1
|
Peters RJ. Between scents and sterols: Cyclization of labdane-related diterpenes as model systems for enzymatic control of carbocation cascades. J Biol Chem 2024; 301:108142. [PMID: 39732168 DOI: 10.1016/j.jbc.2024.108142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 12/30/2024] Open
Abstract
The citrus scent arises from the volatile monoterpene limonene, whose cyclic nature can be viewed as a miniaturized form of the polycyclic sterol triterpenoids. In particular, these rings are all formed from poly-isoprenyl precursors via carbocation cascades. However, the relevant reactions are initiated by distinct mechanisms, either lysis/ionization of an allylic diphosphate ester bond, as in limonene synthases, or protonation of a terminal olefin or epoxide, as in lanosterol synthases. Labdane-related diterpenoids are unique in their utilization of both types of reactions. With over 7000 such natural products known, this pair of reactions clearly generates privileged scaffolds, hydrocarbon backbones from which biological activity is readily derived. Moreover, the relevant enzymes serve as model systems for terpene cyclization more generally. Indeed, investigation of their enzymatic structure-function relationships has highlighted the importance of catalytic base positioning within the active site cavity in specifying product outcomes. Conversely, comparison to the cyclases for other types of terpenoid natural products suggests new directions for discovery and/or engineering of the catalytic activity of those from labdane-related diterpenoid biosynthesis.
Collapse
Affiliation(s)
- Reuben J Peters
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, Iowa, USA.
| |
Collapse
|
2
|
McBee DP, Hulsey ZN, Hedges MR, Baccile JA. Biological Demands and Toxicity of Isoprenoid Precursors in Bacillus Subtilis Through Cell-Permeant Analogs of Isopentenyl Pyrophosphate and Dimethylallyl Pyrophosphate. Chembiochem 2024; 25:e202400064. [PMID: 38568158 DOI: 10.1002/cbic.202400064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/28/2024] [Indexed: 04/25/2024]
Abstract
Bacterial isoprenoids are necessary for many biological processes, including maintaining membrane integrity, facilitating intercellular communication, and preventing oxidative damage. All bacterial isoprenoids are biosynthesized from two five carbon structural isomers, isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP), which are cell impermeant. Herein, we demonstrate exogenous delivery of IPP and DMAPP into Bacillus subtilis by utilizing a self-immolative ester (SIE)-caging approach. We initially evaluated native B. subtilis esterase activity, which revealed a preference for short straight chain esters. We then examined the viability of the SIE-caging approach in B. subtilis and demonstrate that the released caging groups are well tolerated and the released IPP and DMAPP are bioavailable, such that isoprenoid biosynthesis can be rescued in the presence of pathway inhibitors. We further show that IPP and DMAPP are both toxic and inhibit growth of B. subtilis at the same concentration. Lastly, we establish the optimal ratio of IPP to DMAPP (5 : 1) for B. subtilis growth and find that, surprisingly, DMAPP alone is insufficient to rescue isoprenoid biosynthesis under high concentrations of fosmidomycin. These findings showcase the potential of the SIE-caging approach in B. subtilis and promise to both aid in novel isoprenoid discovery and to inform metabolic engineering efforts in bacteria.
Collapse
Affiliation(s)
- Dillon P McBee
- Department of Chemistry, University of Tennessee, Knoxville, TN, United States
| | - Zackary N Hulsey
- Department of Chemistry, University of Tennessee, Knoxville, TN, United States
| | - Makayla R Hedges
- Department of Chemistry, University of Tennessee, Knoxville, TN, United States
| | - Joshua A Baccile
- Department of Chemistry, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
3
|
Torrence IS, O'Brien TE, Siegel JB, Tantillo DJ. Docking carbocations into terpene synthase active sites using chemically meaningful constraints-The TerDockin approach. Methods Enzymol 2024; 699:231-263. [PMID: 38942505 DOI: 10.1016/bs.mie.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Terpenes are a diverse class of natural products which have long been sought after for their chemical properties as medicine, perfumes, and for food flavoring. Computational docking studies of terpene mechanisms have been a challenge due to the lack of strong directing groups which many docking programs rely on. In this chapter, we dive into our computational method Terdockin (Terpene-Docking) as a successful methodology in modeling terpene synthase mechanisms. This method could also be used as inspiration for any multi-ligand docking project.
Collapse
Affiliation(s)
- Ian S Torrence
- Department of Chemistry, University of California Davis, Davis, CA, United States
| | - Terrence E O'Brien
- Discovery Chemistry, Genentech, Inc., South San Francisco, CA, United States
| | - Justin B Siegel
- Department of Chemistry, University of California Davis, Davis, CA, United States; Department of Biochemistry and Molecular Medicine, University of California Davis, Davis, CA, United States; Genome Center, University of California Davis, Davis, CA, Untied States.
| | - Dean J Tantillo
- Department of Chemistry, University of California Davis, Davis, CA, United States
| |
Collapse
|
4
|
Xing B, Lei Z, Bai Z, Zang G, Wang Y, Zhang C, Chen M, Zhou Y, Ding J, Yang D, Ma M. Structural biology of terpene synthases. Methods Enzymol 2024; 699:59-87. [PMID: 38942516 DOI: 10.1016/bs.mie.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Structural biology research of terpene synthases (TSs) has provided a useful basis to understand their catalytic mechanisms in producing diverse terpene products with polycyclic ring systems and multiple chiral centers. However, compared to the large numbers of>95,000 terpenoids discovered to date, few structures of TSs have been solved and the understanding of their catalytic mechanisms is lagging. We here (i) introduce the basic catalytic logic, the structural architectures, and the metal-binding conserved motifs of TSs; (ii) provide detailed experimental procedures, in gene cloning and plasmid construction, protein purification, crystallization, X-ray diffraction data collection and structural elucidation, for structural biology research of TSs; and (iii) discuss the prospects of structure-based engineering and de novo design of TSs in generating valuable terpene molecules, which cannot be easily achieved by chemical synthesis.
Collapse
Affiliation(s)
- Baiying Xing
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, P.R. China
| | - Zhenyu Lei
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, P.R. China
| | - Zhaoye Bai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, P.R. China
| | - Guowei Zang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, P.R. China
| | - Yuxian Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, P.R. China
| | - Chenyu Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, P.R. China
| | - Minren Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, P.R. China
| | - Yucheng Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, P.R. China
| | - Jiahao Ding
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, P.R. China
| | - Donghui Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, P.R. China.
| | - Ming Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, P.R. China.
| |
Collapse
|
5
|
Abstract
Covering: up to July 2023Terpene cyclases (TCs) catalyze some of the most complicated reactions in nature and are responsible for creating the skeletons of more than 95 000 terpenoid natural products. The canonical TCs are divided into two classes according to their structures, functions, and mechanisms. The class II TCs mediate acid-base-initiated cyclization reactions of isoprenoid diphosphates, terpenes without diphosphates (e.g., squalene or oxidosqualene), and prenyl moieties on meroterpenes. The past twenty years witnessed the emergence of many class II TCs, their reactions and their roles in biosynthesis. Class II TCs often act as one of the first steps in the biosynthesis of biologically active natural products including the gibberellin family of phytohormones and fungal meroterpenoids. Due to their mechanisms and biocatalytic potential, TCs elicit fervent attention in the biosynthetic and organic communities and provide great enthusiasm for enzyme engineering to construct novel and bioactive molecules. To engineer and expand the structural diversities of terpenoids, it is imperative to fully understand how these enzymes generate, precisely control, and quench the reactive carbocation intermediates. In this review, we summarize class II TCs from nature, including sesquiterpene, diterpene, triterpene, and meroterpenoid cyclases as well as noncanonical class II TCs and inspect their sequences, structures, mechanisms, and structure-guided engineering studies.
Collapse
Affiliation(s)
- Xingming Pan
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Jeffrey D Rudolf
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7011, USA.
| | - Liao-Bin Dong
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
6
|
Tarasova EV, Luchnikova NA, Grishko VV, Ivshina IB. Actinomycetes as Producers of Biologically Active Terpenoids: Current Trends and Patents. Pharmaceuticals (Basel) 2023; 16:872. [PMID: 37375819 PMCID: PMC10301674 DOI: 10.3390/ph16060872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Terpenes and their derivatives (terpenoids and meroterpenoids, in particular) constitute the largest class of natural compounds, which have valuable biological activities and are promising therapeutic agents. The present review assesses the biosynthetic capabilities of actinomycetes to produce various terpene derivatives; reports the main methodological approaches to searching for new terpenes and their derivatives; identifies the most active terpene producers among actinomycetes; and describes the chemical diversity and biological properties of the obtained compounds. Among terpene derivatives isolated from actinomycetes, compounds with pronounced antifungal, antiviral, antitumor, anti-inflammatory, and other effects were determined. Actinomycete-produced terpenoids and meroterpenoids with high antimicrobial activity are of interest as a source of novel antibiotics effective against drug-resistant pathogenic bacteria. Most of the discovered terpene derivatives are produced by the genus Streptomyces; however, recent publications have reported terpene biosynthesis by members of the genera Actinomadura, Allokutzneria, Amycolatopsis, Kitasatosporia, Micromonospora, Nocardiopsis, Salinispora, Verrucosispora, etc. It should be noted that the use of genetically modified actinomycetes is an effective tool for studying and regulating terpenes, as well as increasing productivity of terpene biosynthesis in comparison with native producers. The review includes research articles on terpene biosynthesis by Actinomycetes between 2000 and 2022, and a patent analysis in this area shows current trends and actual research directions in this field.
Collapse
Affiliation(s)
- Ekaterina V. Tarasova
- Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13A Lenina Str., 614990 Perm, Russia; (N.A.L.); (V.V.G.); (I.B.I.)
| | - Natalia A. Luchnikova
- Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13A Lenina Str., 614990 Perm, Russia; (N.A.L.); (V.V.G.); (I.B.I.)
- Department of Microbiology and Immunology, Perm State University, 15 Bukirev Str., 614990 Perm, Russia
| | - Victoria V. Grishko
- Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13A Lenina Str., 614990 Perm, Russia; (N.A.L.); (V.V.G.); (I.B.I.)
| | - Irina B. Ivshina
- Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13A Lenina Str., 614990 Perm, Russia; (N.A.L.); (V.V.G.); (I.B.I.)
- Department of Microbiology and Immunology, Perm State University, 15 Bukirev Str., 614990 Perm, Russia
| |
Collapse
|
7
|
Pan X, Du W, Zhang X, Lin X, Li FR, Yang Q, Wang H, Rudolf JD, Zhang B, Dong LB. Discovery, Structure, and Mechanism of a Class II Sesquiterpene Cyclase. J Am Chem Soc 2022; 144:22067-22074. [PMID: 36416740 PMCID: PMC10064485 DOI: 10.1021/jacs.2c09412] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Terpene cyclases (TCs), extraordinary enzymes that create the structural diversity seen in terpene natural products, are traditionally divided into two classes, class I and class II. Although the structural and mechanistic features of class I TCs are well-known, the corresponding details in class II counterparts have not been fully characterized. Here, we report the genome mining discovery and structural characterization of two class II sesquiterpene cyclases (STCs) from Streptomyces. These drimenyl diphosphate synthases (DMSs) are the first STCs shown to possess β,γ-didomain architecture. High-resolution X-ray crystal structures of DMS from Streptomyces showdoensis (SsDMS) in complex with both a farnesyl diphosphate and Mg2+ unveiled an induced-fit mechanism, with an unprecedented Mg2+ binding mode, finally solving one of the lingering questions in class II TC enzymology. This study supports continued genome mining for novel bacterial TCs and provides new mechanistic insights into canonical class II TCs that will lead to advances in TC engineering and synthetic biology.
Collapse
Affiliation(s)
- Xingming Pan
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Wenyu Du
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Xiaowei Zhang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Xiaoxu Lin
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Fang-Ru Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Qian Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Hang Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Jeffrey D Rudolf
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7011, United States
| | - Bo Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Liao-Bin Dong
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| |
Collapse
|
8
|
Stowell EA, Ehrenberger MA, Lin YL, Chang CY, Rudolf JD. Structure-guided product determination of the bacterial type II diterpene synthase Tpn2. Commun Chem 2022; 5:146. [PMID: 36698006 PMCID: PMC9814783 DOI: 10.1038/s42004-022-00765-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022] Open
Abstract
A grand challenge in terpene synthase (TS) enzymology is the ability to predict function from protein sequence. Given the limited number of characterized bacterial TSs and significant sequence diversities between them and their eukaryotic counterparts, this is currently impossible. To contribute towards understanding the sequence-structure-function relationships of type II bacterial TSs, we determined the structure of the terpentedienyl diphosphate synthase Tpn2 from Kitasatospora sp. CB02891 by X-ray crystallography and made structure-guided mutants to probe its mechanism. Substitution of a glycine into a basic residue changed the product preference from the clerodane skeleton to a syn-labdane skeleton, resulting in the first syn-labdane identified from a bacterial TS. Understanding how a single residue can dictate the cyclization pattern in Tpn2, along with detailed bioinformatics analysis of bacterial type II TSs, sets the stage for the investigation of the functional scope of bacterial type II TSs and the discovery of novel bacterial terpenoids.
Collapse
Affiliation(s)
- Emma A Stowell
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | | | - Ya-Lin Lin
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan, ROC
| | - Chin-Yuan Chang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan, ROC.
- Center for Intelligent Drug Systems and Smart Bio-devices, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan, ROC.
| | - Jeffrey D Rudolf
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
9
|
Lemke C, Roach K, Ortega T, Tantillo DJ, Siegel JB, Peters RJ. Investigation of Acid–Base Catalysis in Halimadienyl Diphosphate Synthase Involved in Mycobacterium tuberculosis Virulence. ACS BIO & MED CHEM AU 2022; 2:490-498. [PMID: 36281298 PMCID: PMC9585517 DOI: 10.1021/acsbiomedchemau.2c00023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The devastating human
pathogenMycobacterium tuberculosis (Mtb)
is able to parasitize phagosomal compartments within alveolar
macrophage cells due, in part, to the activity of its cell-surface
lipids. Prominent among these is 1-tuberculosinyl-adenosine (1-TbAd),
a derivative of the diterpenoid tuberculosinyl (halima-5,13-dienyl)
diphosphate produced by the class II diterpene cyclase encoded by
Rv3377c, termed here MtHPS. Given the demonstrated ability of 1-TbAd
to act as a virulence factor for Mtb and the necessity for Rv3377c
for its production, there is significant interest in MtHPS activity.
Class II diterpene cyclases catalyze a general acid–base-mediated
carbocation cascade reaction initiated by protonation of the terminal
alkene in the general diterpenoid precursor (E,E,E)-geranylgeranyl diphosphate and terminated by deprotonation of the
final cyclized (and sometimes also rearranged) intermediate. Here,
structure-guided mutagenesis was applied to characterize the various
residues contributing to activation of the enzymatic acid, as well
as identify the enzymatic base in MtHPS. Particularly given the ability
of conservative substitution for the enzymatic base (Y479F) to generate
an alternative product (labda-7,13-dienyl diphosphate) via deprotonation
of an earlier unrearranged intermediate, further mutational analysis
was carried out to introduce potential alternative catalytic bases.
The results were combined with mechanistic molecular modeling to elucidate
how these mutations affect the catalytic activity of this important
enzyme. This not only provided detailed structure–function
insight into MtHPS but also further emphasized the inert nature of
the active site of MtHPS and class II diterpene cyclases more generally.
Collapse
Affiliation(s)
- Cody Lemke
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Kristin Roach
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Teresa Ortega
- Department of Chemistry, University of California-Davis, Davis, California 95616, United States
| | - Dean J. Tantillo
- Department of Chemistry, University of California-Davis, Davis, California 95616, United States
| | - Justin B. Siegel
- Department of Chemistry, University of California-Davis, Davis, California 95616, United States
- Department of Biochemistry and Molecular Medicine, University of California-Davis, Davis, California 95616, United States
- Genome Center, University of California-Davis, Davis, California 95616, United States
| | - Reuben J. Peters
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|