1
|
Zhao Z, Hajiahmadi F, Alehashem MS, Williams AH. Molecular architecture and function of the bacterial stressosome. Curr Opin Microbiol 2024; 82:102541. [PMID: 39270610 DOI: 10.1016/j.mib.2024.102541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024]
Abstract
The bacterial stressosome is a supramolecular multiprotein complex that acts as a critical signal integration and transduction hub, orchestrating cellular responses to environmental stimuli. Recent studies have resolved near-atomic stressosome structures from various bacterial species, revealing assemblies that should be capable of altering their configuration in response to external changes. Further genetic, biochemical, and cell biology research has elucidated interactions and phosphorylation status within the stressosome complex as well as its subcellular localization and mobility within living cells. These insights enhance our comprehension of the stressosome pathways and their roles in directing various survival responses during environmental stress.
Collapse
Affiliation(s)
- Ziyi Zhao
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
| | - Fahimeh Hajiahmadi
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
| | - Maryam S Alehashem
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
| | - Allison H Williams
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
2
|
He Y, Collado JT, Iuliano JN, Woroniecka HA, Hall CR, Gil AA, Laptenok SP, Greetham GM, Illarionov B, Bacher A, Fischer M, French JB, Lukacs A, Meech SR, Tonge PJ. Elucidating the Signal Transduction Mechanism of the Blue-Light-Regulated Photoreceptor YtvA: From Photoactivation to Downstream Regulation. ACS Chem Biol 2024; 19:696-706. [PMID: 38385342 PMCID: PMC10949197 DOI: 10.1021/acschembio.3c00722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/25/2024] [Accepted: 02/12/2024] [Indexed: 02/23/2024]
Abstract
The blue-light photoreceptor YtvA from Bacillus subtilis has an N-terminal flavin mononucleotide (FMN)-binding light-oxygen-voltage (LOV) domain that is fused to a C-terminal sulfate transporter and anti-σ factor antagonist (STAS) output domain. To interrogate the signal transduction pathway that leads to photoactivation, the STAS domain was replaced with a histidine kinase, so that photoexcitation of the flavin could be directly correlated with biological activity. N94, a conserved Asn that is hydrogen bonded to the FMN C2═O group, was replaced with Ala, Asp, and Ser residues to explore the role of this residue in triggering the structural dynamics that activate the output domain. Femtosecond to millisecond time-resolved multiple probe spectroscopy coupled with a fluorescence polarization assay revealed that the loss of the hydrogen bond between N94 and the C2═O group decoupled changes in the protein structure from photoexcitation. In addition, alterations in N94 also decreased the stability of the Cys-FMN adduct formed in the light-activated state by up to a factor of ∼25. Collectively, these studies shed light on the role of the hydrogen bonding network in the LOV β-scaffold in signal transduction.
Collapse
Affiliation(s)
- YongLe He
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | | | - James N. Iuliano
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Helena A. Woroniecka
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Christopher R. Hall
- Central
Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0QX, U.K.
| | - Agnieszka A. Gil
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | | | - Gregory M. Greetham
- Central
Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0QX, U.K.
| | - Boris Illarionov
- Institut
für Biochemie und Lebensmittelchemie, Universität Hamburg, Grindelallee 117, D-20146 Hamburg, Germany
| | - Adelbert Bacher
- Institut
für Biochemie und Lebensmittelchemie, Universität Hamburg, Grindelallee 117, D-20146 Hamburg, Germany
- TUM School
of Natural Sciences, Technical University
of Munich, 85747 Garching, Germany
| | - Markus Fischer
- Institut
für Biochemie und Lebensmittelchemie, Universität Hamburg, Grindelallee 117, D-20146 Hamburg, Germany
| | - Jarrod B. French
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
- The
Hormel Institute, University of Minnesota, Austin, Minnesota 55912, United States
| | - Andras Lukacs
- School
of Chemistry, University of East Anglia, Norwich NR4 7TJ, U.K.
- Department
of Biophysics, Medical School, University
of Pecs, Szigeti ut 12, 7624 Pecs, Hungary
| | - Stephen R. Meech
- School
of Chemistry, University of East Anglia, Norwich NR4 7TJ, U.K.
| | - Peter J. Tonge
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
3
|
Tran BM, Linnik DS, Punter CM, Śmigiel WM, Mantovanelli L, Iyer A, O’Byrne C, Abee T, Johansson J, Poolman B. Super-resolving microscopy reveals the localizations and movement dynamics of stressosome proteins in Listeria monocytogenes. Commun Biol 2023; 6:51. [PMID: 36641529 PMCID: PMC9840623 DOI: 10.1038/s42003-023-04423-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023] Open
Abstract
The human pathogen Listeria monocytogenes can cope with severe environmental challenges, for which the high molecular weight stressosome complex acts as the sensing hub in a complicated signal transduction pathway. Here, we show the dynamics and functional roles of the stressosome protein RsbR1 and its paralogue, the blue-light receptor RsbL, using photo-activated localization microscopy combined with single-particle tracking and single-molecule displacement mapping and supported by physiological studies. In live cells, RsbR1 is present in multiple states: in protomers with RsbS, large clusters of stressosome complexes, and in connection with the plasma membrane via Prli42. RsbL diffuses freely in the cytoplasm but forms clusters upon exposure to light. The clustering of RsbL is independent of the presence of Prli42. Our work provides a comprehensive view of the spatial organization and intracellular dynamics of the stressosome proteins in L. monocytogenes, which paves the way towards uncovering the stress-sensing mechanism of this signal transduction pathway.
Collapse
Affiliation(s)
- Buu Minh Tran
- grid.4830.f0000 0004 0407 1981Department of Biochemistry, University of Groningen, Groningen, the Netherlands
| | - Dmitrii Sergeevich Linnik
- grid.4830.f0000 0004 0407 1981Department of Biochemistry, University of Groningen, Groningen, the Netherlands
| | - Christiaan Michiel Punter
- grid.4830.f0000 0004 0407 1981Department of Biochemistry, University of Groningen, Groningen, the Netherlands
| | - Wojciech Mikołaj Śmigiel
- grid.4830.f0000 0004 0407 1981Department of Biochemistry, University of Groningen, Groningen, the Netherlands
| | - Luca Mantovanelli
- grid.4830.f0000 0004 0407 1981Department of Biochemistry, University of Groningen, Groningen, the Netherlands
| | - Aditya Iyer
- grid.4830.f0000 0004 0407 1981Department of Biochemistry, University of Groningen, Groningen, the Netherlands
| | - Conor O’Byrne
- Microbiology, School of Biological & Chemical Sciences, Ryan Institute, University of Galway, Galway, Ireland
| | - Tjakko Abee
- grid.4818.50000 0001 0791 5666Laboratory of Food Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Jörgen Johansson
- grid.12650.300000 0001 1034 3451Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Bert Poolman
- grid.4830.f0000 0004 0407 1981Department of Biochemistry, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
4
|
Bacillus subtilis Stressosome Sensor Protein Sequences Govern the Ability To Distinguish among Environmental Stressors and Elicit Different σ B Response Profiles. mBio 2022; 13:e0200122. [PMID: 36409125 PMCID: PMC9765535 DOI: 10.1128/mbio.02001-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Bacteria use a variety of systems to sense stress and mount an appropriate response to ensure fitness and survival. Bacillus subtilis uses stressosomes-cytoplasmic multiprotein complexes-to sense environmental stressors and enact the general stress response by activating the alternative sigma factor σB. Each stressosome includes 40 RsbR proteins, representing four paralogous (RsbRA, RsbRB, RsbRC, and RsbRD) putative stress sensors. Population-level analyses suggested that the RsbR paralogs are largely redundant, while our prior work using microfluidics-coupled fluorescence microscopy uncovered differences among the RsbR paralogs' σB response profiles with respect to timing and intensity when facing an identical stressor. Here, we use a similar approach to address the question of whether the σB responses mediated by each paralog differ in the presence of different environmental stressors: can they distinguish among stressors? Wild-type cells (with all four paralogs) and RsbRA-only cells activate σB with characteristic transient response timing irrespective of stressor but show various response magnitudes. However, cells with other individual RsbR paralogs show distinct timing and magnitude in their responses to ethanol, salt, oxidative, and acid stress, implying that RsbR proteins can distinguish among stressors. Experiments with hybrid fusion proteins comprising the N-terminal half of one paralog and the C-terminal half of another argue that the N-terminal identity influences response magnitude and that determinants in both halves of RsbRA are important for its stereotypical transient σB response timing. IMPORTANCE Bacterial survival depends on appropriate responses to diverse stressors. The general stress-response system in the environmental model bacterium Bacillus subtilis is constantly poised for an immediate response and uses unusual stress-sensing protein complexes called stressosomes. Stressosomes typically contain four different types of putative sensing protein. We asked whether each type of sensor has a distinct role in mediating response dynamics to different environmental stressors. We find that one sensor type always mediates a transient response, while the others show distinct response magnitude and timing to different stressors. We also find that a transient response is exceptional, as several engineered hybrid proteins did not show strong transient responses. Our work reveals functional distinctions among subunits of the stressosome complex and represents a step toward understanding how the general stress response of B. subtilis ensures its survival in natural environmental settings.
Collapse
|
5
|
Guerreiro DN, Pucciarelli MG, Tiensuu T, Gudynaite D, Boyd A, Johansson J, García-del Portillo F, O’Byrne CP. Acid stress signals are integrated into the σB-dependent general stress response pathway via the stressosome in the food-borne pathogen Listeria monocytogenes. PLoS Pathog 2022; 18:e1010213. [PMID: 35275969 PMCID: PMC8942246 DOI: 10.1371/journal.ppat.1010213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/23/2022] [Accepted: 02/28/2022] [Indexed: 12/17/2022] Open
Abstract
The general stress response (GSR) in Listeria monocytogenes plays a critical role in the survival of this pathogen in the host gastrointestinal tract. The GSR is regulated by the alternative sigma factor B (σB), whose role in protection against acid stress is well established. Here, we investigated the involvement of the stressosome, a sensory hub, in transducing low pH signals to induce the GSR. Mild acid shock (15 min at pH 5.0) activated σB and conferred protection against a subsequent lethal pH challenge. A mutant strain where the stressosome subunit RsbR1 was solely present retained the ability to induce σB activity at pH 5.0. The role of stressosome phosphorylation in signal transduction was investigated by mutating the putative phosphorylation sites in the core stressosome proteins RsbR1 (rsbR1-T175A, -T209A, -T241A) and RsbS (rsbS-S56A), or the stressosome kinase RsbT (rsbT-N49A). The rsbS S56A and rsbT N49A mutations abolished the response to low pH. The rsbR1-T209A and rsbR1-T241A mutants displayed constitutive σB activity. Mild acid shock upregulates invasion genes inlAB and stimulates epithelial cell invasion, effects that were abolished in mutants with an inactive or overactive stressosome. Overall, the results show that the stressosome is required for acid-induced activation of σB in L. monocytogenes. Furthermore, they show that RsbR1 can function independently of its paralogues and signal transduction requires RsbT-mediated phosphorylation of RsbS on S56 and RsbR1 on T209 but not T175. These insights shed light on the mechanisms of signal transduction that activate the GSR in L. monocytogenes in response to acidic environments, and highlight the role this sensory process in the early stages of the infectious cycle. The stress sensing hub known as the stressosome, found in many bacterial and archaeal lineages, plays a crucial role in both stress tolerance and virulence in the food-borne pathogen Listeria monocytogenes. However, the mechanisms that lead to its activation and the subsequent activation of the general stress response have remained elusive. In this study, we examined the signal transduction mechanisms that operate in the stressosome in response to acid stress. We found that only one of the five putative sensory proteins present in L. monocytogenes, RsbR1, was required for effective transduction of acid tress signals. We further found that phosphorylation of RsbS and RsbR1, mediated by the RsbT kinase, is essential for signal transduction. Failure to phosphorylate RsbS on Serine 56 completely abolished acid sensing by the stressosome, which prevented the development of adaptive acid tolerance. The acid-induced activation of internalin gene expression was also abolished in mutants with defective stressosome signalling, suggesting a role for the stressosome in the invasion of host cells. Together the data provide new insights into the mechanisms that activate the stressosome in response to acid stress and highlight the role this sensory hub plays in virulence.
Collapse
Affiliation(s)
- Duarte N. Guerreiro
- Bacterial Stress Response Group, Microbiology, School of Biological and Chemical Sciences, National University of Ireland, Galway, Ireland
| | - M. Graciela Pucciarelli
- Laboratory of Intracellular Bacterial Pathogens, National Centre for Biotechnology (CNB)-CSIC, Madrid, Spain
- Department of Molecular Biology, Universidad Autónoma de Madrid, Centre of Molecular Biology ‘Severo Ochoa’ (CBMSO CSIC-UAM), Madrid, Spain
| | - Teresa Tiensuu
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre of Microbial Research, Umeå, Sweden
| | - Diana Gudynaite
- Bacterial Stress Response Group, Microbiology, School of Biological and Chemical Sciences, National University of Ireland, Galway, Ireland
| | - Aoife Boyd
- Pathogenic Mechanisms Research Group, Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Jörgen Johansson
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre of Microbial Research, Umeå, Sweden
| | | | - Conor P. O’Byrne
- Bacterial Stress Response Group, Microbiology, School of Biological and Chemical Sciences, National University of Ireland, Galway, Ireland
- * E-mail:
| |
Collapse
|
6
|
Applications of Time-Resolved Thermodynamics for Studies on Protein Reactions. J 2022. [DOI: 10.3390/j5010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Thermodynamics and kinetics are two important scientific fields when studying chemical reactions. Thermodynamics characterize the nature of the material. Kinetics, mostly based on spectroscopy, have been used to determine reaction schemes and identify intermediate species. They are certainly important fields, but they are almost independent. In this review, our attempts to elucidate protein reaction kinetics and mechanisms by monitoring thermodynamic properties, including diffusion in the time domain, are described. The time resolved measurements are performed mostly using the time resolved transient grating (TG) method. The results demonstrate the usefulness and powerfulness of time resolved studies on protein reactions. The advantages and limitations of this TG method are also discussed.
Collapse
|
7
|
Time-resolved detection of association/dissociation reactions and conformation changes in photosensor proteins for application in optogenetics. Biophys Rev 2021; 13:1053-1059. [DOI: 10.1007/s12551-021-00868-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/22/2021] [Indexed: 11/27/2022] Open
|
8
|
Genetic Factors Affect the Survival and Behaviors of Selected Bacteria during Antimicrobial Blue Light Treatment. Int J Mol Sci 2021; 22:ijms221910452. [PMID: 34638788 PMCID: PMC8508746 DOI: 10.3390/ijms221910452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/26/2022] Open
Abstract
Antimicrobial resistance is a global, mounting and dynamic issue that poses an immediate threat to human, animal, and environmental health. Among the alternative antimicrobial treatments proposed to reduce the external use of antibiotics is electromagnetic radiation, such as blue light. The prevailing mechanistic model is that blue light can be absorbed by endogenous porphyrins within the bacterial cell, inducing the production of reactive oxygen species, which subsequently inflict oxidative damages upon different cellular components. Nevertheless, it is unclear whether other mechanisms are involved, particularly those that can affect the efficacy of antimicrobial blue light treatments. In this review, we summarize evidence of inherent factors that may confer protection to a selected group of bacteria against blue light-induced oxidative damages or modulate the physiological characteristics of the treated bacteria, such as virulence and motility. These include descriptions of three major photoreceptors in bacteria, chemoreceptors, SOS-dependent DNA repair and non-SOS protective mechanisms. Future directions are also provided to assist with research efforts to increase the efficacy of antimicrobial blue light and to minimize the development of blue light-tolerant phenotypes.
Collapse
|