, 60438, Frankfurt am Main, Germany
| | - Mohit Misra
- Buchmann
Institute for Molecular Life Sciences, Goethe
University Frankfurt am Main, 60438, Frankfurt am Main, Germany
| | - Minwoo Jeong
- Department
of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 03722, Seoul, Republic of Korea
| | - Cami M. P. Talavera Ormeño
- Department
of Cell and Chemical Biology, Leiden University
Medical Centre, 2333 ZC, Leiden, The Netherlands
| | - Angeliki Moutsiopoulou
- Department
of Cell and Chemical Biology, Leiden University
Medical Centre, 2333 ZC, Leiden, The Netherlands
| | - Rayman T. N. Tjokrodirijo
- Centre
for Proteomics and Metabolomics, Leiden
University Medical Centre, 2300 RC, Leiden, The Netherlands
| | - Peter A. van Veelen
- Centre
for Proteomics and Metabolomics, Leiden
University Medical Centre, 2300 RC, Leiden, The Netherlands
| | - Donghyuk Shin
- Department
of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 03722, Seoul, Republic of Korea
| | - Ivan Đikić
- Buchmann
Institute for Molecular Life Sciences, Goethe
University Frankfurt am Main, 60438, Frankfurt am Main, Germany
| | - Aysegul Sapmaz
- Department
of Cell and Chemical Biology, Leiden University
Medical Centre, 2333 ZC, Leiden, The Netherlands
| | - Robbert Q. Kim
- Department
of Cell and Chemical Biology, Leiden University
Medical Centre, 2333 ZC, Leiden, The Netherlands
| | | |
Collapse
|
2
|
Kloet MS, van der Heden van Noort GJ. Capturing Legionella pneumophila effector enzymes using a ubiquitin derived photo-activatable probe. Front Mol Biosci 2024; 11:1422034. [PMID: 39044841 PMCID: PMC11263097 DOI: 10.3389/fmolb.2024.1422034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/12/2024] [Indexed: 07/25/2024] Open
Abstract
Upon infection of host cells the Legionella pneumophila bacterium releases a multitude of effector enzymes into the host's cytoplasm that manipulate cellular host pathways, including the host-ubiquitination pathways. The effectors belonging to the SidE-family are involved in non-canonical phosphoribosyl serine ubiquitination (PR-ubiquitination) of host substrate proteins. This results in the recruitment of ER-remodeling proteins and the formation of a Legionella-containing vacuole which is crucial in the onset of legionnaires disease. PR-ubiquitination is a dynamic process reversed by other Legionella effectors called Dups. During PR-Ubiquitin phosphodiester hydrolysis Dups form a covalent intermediate with the phosphoribosyl ubiquitylated protein using its active site His67 residue. We envisioned that covalent probes to target Legionella effectors could be of value to study these effectors and contribute to deciphering the complex biology of Legionella infection. Hence we effectively installed a photo-activatable pyridinium warhead on the 5'-OH of triazole-linked ribosylated ubiquitin allowing crosslinking of the probe to the catalytic histidine residues in Legionella SidE or Dup enzymes. In vitro tests on recombinantly expressed DupA and SdeAPDE revealed that the probe was able to capture the enzymes covalently upon photo-activation.
Collapse
|
3
|
Huppelschoten Y, van der Heden van Noort GJ. State of the art in (semi-)synthesis of Ubiquitin- and Ubiquitin-like tools. Semin Cell Dev Biol 2022; 132:74-85. [PMID: 34961664 DOI: 10.1016/j.semcdb.2021.11.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/26/2021] [Accepted: 11/28/2021] [Indexed: 12/14/2022]
Abstract
Protein ubiquitination is a key post-translational modification in regulating many fundamental cellular processes and dysregulation of these processes can give rise to a vast array of diseases. Unravelling the molecular mechanisms of ubiquitination hence is an important area in current ubiquitin research with as aim to understand this enigmatic process. The complexity of ubiquitin (Ub) signaling arises from the large variety of Ub conjugates, where Ub is attached to other Ub proteins, Ub-like proteins, and protein substrates. The chemical preparation of such Ub conjugates in high homogeneity and in adequate amounts contributes greatly to the deciphering of Ub signaling. The strength of these chemically synthesized conjugates lies in the chemo-selectivity in which they can be created that are sometimes difficult to obtain using biochemical methodology. In this review, we will discuss the progress in the chemical protein synthesis of state-of-the-art Ub and Ub-like chemical probes, their unique concepts and related discoveries in the ubiquitin field.
Collapse
Affiliation(s)
- Yara Huppelschoten
- Oncode Institute and Dept. Cell and Chemical Biology, Leiden University Medical Centre, Leiden, The Netherlands; Global Research Technologies, Novo Nordisk Research Park, Måløv, Denmark
| | | |
Collapse
|
4
|
Voorneveld J, Kloet MS, Wijngaarden S, Kim RQ, Moutsiopoulou A, Verdegaal M, Misra M, Đikić I, van der Marel GA, Overkleeft HS, Filippov DV, van der Heden van Noort GJ. Arginine ADP-Ribosylation: Chemical Synthesis of Post-Translationally Modified Ubiquitin Proteins. J Am Chem Soc 2022; 144:20582-20589. [DOI: 10.1021/jacs.2c06249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Jim Voorneveld
- Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Max S. Kloet
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Centre, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Sven Wijngaarden
- Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Robbert Q. Kim
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Centre, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Angeliki Moutsiopoulou
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Centre, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Marnix Verdegaal
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Centre, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Mohit Misra
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany
| | - Ivan Đikić
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany
| | - Gijsbert A. van der Marel
- Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Herman S. Overkleeft
- Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Dmitri V. Filippov
- Bio-Organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Gerbrand J. van der Heden van Noort
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Centre, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| |
Collapse
|
5
|
Iyer S, Das C. The unity of opposites: Strategic interplay between bacterial effectors to regulate cellular homeostasis. J Biol Chem 2021; 297:101340. [PMID: 34695417 PMCID: PMC8605245 DOI: 10.1016/j.jbc.2021.101340] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 11/23/2022] Open
Abstract
Legionella pneumophila is a facultative intracellular pathogen that uses the Dot/Icm Type IV secretion system (T4SS) to translocate many effectors into its host and establish a safe, replicative lifestyle. The bacteria, once phagocytosed, reside in a vacuolar structure known as the Legionella-containing vacuole (LCV) within the host cells and rapidly subvert organelle trafficking events, block inflammatory responses, hijack the host ubiquitination system, and abolish apoptotic signaling. This arsenal of translocated effectors can manipulate the host factors in a multitude of different ways. These proteins also contribute to bacterial virulence by positively or negatively regulating the activity of one another. Such effector-effector interactions, direct and indirect, provide the delicate balance required to maintain cellular homeostasis while establishing itself within the host. This review summarizes the recent progress in our knowledge of the structure-function relationship and biochemical mechanisms of select effector pairs from Legionella that work in opposition to one another, while highlighting the diversity of biochemical means adopted by this intracellular pathogen to establish a replicative niche within host cells.
Collapse
Affiliation(s)
- Shalini Iyer
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA.
| | - Chittaranjan Das
- Department of Chemistry, Purdue University, West Lafayette, Indiana, USA.
| |
Collapse
|
6
|
Glumoff T, Sowa ST, Lehtiö L. Assay technologies facilitating drug discovery for ADP-ribosyl writers, readers and erasers. Bioessays 2021; 44:e2100240. [PMID: 34816463 DOI: 10.1002/bies.202100240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022]
Abstract
ADP-ribosylation is a post-translational modification catalyzed by writer enzymes - ADP-ribosyltransferases. The modification is part of many signaling events, can modulate the function and stability of target proteins, and often results in the recruitment of reader proteins that bind to the ADP-ribosyl groups. Erasers are integral actors in these signaling events and reverse the modification. ADP-ribosylation can be targeted with therapeutics and many inhibitors against writers exist, with some being in clinical use. Inhibitors against readers and erasers are sparser and development of these has gained momentum only in recent years. Drug discovery has been hampered by the lack of specific tools, however many significant advances in the methods have recently been reported. We discuss assays used in the field with a focus on methods allowing efficient identification of small molecule inhibitors and profiling against enzyme families. While human proteins are focused, the methods can be also applied to bacterial toxins and virus encoded erasers that can be targeted to treat infectious diseases in the future.
Collapse
Affiliation(s)
- Tuomo Glumoff
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Sven T Sowa
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Lari Lehtiö
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
7
|
Kim RQ, Misra M, Gonzalez A, Tomašković I, Shin D, Schindelin H, Filippov DV, Ovaa H, Đikić I, van der Heden van Noort GJ. Development of ADPribosyl Ubiquitin Analogues to Study Enzymes Involved in Legionella Infection. Chemistry 2021; 27:2506-2512. [PMID: 33075184 PMCID: PMC7898697 DOI: 10.1002/chem.202004590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Indexed: 11/18/2022]
Abstract
Legionnaires' disease is caused by infection with the intracellularly replicating Gram-negative bacterium Legionella pneumophila. This pathogen uses an unconventional way of ubiquitinating host proteins by generating a phosphoribosyl linkage between substrate proteins and ubiquitin by making use of an ADPribosylated ubiquitin (UbADPr ) intermediate. The family of SidE effector enzymes that catalyze this reaction is counteracted by Legionella hydrolases, which are called Dups. This unusual ubiquitination process is important for Legionella proliferation and understanding these processes on a molecular level might prove invaluable in finding new treatments. Herein, a modular approach is used for the synthesis of triazole-linked UbADPr , and analogues thereof, and their affinity towards the hydrolase DupA is determined and hydrolysis rates are compared to natively linked UbADPr . The inhibitory effects of modified Ub on the canonical eukaryotic E1-enzyme Uba1 are investigated and rationalized in the context of a high-resolution crystal structure reported herein. Finally, it is shown that synthetic UbADPr analogues can be used to effectively pull-down overexpressed DupA from cell lysate.
Collapse
Affiliation(s)
- Robbert Q. Kim
- Oncode Institute and Department of Cell and Chemical BiologyLeiden University Medical CentreEinthovenweg 202333 ZCLeidenThe Netherlands
| | - Mohit Misra
- Institute of Biochemistry IIGoethe University Faculty of MedicineTheodor-Stern-Kai 760590Frankfurt am MainGermany
- Buchmann Institute for Molecular Life SciencesGoethe University Frankfurt, Riedberg CampusMax-von-Laue-Strasse 1560438Frankfurt am MainGermany
- Rudolf Virchow Center for Integrative and Translational BioimagingUniversity of WürzburgJosef-Schneider-Strasse 297080WürzburgGermany
| | - Alexis Gonzalez
- Institute of Biochemistry IIGoethe University Faculty of MedicineTheodor-Stern-Kai 760590Frankfurt am MainGermany
- Buchmann Institute for Molecular Life SciencesGoethe University Frankfurt, Riedberg CampusMax-von-Laue-Strasse 1560438Frankfurt am MainGermany
| | - Ines Tomašković
- Institute of Biochemistry IIGoethe University Faculty of MedicineTheodor-Stern-Kai 760590Frankfurt am MainGermany
- Buchmann Institute for Molecular Life SciencesGoethe University Frankfurt, Riedberg CampusMax-von-Laue-Strasse 1560438Frankfurt am MainGermany
| | - Donghyuk Shin
- Institute of Biochemistry IIGoethe University Faculty of MedicineTheodor-Stern-Kai 760590Frankfurt am MainGermany
- Buchmann Institute for Molecular Life SciencesGoethe University Frankfurt, Riedberg CampusMax-von-Laue-Strasse 1560438Frankfurt am MainGermany
- Current Address: Department of Nano-BioengineeringIncheon National UniversityAcademyro 11922012IncheonSouth Korea
| | - Hermann Schindelin
- Rudolf Virchow Center for Integrative and Translational BioimagingUniversity of WürzburgJosef-Schneider-Strasse 297080WürzburgGermany
| | - Dmitri V. Filippov
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Huib Ovaa
- Oncode Institute and Department of Cell and Chemical BiologyLeiden University Medical CentreEinthovenweg 202333 ZCLeidenThe Netherlands
| | - Ivan Đikić
- Institute of Biochemistry IIGoethe University Faculty of MedicineTheodor-Stern-Kai 760590Frankfurt am MainGermany
- Buchmann Institute for Molecular Life SciencesGoethe University Frankfurt, Riedberg CampusMax-von-Laue-Strasse 1560438Frankfurt am MainGermany
| | | |
Collapse
|