1
|
Tagad H, Marin A, Hlushko R, Andrianov AK. Hydrolytically Degradable Zwitterionic Polyphosphazene Containing HEPES Moieties as Side Groups. Biomacromolecules 2024; 25:6791-6800. [PMID: 39315416 PMCID: PMC11480972 DOI: 10.1021/acs.biomac.4c01008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024]
Abstract
Zwitterionic polymers, ampholytic macromolecules containing ionic moieties of opposite sign on the same pendant groups, exhibit strong protein-repulsive properties and an inherent biological inertness. For that reason, these highly hydrated inner salt macromolecules have emerged as some of the most viable alternatives to poly(ethylene glycol) (PEG), a gold standard in enabling stealth behavior in life science applications. However, the structural diversity of polymer zwitterions remains limited, and currently available macromolecules do not possess an intrinsic ability to undergo hydrolytical degradation, an important prerequisite for use in drug delivery applications. The present paper reports on the synthesis of a zwitterionic polymer, a multimerized form (two thousand copies), of a biologically benign buffering agent, HEPES, which is covalently assembled on a polyphosphazene backbone. The polymer exhibits typical polyzwitterionic solution behavior, an environmentally dependent hydrolytic degradation pattern, and excellent in vitro compatibility, features that highlight its potential utility for life science applications.
Collapse
Affiliation(s)
- Harichandra
D. Tagad
- Institute for Bioscience
and Biotechnology Research, University of
Maryland, Rockville, Maryland 20850, United States
| | - Alexander Marin
- Institute for Bioscience
and Biotechnology Research, University of
Maryland, Rockville, Maryland 20850, United States
| | - Raman Hlushko
- Institute for Bioscience
and Biotechnology Research, University of
Maryland, Rockville, Maryland 20850, United States
| | - Alexander K. Andrianov
- Institute for Bioscience
and Biotechnology Research, University of
Maryland, Rockville, Maryland 20850, United States
| |
Collapse
|
2
|
Atasoy M, Bartkova S, Çetecioğlu-Gürol Z, P Mira N, O'Byrne C, Pérez-Rodríguez F, Possas A, Scheler O, Sedláková-Kaduková J, Sinčák M, Steiger M, Ziv C, Lund PA. Methods for studying microbial acid stress responses: from molecules to populations. FEMS Microbiol Rev 2024; 48:fuae015. [PMID: 38760882 PMCID: PMC11418653 DOI: 10.1093/femsre/fuae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 03/27/2024] [Accepted: 05/16/2024] [Indexed: 05/20/2024] Open
Abstract
The study of how micro-organisms detect and respond to different stresses has a long history of producing fundamental biological insights while being simultaneously of significance in many applied microbiological fields including infection, food and drink manufacture, and industrial and environmental biotechnology. This is well-illustrated by the large body of work on acid stress. Numerous different methods have been used to understand the impacts of low pH on growth and survival of micro-organisms, ranging from studies of single cells to large and heterogeneous populations, from the molecular or biophysical to the computational, and from well-understood model organisms to poorly defined and complex microbial consortia. Much is to be gained from an increased general awareness of these methods, and so the present review looks at examples of the different methods that have been used to study acid resistance, acid tolerance, and acid stress responses, and the insights they can lead to, as well as some of the problems involved in using them. We hope this will be of interest both within and well beyond the acid stress research community.
Collapse
Affiliation(s)
- Merve Atasoy
- UNLOCK, Wageningen University and Research, PO Box 9101, 6700 HB, the Netherlands
| | - Simona Bartkova
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
| | - Zeynep Çetecioğlu-Gürol
- Department of Industrial Biotechnology, KTH Royal Institute of Technology, Roslagstullsbacken 21 106 91 Stockholm, Stockholm, Sweden
| | - Nuno P Mira
- iBB, Institute for Bioengineering and Biosciences, Department of Bioengineering, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Conor O'Byrne
- Microbiology, School of Biological and Chemical Sciences, University of Galway, University Road, Galway, H91 TK33, Ireland
| | - Fernando Pérez-Rodríguez
- Department of Food Science and Tehcnology, UIC Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, 14014 Córdoba, Spain
| | - Aricia Possas
- Department of Food Science and Tehcnology, UIC Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, 14014 Córdoba, Spain
| | - Ott Scheler
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
| | - Jana Sedláková-Kaduková
- Institute of Chemistry and Environmental Sciences, University of Ss. Cyril and Methodius, 91701 Trnava, Republic of Slovakia
| | - Mirka Sinčák
- Institute of Chemistry and Environmental Sciences, University of Ss. Cyril and Methodius, 91701 Trnava, Republic of Slovakia
| | - Matthias Steiger
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Carmit Ziv
- Department of Postharvest Science, Agricultural Research Organization, Volcani Center, 7505101 Rishon LeZion, Israel
| | - Peter A Lund
- School of Biosciences and Institute of Microbiology of Infection, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
3
|
Csorba B, Farkas L, Csécsi M, Mika LT, Gresits IL. Facile Determination of Aluminum Content in Industrial Brine by Investigating the Effects of Buffer Systems. ChemistryOpen 2024:e202400038. [PMID: 39226539 DOI: 10.1002/open.202400038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/01/2024] [Indexed: 09/05/2024] Open
Abstract
The aluminum content of concentrated (27 wt%) sodium chloride solutions could be crucial for large-scale chlor-alkali-based industries applying membrane cell electrolysis. Thus, a facile method which enables a fast and reliable protocol to determine the Al content of these solutions on ppb scale in industrial environments is fundamentally important. It was demonstrated that the increased sensitivity of colorful Al-ECR (eriochrome cyanine R) complex by the use of a cationic surfactant and specific biological buffers could effectively indicate the Al content in an extended pH interval of a concentrated saline medium under industrial conditions. The dependence of the analytical protocol on pH, temperature, time, wavelength, and the salinity of the medium was investigated. It was shown that the absorbance-based measurements of the solution should be performed at least 2-4 h after its preparation. By applying the selected two Good's buffers (HEPES: 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid, MOPS: 3-(N-morpholino)-propanesulfonic acid) and Tris (tris(hydroxymethyl)aminomethane), 32.8-38.1 % increase in the sensitivity was achieved for saturated NaCl solutions. Moreover, the limits of detection and quantification (LOD, LOQ) were also lowered by 19.0-29.8 %, and the salinity dependence of the calibration was also reduced.
Collapse
Affiliation(s)
- Benjámin Csorba
- Department of Chemical and Environmental Process Engineering, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111, Budapest, Hungary
- Process Technology Support, BorsodChem Ltd., Bolyai tér 1., H-3700, Kazincbarcika, Hungary
| | - László Farkas
- Process Technology Support, BorsodChem Ltd., Bolyai tér 1., H-3700, Kazincbarcika, Hungary
| | - Marcell Csécsi
- Process Technology Support, BorsodChem Ltd., Bolyai tér 1., H-3700, Kazincbarcika, Hungary
| | - László T Mika
- Department of Chemical and Environmental Process Engineering, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111, Budapest, Hungary
| | - Iván L Gresits
- Department of Chemical and Environmental Process Engineering, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111, Budapest, Hungary
| |
Collapse
|
4
|
Gutierrez-Salazar MV, Lorenz-Fonfria VA. Nanometric determination of the thickness of aqueous samples for accurate molar absorption coefficients of water-soluble molecules in the mid-infrared region. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 316:124378. [PMID: 38701577 DOI: 10.1016/j.saa.2024.124378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/17/2024] [Accepted: 04/27/2024] [Indexed: 05/05/2024]
Abstract
Absorption spectra of aqueous samples measured by transmission need to be acquired using very thin cells (5-50 μm) when targeting the mid-infrared (mid-IR) region due to the strong background absorbance of liquid water. The thickness of the cell used controls the pathlength of the light through the sample, a value needed to transform absorption spectra into molar absorption coefficient spectra, or to determine solute concentrations from absorption spectra. The most accurate way to determine the thickness of an empty cell (i.e., filled with air) is from the period of an interference pattern, known as interference fringes, that arises when the cell is placed perpendicular to the path of light in the spectrometer. However, this same approach is not directly applicable to determine the thickness of a cell filled with an aqueous solution, due partially to the smaller amplitude of the interference fringes but fundamentally caused by its complex waveform, with a wavenumber-dependent oscillation period. Here, using Fresnel equations, we derived analytical expressions to model interference fringes in absorption spectra obtained by transmission, which are also valid for aqueous samples. We also present a novel Fourier-based analysis of the interference fringes that, in combination with the derived analytical expressions, allowed us to determine the pathlength of aqueous samples with an error below ∼ 50 nm. We implemented this novel approach to analyze interference fringes as a Live Script running in the software Matlab. As an application, we measured the absorption spectra of a 97 mM solution of MES buffer at pH 3.4 and pH 8.4 using cells of various nominal thicknesses (6, 25 and 50 μm), whose actual thicknesses were determined using the present approach. The derived molar absorption coefficient spectrum for both the acidic and basic forms of MES were virtually identical regardless of the cell, indicating that the determined thicknesses were likely very accurate. These results illustrate the utility of the present methodology in obtaining accurate molar absorption coefficient spectra of water-soluble molecules in the mid-IR region.
Collapse
|
5
|
Jacobi T, Kratzer DA, Plapp BV. Substitution of both histidines in the active site of yeast alcohol dehydrogenase 1 exposes underlying pH dependencies. Chem Biol Interact 2024; 394:110992. [PMID: 38579923 PMCID: PMC11090211 DOI: 10.1016/j.cbi.2024.110992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/13/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Histidine residues 44 and 48 in yeast alcohol dehydrogenase (ADH) bind to the coenzymes NAD(H) and contribute to catalysis. The individual H44R and H48Q substitutions alter the kinetics and pH dependencies, and now the roles of other ionizable groups in the enzyme were studied in the doubly substituted H44R/H48Q ADH. The substitutions make the enzyme more resistant to inactivation by diethyl pyrocarbonate, modestly improve affinity for coenzymes, and substantially decrease catalytic efficiencies for ethanol oxidation and acetaldehyde reduction. The pH dependencies for several kinetic parameters are shifted from pK values for wild-type ADH of 7.3-8.1 to values for H44R/H48Q ADH of 8.0-9.6, and are assigned to the water or alcohol bound to the catalytic zinc. It appears that the rate of binding of NAD+ is electrostatically favored with zinc-hydroxide whereas binding of NADH is faster with neutral zinc-water. The pH dependencies of catalytic efficiencies (V/EtKm) for ethanol oxidation and acetaldehyde reduction are similarly controlled by deprotonation and protonation, respectively. The substitutions make an enzyme that resembles the homologous horse liver H51Q ADH, which has Arg-47 and Gln-51 and exhibits similar pK values. In the wild-type ADHs, it appears that His-48 (or His-51) in the proton relay systems linked to the catalytic zinc ligands modulate catalytic efficiencies.
Collapse
Affiliation(s)
- Tobias Jacobi
- Department of Biochemistry and Molecular Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Darla Ann Kratzer
- Department of Biochemistry and Molecular Biology, The University of Iowa, Iowa City, IA 52242, USA.
| | - Bryce V Plapp
- Department of Biochemistry and Molecular Biology, The University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
6
|
Näf L, Miescher I, Pfuderer L, Schweizer TA, Brunner D, Dürig J, Gröninger O, Rieber J, Meier-Buergisser G, Spanaus K, Calcagni M, Bosshard PP, Achermann Y, Stark WJ, Buschmann J. Pro-angiogenic and antibacterial copper containing nanoparticles in PLGA/amorphous calcium phosphate bone nanocomposites. Heliyon 2024; 10:e27267. [PMID: 38486752 PMCID: PMC10937708 DOI: 10.1016/j.heliyon.2024.e27267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/17/2024] Open
Abstract
Large bone defects after trauma demand for adequate bone substitutes. Bone void fillers should be antibacterial and pro-angiogenic. One viable option is the use of composite materials like the combination of PLGA and amorphous calcium phosphate (aCaP). Copper stimulates angiogenesis and has antibacterial qualities. Either copper oxide (CuO) nanoparticles (NPs) were therefore added to PLGA/aCaP/CuO in different concentrations (1, 5 and 10 w/w %) or copper-doped tricalcium phosphate NPs (TCP with 2% of copper) were electrospun into PLGA/CuTCP nanocomposites. Bi-layered nanocomposites of PLGA/aCaP with different copper NPs (CuO or TCP) and a second layer of pristine PLGA were fabricated. Two clinical bacterial isolates (Staphylococcus aureus and Staphylococcus epidermidis) were used to assess antibacterial properties of the copper-containing materials. For angiogenesis, the chorioallantoic membrane (CAM) assay of the chicken embryo was performed. The higher the CuO content, the higher were the antibacterial properties, with 10 % CuO reducing bacterial adhesion most effectively. Vessel and cell densities were highest in the 5 % CuO containing scaffolds, while tissue integration was more pronounced at lower CuO content. The PLGA/aCaP/CuO (1 % CuO) behaved similar like PLGA/CuTCP in all angiogenic and antibacterial readouts, based on the same copper fraction. We conclude that CuO NPs or CuTCP NPs are useful components to increase angiogenic properties of nanocomposites and at the same time exhibiting antibacterial characteristics.
Collapse
Affiliation(s)
- Lukas Näf
- Department of Plastic Surgery and Hand Surgery, University Hospital of Zürich, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Iris Miescher
- Department of Plastic Surgery and Hand Surgery, University Hospital of Zürich, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Lara Pfuderer
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Tiziano A. Schweizer
- Department of Dermatology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - David Brunner
- Department of Plastic Surgery and Hand Surgery, University Hospital of Zürich, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Johannes Dürig
- Department of Plastic Surgery and Hand Surgery, University Hospital of Zürich, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Olivier Gröninger
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Julia Rieber
- Department of Plastic Surgery and Hand Surgery, University Hospital of Zürich, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Gabriella Meier-Buergisser
- Department of Plastic Surgery and Hand Surgery, University Hospital of Zürich, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Katharina Spanaus
- Clinical Chemistry, University Hospital Zurich, 8001, Zurich, Switzerland
| | - Maurizio Calcagni
- Department of Plastic Surgery and Hand Surgery, University Hospital of Zürich, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Philipp P. Bosshard
- Department of Dermatology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Yvonne Achermann
- Department of Dermatology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Wendelin J. Stark
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093, Zurich, Switzerland
| | - Johanna Buschmann
- Department of Plastic Surgery and Hand Surgery, University Hospital of Zürich, Rämistrasse 100, 8091, Zürich, Switzerland
| |
Collapse
|
7
|
Jiao Q, Zhang Y, Xie J, Liu F, Peng C, Pan Q. The dyeing effect of acridine orange for multiple plasmid systems is sensitive to temperature. J Cell Biochem 2024; 125:e30499. [PMID: 38009594 DOI: 10.1002/jcb.30499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 10/24/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023]
Abstract
The Goldview dyeing of the natural multiplasmid system of Lactobacillus plantarum PC518 was affected by temperature. The article want to identify the specific molecules that cause temperature sensitivity, then experiment on the universality of temperature sensitivity, and finally preliminarily analyze the influencing factors. At 5°C and 25°C, single pDNA, multiplasmid system, and linear DNA samples were electrophoretic on agarose gel prestained by Goldview 1, 2, 3, and acridine orange (AO), respectively. Eighteen vectors of Escherichia coli and two vectors shortened by cloning were mixed into multiplasmid systems with different member numbers, and then electrophoresis with AO staining was performed within the range of 5°C-45°C, with a linearized multiplasmid system as the control. The lane profiles (peaks) were captured with Image Lab 5.1 software. After electrophoresis, the nine-plasmid-2 system was dyed with AO solutions of different ionic strengths to detect the effect of ionic strength on temperature sensitivity. It was measured that the UV-visible absorption spectra of the nine-plasmid-2 system dissolved in AO solutions with different ionic strengths and pH. Further, a response surface model was constructed using Design-Expert.V8.0.6 software. The electrophoresis result showed that the multiplasmid system from L. plantarum PC518 stained by AO staining showed a weak band at 5°C and five bands at 25°C, which was similar to the result of staining with Goldview 1, 2, and 3. The synthetic nine-plasmid-1 system and nine-plasmid-2 system displayed different band numbers on the electrophoresis gel in the electrophoresis temperature range of 5°C-45°C, namely 3, 4, 6, 4, and 2 bands, as well as 2, 6, 7, 8, and 5 bands. Using the 1× Tris-acetate-EDTA (TAE)-AO solution, the poststaining results of the nine-plasmid-2 system in the temperature range of 5°C-45°C were 4, 6, 9, 9, and 7 bands, respectively. Further, using 5×, 10×, or 25× TAE buffer, the AO poststaining results at 5°C were 4, 2, and 1 bands, respectively. The ultraviolet spectral results from 5°C to 25°C showed that there was a significant difference (3.5 times) in the fluctuation amplitude at the absorption peak of 261.2 nm between 0× and 1-10× TAE-AO solution containing the nine-plasmid-2 system. Specifically, the fluctuation amplitudes of 0×, 1×, 5×, and 10× samples were 0.032, 0.109, 0.112, and 0.110, respectively. At the same time, using 1× and 10× TAE buffer, the AO-stained linear nine-plasmid-2 system remained stable and did not display temperature sensitivity. The response surface models of the AO-stained nine-plasmid-2 system intuitively displayed that the absorbance of the 1× TAE samples increased significantly with increasing temperature compared to the 0× TAE samples, regardless of the pH value. The findings confirmed a temperature-dependent effect in AO staining of natural or synthetic multiplasmid systems, with the optimum staining result occurring at 25°C. Ion strength was a necessary condition for the temperature sensitivity mechanism. This study layed the groundwork for further investigation into the reasons or underlying mechanisms of temperature sensitivity in AO staining of multiplasmid systems.
Collapse
Affiliation(s)
- Qiuxia Jiao
- Department of Pathogenic Biology, Chengdu Medical College, Chengdu, China
| | - Yumeng Zhang
- Department of Pathogenic Biology, Chengdu Medical College, Chengdu, China
| | - Juan Xie
- Department of Pathogenic Biology, Chengdu Medical College, Chengdu, China
| | - Fang Liu
- Department of Pathogenic Biology, Chengdu Medical College, Chengdu, China
| | - Chaoming Peng
- Department of General Practice, The First Affiliated Hospital, Chengdu Medical College, Chengdu, China
| | - Qu Pan
- Department of Pathogenic Biology, Chengdu Medical College, Chengdu, China
| |
Collapse
|
8
|
Brom JA, Samsri S, Petrikis RG, Parnham S, Pielak GJ. 1H, 13C, 15N backbone resonance assignment of Escherichia coli adenylate kinase. BIOMOLECULAR NMR ASSIGNMENTS 2023; 17:235-238. [PMID: 37632688 DOI: 10.1007/s12104-023-10147-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 07/26/2023] [Indexed: 08/28/2023]
Abstract
Adenylate kinase reversibly catalyzes the conversion of ATP plus AMP to two ADPs. This essential catalyst is present in every cell, and the Escherichia coli protein is often employed as a model enzyme. Our aim is to use the E. coli enzyme to understand dry protein structure and protection. Here, we report the expression, purification, steady-state assay, NMR conditions and 1H, 13C, 15N backbone resonance NMR assignments of its C77S variant. These data will also help others utilize this prototypical enzyme.
Collapse
Affiliation(s)
- Julia A Brom
- Department of Chemistry, University of North Carolina at Chapel Hill (UNC-CH), Chapel Hill, NC, 27599-3290, USA
| | - Sasiprapa Samsri
- Department of Chemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Ruta G Petrikis
- Department of Chemistry, University of North Carolina at Chapel Hill (UNC-CH), Chapel Hill, NC, 27599-3290, USA
| | - Stuart Parnham
- Department of Biochemistry & Biophysics, UNC-CH, Chapel Hill, NC, 27599, USA
| | - Gary J Pielak
- Department of Chemistry, University of North Carolina at Chapel Hill (UNC-CH), Chapel Hill, NC, 27599-3290, USA.
- Department of Biochemistry & Biophysics, UNC-CH, Chapel Hill, NC, 27599, USA.
- Lineberger Cancer Center, UNC-CH, Chapel Hill, NC, 27599, USA.
- Integrative Program for Biological and Genome Sciences, UNC-CH, Chapel Hill, NC, 27599-7100, USA.
| |
Collapse
|
9
|
Goldman RL, Vittala Murthy NT, Northen TP, Balakrishnan A, Chivukula S, Danz H, Tibbitts T, Dias A, Vargas J, Cooper D, Gopani H, Beaulieu A, Kalnin KV, Plitnik T, Karmakar S, Dasari R, Landis R, Karve S, DeRosa F. Understanding structure activity relationships of Good HEPES lipids for lipid nanoparticle mRNA vaccine applications. Biomaterials 2023; 301:122243. [PMID: 37480759 DOI: 10.1016/j.biomaterials.2023.122243] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/24/2023]
Abstract
Lipid nanoparticles (LNPs) have shown great promise as delivery vehicles to transport messenger ribonucleic acid (mRNA) into cells and act as vaccines for infectious diseases including COVID-19 and influenza. The ionizable lipid incorporated within the LNP is known to be one of the main driving factors for potency and tolerability. Herein, we describe a novel family of ionizable lipids synthesized with a piperazine core derived from the HEPES Good buffer. These ionizable lipids have unique asymmetric tails and two dissimilar degradable moieties incorporated within the structure. Lipids tails of varying lengths, degrees of unsaturation, branching, and the inclusion of additional ester moieties were evaluated for protein expression. We observed several key lipid structure activity relationships that correlated with improved protein production in vivo, including lipid tails of 12 carbons on the ester side and the effect of carbon spacing on the disulfide arm of the lipids. Differences in LNP physical characteristics were observed for lipids containing an extra ester moiety. The LNP structure and lipid bilayer packing, visualized through Cryo-TEM, affected the amount of protein produced in vivo. In non-human primates, the Good HEPES LNPs formulated with an mRNA encoding an influenza hemagglutinin (HA) antigen successfully generated functional HA inhibition (HAI) antibody titers comparable to the industry standards MC3 and SM-102 LNPs, demonstrating their promise as a potential vaccine.
Collapse
Affiliation(s)
| | | | | | | | | | - Hillary Danz
- mRNA Center of Excellence, Sanofi, Waltham, MA, USA
| | | | - Anusha Dias
- mRNA Center of Excellence, Sanofi, Waltham, MA, USA
| | - Jorel Vargas
- mRNA Center of Excellence, Sanofi, Waltham, MA, USA
| | | | | | | | | | | | | | | | | | | | - Frank DeRosa
- mRNA Center of Excellence, Sanofi, Waltham, MA, USA
| |
Collapse
|
10
|
Abstract
Optical biosensors are frontrunners for the rapid and real-time detection of analytes, particularly for low concentrations. Among them, whispering gallery mode (WGM) resonators have recently attracted a growing focus due to their robust optomechanical features and high sensitivity, measuring down to single binding events in small volumes. In this review, we provide a broad overview of WGM sensors along with critical advice and additional "tips and tricks" to make them more accessible to both biochemical and optical communities. Their structures, fabrication methods, materials, and surface functionalization chemistries are discussed. We propose this reflection under a pedagogical approach to describe and explain these biochemical sensors with a particular focus on the most recent achievements in the field. In addition to highlighting the advantages of WGM sensors, we also discuss and suggest strategies to overcome their current limitations, leaving room for further development as practical tools in various applications. We aim to provide new insights and combine different knowledge and perspectives to advance the development of the next generation of WGM biosensors. With their unique advantages and compatibility with different sensing modalities, these biosensors have the potential to become major game changers for biomedical and environmental monitoring, among many other relevant target applications.
Collapse
Affiliation(s)
- Médéric Loyez
- Department of Electrical & Systems Engineering, Washington University, One Brookings Drive Green Hall 2120F, St. Louis, Missouri 63130, United States
| | - Maxwell Adolphson
- Department of Electrical & Systems Engineering, Washington University, One Brookings Drive Green Hall 2120F, St. Louis, Missouri 63130, United States
| | - Jie Liao
- Department of Electrical & Systems Engineering, Washington University, One Brookings Drive Green Hall 2120F, St. Louis, Missouri 63130, United States
| | - Lan Yang
- Department of Electrical & Systems Engineering, Washington University, One Brookings Drive Green Hall 2120F, St. Louis, Missouri 63130, United States
| |
Collapse
|
11
|
The melting curves of calf thymus-DNA are buffer specific. J Colloid Interface Sci 2023; 630:193-201. [DOI: 10.1016/j.jcis.2022.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/27/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
|
12
|
Nguyen MT, Biriukov D, Tempra C, Baxova K, Martinez-Seara H, Evci H, Singh V, Šachl R, Hof M, Jungwirth P, Javanainen M, Vazdar M. Ionic Strength and Solution Composition Dictate the Adsorption of Cell-Penetrating Peptides onto Phosphatidylcholine Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11284-11295. [PMID: 36083171 PMCID: PMC9494944 DOI: 10.1021/acs.langmuir.2c01435] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Adsorption of arginine-rich positively charged peptides onto neutral zwitterionic phosphocholine (PC) bilayers is a key step in the translocation of those potent cell-penetrating peptides into the cell interior. In the past, we have shown both theoretically and experimentally that polyarginines adsorb to the neutral PC-supported lipid bilayers in contrast to polylysines. However, comparing our results with previous studies showed that the results often do not match even at the qualitative level. The adsorption of arginine-rich peptides onto 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) may qualitatively depend on the actual experimental conditions where binding experiments have been performed. In this work, we systematically studied the adsorption of R9 and K9 peptides onto the POPC bilayer, aided by molecular dynamics (MD) simulations and fluorescence cross-correlation spectroscopy (FCCS) experiments. Using MD simulations, we tested a series of increasing peptide concentrations, in parallel with increasing Na+ and Ca2+ salt concentrations, showing that the apparent strength of adsorption of R9 decreases upon the increase of peptide or salt concentration in the system. The key result from the simulations is that the salt concentrations used experimentally can alter the picture of peptide adsorption qualitatively. Using FCCS experiments with fluorescently labeled R9 and K9, we first demonstrated that the binding of R9 to POPC is tighter by almost 2 orders of magnitude compared to that of K9. Finally, upon the addition of an excess of either Na+ or Ca2+ ions with R9, the total fluorescence correlation signal is lost, which implies the unbinding of R9 from the PC bilayer, in agreement with our predictions from MD simulations.
Collapse
Affiliation(s)
- Man Thi
Hong Nguyen
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 542/2, CZ-16000 Prague 6, Czech Republic
| | - Denys Biriukov
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 542/2, CZ-16000 Prague 6, Czech Republic
| | - Carmelo Tempra
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 542/2, CZ-16000 Prague 6, Czech Republic
| | - Katarina Baxova
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 542/2, CZ-16000 Prague 6, Czech Republic
| | - Hector Martinez-Seara
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 542/2, CZ-16000 Prague 6, Czech Republic
| | - Hüseyin Evci
- J.
Heyrovský Institute of Physical Chemistry of the Czech Academy
of Sciences, Dolejškova
2155/3, CZ-18223 Prague 8, Czech Republic
- Department
of Chemistry, Faculty of Science, University
of South Bohemia in Ceske Budejovice, 370 05 Ceske Budejovice, Czech
Republic
| | - Vandana Singh
- J.
Heyrovský Institute of Physical Chemistry of the Czech Academy
of Sciences, Dolejškova
2155/3, CZ-18223 Prague 8, Czech Republic
- Faculty
of Mathematics and Physics at Charles University, 110 00 Prague, Czech Republic
| | - Radek Šachl
- J.
Heyrovský Institute of Physical Chemistry of the Czech Academy
of Sciences, Dolejškova
2155/3, CZ-18223 Prague 8, Czech Republic
| | - Martin Hof
- J.
Heyrovský Institute of Physical Chemistry of the Czech Academy
of Sciences, Dolejškova
2155/3, CZ-18223 Prague 8, Czech Republic
| | - Pavel Jungwirth
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 542/2, CZ-16000 Prague 6, Czech Republic
| | - Matti Javanainen
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 542/2, CZ-16000 Prague 6, Czech Republic
- Institute
of Biotechnology, University of Helsinki, FI-00014 University
of Helsinki, Finland
| | - Mario Vazdar
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 542/2, CZ-16000 Prague 6, Czech Republic
- Department
of Mathematics, University of Chemistry
and Technology, 166 28 Prague, Czech Republic
| |
Collapse
|
13
|
Badiani VM, Casadevall C, Miller M, Cobb SJ, Manuel RR, Pereira IAC, Reisner E. Engineering Electro- and Photocatalytic Carbon Materials for CO 2 Reduction by Formate Dehydrogenase. J Am Chem Soc 2022; 144:14207-14216. [PMID: 35900819 PMCID: PMC9376922 DOI: 10.1021/jacs.2c04529] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Semiartificial approaches to renewable fuel synthesis exploit the integration of enzymes with synthetic materials for kinetically efficient fuel production. Here, a CO2 reductase, formate dehydrogenase (FDH) from Desulfovibrio vulgaris Hildenborough, is interfaced with carbon nanotubes (CNTs) and amorphous carbon dots (a-CDs). Each carbon substrate, tailored for electro- and photocatalysis, is functionalized with positive (-NHMe2+) and negative (-COO-) chemical surface groups to understand and optimize the electrostatic effect of protein association and orientation on CO2 reduction. Immobilization of FDH on positively charged CNT electrodes results in efficient and reversible electrochemical CO2 reduction via direct electron transfer with >90% Faradaic efficiency and -250 μA cm-2 at -0.6 V vs SHE (pH 6.7 and 25 °C) for formate production. In contrast, negatively charged CNTs only result in marginal currents with immobilized FDH. Quartz crystal microbalance analysis and attenuated total reflection infrared spectroscopy confirm the high binding affinity of active FDH to CNTs. FDH has subsequently been coupled to a-CDs, where the benefits of the positive charge (-NHMe2+-terminated a-CDs) were translated to a functional CD-FDH hybrid photocatalyst. High rates of photocatalytic CO2 reduction (turnover frequency: 3.5 × 103 h-1; AM 1.5G) with dl-dithiothreitol as the sacrificial electron donor were obtained after 6 h, providing benchmark rates for homogeneous photocatalytic CO2 reduction with metal-free light absorbers. This work provides a rational basis to understand interfacial surface/enzyme interactions at electrodes and photosensitizers to guide improvements with catalytic biohybrid materials.
Collapse
Affiliation(s)
- Vivek M Badiani
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K.,Cambridge Graphene Centre, University of Cambridge, Cambridge, CB3 0FA, U.K
| | - Carla Casadevall
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K
| | - Melanie Miller
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K
| | - Samuel J Cobb
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K
| | - Rita R Manuel
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Inês A C Pereira
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Erwin Reisner
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K
| |
Collapse
|
14
|
Jung SM, Yang M, Song WJ. Symmetry-Adapted Synthesis of Dicopper Oxidases with Divergent Dioxygen Reactivity. Inorg Chem 2022; 61:12433-12441. [DOI: 10.1021/acs.inorgchem.2c01898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Se-Min Jung
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Minwoo Yang
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Woon Ju Song
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
15
|
Neuhaus D. Zinc finger structure determination by NMR: Why zinc fingers can be a handful. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 130-131:62-105. [PMID: 36113918 PMCID: PMC7614390 DOI: 10.1016/j.pnmrs.2022.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/09/2022] [Accepted: 07/10/2022] [Indexed: 06/07/2023]
Abstract
Zinc fingers can be loosely defined as protein domains containing one or more tetrahedrally-co-ordinated zinc ions whose role is to stabilise the structure rather than to be involved in enzymatic chemistry; such zinc ions are often referred to as "structural zincs". Although structural zincs can occur in proteins of any size, they assume particular significance for very small protein domains, where they are often essential for maintaining a folded state. Such small structures, that sometimes have only marginal stability, can present particular difficulties in terms of sample preparation, handling and structure determination, and early on they gained a reputation for being resistant to crystallisation. As a result, NMR has played a more prominent role in structural studies of zinc finger proteins than it has for many other types of proteins. This review will present an overview of the particular issues that arise for structure determination of zinc fingers by NMR, and ways in which these may be addressed.
Collapse
Affiliation(s)
- David Neuhaus
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
16
|
Maer AM, Rusinova R, Providence LL, Ingólfsson HI, Collingwood SA, Lundbæk JA, Andersen OS. Regulation of Gramicidin Channel Function Solely by Changes in Lipid Intrinsic Curvature. Front Physiol 2022; 13:836789. [PMID: 35350699 PMCID: PMC8957996 DOI: 10.3389/fphys.2022.836789] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Abstract
Membrane protein function is regulated by the lipid bilayer composition. In many cases the changes in function correlate with changes in the lipid intrinsic curvature (c 0), and c 0 is considered a determinant of protein function. Yet, water-soluble amphiphiles that cause either negative or positive changes in curvature have similar effects on membrane protein function, showing that changes in lipid bilayer properties other than c 0 are important-and may be dominant. To further investigate the mechanisms underlying the bilayer regulation of protein function, we examined how maneuvers that alter phospholipid head groups effective "size"-and thereby c 0-alter gramicidin (gA) channel function. Using dioleoylphospholipids and planar bilayers, we varied the head groups' physical volume and the electrostatic repulsion among head groups (and thus their effective size). When 1,2-dioleyol-sn-glycero-3-phosphocholine (DOPC), was replaced by 1,2-dioleyol-sn-glycero-3-phosphoethanolamine (DOPE) with a smaller head group (causing a more negative c 0), the channel lifetime (τ) is decreased. When the pH of the solution bathing a 1,2-dioleyol-sn-glycero-3-phosphoserine (DOPS) bilayer is decreased from 7 to 3 (causing decreased head group repulsion and a more negative c 0), τ is decreased. When some DOPS head groups are replaced by zwitterionic head groups, τ is similarly decreased. These effects do not depend on the sign of the change in surface charge. In DOPE:DOPC (3:1) bilayers, pH changes from 5→9 to 5→0 (both increasing head group electrostatic repulsion, thereby causing a less negative c 0) both increase τ. Nor do the effects depend on the use of planar, hydrocarbon-containing bilayers, as similar changes were observed in hydrocarbon-free lipid vesicles. Altering the interactions among phospholipid head groups may alter also other bilayer properties such as thickness or elastic moduli. Such changes could be excluded using capacitance measurements and single channel measurements on gA channels of different lengths. We conclude that changes gA channel function caused by changes in head group effective size can be predicted from the expected changes in c 0.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Olaf S. Andersen
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
17
|
Jordan JH, Ashbaugh HS, Mague JT, Gibb BC. Buffer and Salt Effects in Aqueous Host-Guest Systems: Screening, Competitive Binding, or Both? J Am Chem Soc 2021; 143:18605-18616. [PMID: 34704751 PMCID: PMC8587612 DOI: 10.1021/jacs.1c08457] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
There are many open questions regarding the supramolecular properties of ions in water, a fact that has ramifications within any field of study involving buffered solutions. Indeed, as Pielak has noted (Buffers, Especially the Good Kind, Biochemistry, 2021, in press. DOI:10.1021/acs.biochem.1c00200) buffers were conceived of with little regard to their supramolecular properties. But there is a difficulty here; the mathematical models supramolecular chemists use for affinity determinations do not account for screening. As a result, there is uncertainty as to the magnitude of any screening effect and how this compares to competitive salt/buffer binding. Here we use a tetra-cation cavitand to compare halide affinities obtained using a traditional unscreened model and a screened (Debye-Hückel) model. The rule of thumb that emerges is that if ionic strength is changed by >1 order of magnitude─either during a titration or if a comparison is sought between two different buffered solutions─screening should be considered. We also build a competitive mathematical model showing that binding attenuation in buffer is largely due to competitive binding to the host by said buffer. For the system at hand, we find that the effect of competition is approximately twice that of the effect of screening (∼RT at 25 °C). Thus, for strong binders it is less important to account for screening than it is to account for competitive complexation, but for weaker binders both effects should be considered. We anticipate these results will help supramolecular chemists unravel the properties of buffers and so help guide studies of biomacromolecules.
Collapse
Affiliation(s)
- Jacobs H Jordan
- Agricultural Research Service Southern Regional Research Center, U.S. Department of Agriculture, New Orleans, Louisiana 70124, United States
| | - Henry S Ashbaugh
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Joel T Mague
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Bruce C Gibb
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| |
Collapse
|
18
|
|
19
|
Nys K, Pfanzagl V, Roefs J, Obinger C, Van Doorslaer S. In Vitro Heme Coordination of a Dye-Decolorizing Peroxidase-The Interplay of Key Amino Acids, pH, Buffer and Glycerol. Int J Mol Sci 2021; 22:ijms22189849. [PMID: 34576013 PMCID: PMC8468270 DOI: 10.3390/ijms22189849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 11/17/2022] Open
Abstract
Dye-decolorizing peroxidases (DyPs) have gained interest for their ability to oxidize anthraquinone-derived dyes and lignin model compounds. Spectroscopic techniques, such as electron paramagnetic resonance and optical absorption spectroscopy, provide main tools to study how the enzymatic function is linked to the heme-pocket architecture, provided the experimental conditions are carefully chosen. Here, these techniques are used to investigate the effect of active site perturbations on the structure of ferric P-class DyP from Klebsiella pneumoniae (KpDyP) and three variants of the main distal residues (D143A, R232A and D143A/R232A). Arg-232 is found to be important for maintaining the heme distal architecture and essential to facilitate an alkaline transition. The latter is promoted in absence of Asp-143. Furthermore, the non-innocent effect of the buffer choice and addition of the cryoprotectant glycerol is shown. However, while unavoidable or indiscriminate experimental conditions are pitfalls, careful comparison of the effects of different exogenous molecules on the electronic structure and spin state of the heme iron contains information about the inherent flexibility of the heme pocket. The interplay between structural flexibility, key amino acids, pH, temperature, buffer and glycerol during in vitro spectroscopic studies is discussed with respect to the poor peroxidase activity of bacterial P-class DyPs.
Collapse
Affiliation(s)
- Kevin Nys
- BIMEF Laboratory, Department of Chemistry, University of Antwerp, 2610 Antwerp, Belgium; (K.N.); (J.R.)
| | - Vera Pfanzagl
- Division of Biochemistry, Department of Chemistry, BOKU—University of Natural Resources and Life Sciences, 1190 Vienna, Austria; (V.P.); (C.O.)
| | - Jeroen Roefs
- BIMEF Laboratory, Department of Chemistry, University of Antwerp, 2610 Antwerp, Belgium; (K.N.); (J.R.)
| | - Christian Obinger
- Division of Biochemistry, Department of Chemistry, BOKU—University of Natural Resources and Life Sciences, 1190 Vienna, Austria; (V.P.); (C.O.)
| | - Sabine Van Doorslaer
- BIMEF Laboratory, Department of Chemistry, University of Antwerp, 2610 Antwerp, Belgium; (K.N.); (J.R.)
- Correspondence: ; Tel.: +32-3-265-2461
| |
Collapse
|