1
|
Crooke AM, Chand AK, Cui Z, Balskus EP. Elucidation of Chalkophomycin Biosynthesis Reveals N-Hydroxypyrrole-Forming Enzymes. J Am Chem Soc 2024; 146:16268-16280. [PMID: 38810110 PMCID: PMC11177257 DOI: 10.1021/jacs.4c04712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024]
Abstract
Reactive functional groups, such as N-nitrosamines, impart unique bioactivities to the natural products in which they are found. Recent work has illuminated enzymatic N-nitrosation reactions in microbial natural product biosynthesis, motivating interest in discovering additional metabolites constructed using such reactivity. Here, we use a genome mining approach to identify over 400 cryptic biosynthetic gene clusters (BGCs) encoding homologues of the N-nitrosating biosynthetic enzyme SznF, including the BGC for chalkophomycin, a CuII-binding metabolite that contains a C-type diazeniumdiolate and N-hydroxypyrrole. Characterizing chalkophomycin biosynthetic enzymes reveals previously unknown enzymes responsible for N-hydroxypyrrole biosynthesis, including the first prolyl-N-hydroxylase, and a key step in the assembly of the diazeniumdiolate-containing amino acid graminine. Discovery of this pathway enriches our understanding of the biosynthetic logic employed in constructing unusual heteroatom-heteroatom bond-containing functional groups, enabling future efforts in natural product discovery and biocatalysis.
Collapse
Affiliation(s)
- Anne Marie Crooke
- Department
of Chemistry and Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Anika K. Chand
- Department
of Chemistry and Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Zheng Cui
- Department
of Chemistry and Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Emily P. Balskus
- Department
of Chemistry and Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
- Howard
Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
2
|
Crooke AM, Chand AK, Cui Z, Balskus EP. Elucidation of chalkophomycin biosynthesis reveals N-hydroxypyrrole-forming enzymes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.24.577118. [PMID: 38328124 PMCID: PMC10849742 DOI: 10.1101/2024.01.24.577118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Reactive functional groups, such as N-nitrosamines, impart unique bioactivities to the natural products in which they are found. Recent work has illuminated enzymatic N-nitrosation reactions in microbial natural product biosynthesis, motivating an interest in discovering additional metabolites constructed using such reactivity. Here, we use a genome mining approach to identify over 400 cryptic biosynthetic gene clusters (BGCs) encoding homologs of the N-nitrosating biosynthetic enzyme SznF, including the BGC for chalkophomycin, a CuII-binding metabolite that contains a C-type diazeniumdiolate and N-hydroxypyrrole. Characterizing chalkophomycin biosynthetic enzymes reveals previously unknown enzymes responsible for N-hydroxypyrrole biosynthesis, including the first prolyl-N-hydroxylase, and a key step in assembly of the diazeniumdiolate-containing amino acid graminine. Discovery of this pathway enriches our understanding of the biosynthetic logic employed in constructing unusual heteroatom-heteroatom bond-containing functional groups, enabling future efforts in natural product discovery and biocatalysis.
Collapse
Affiliation(s)
- Anne Marie Crooke
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Anika K. Chand
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Zheng Cui
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Emily P. Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
3
|
Lawson KE, Dekle JK, Adamczyk AJ. Towards pharmaceutical protein stabilization: DFT and statistical learning studies on non-enzymatic peptide hydrolysis degradation mechanisms. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
4
|
Zhang L, Esquembre LA, Xia SN, Oesterhelt F, Hughes CC, Brötz-Oesterhelt H, Teufel R. Antibacterial Synnepyrroles from Human-Associated Nocardiopsis sp. Show Protonophore Activity and Disrupt the Bacterial Cytoplasmic Membrane. ACS Chem Biol 2022; 17:2836-2848. [PMID: 36179367 DOI: 10.1021/acschembio.2c00460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Actinobacteria have traditionally been an important source of bioactive natural products, although many genera remain poorly explored. Here, we report a group of distinctive pyrrole-containing natural products, named synnepyrroles, from Nocardiopsis synnemataformans. Detailed structural characterization by mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy combined with isotope-labeling experiments revealed their molecular structures and biosynthetic precursors acetate, propionate, aspartate, and (for branched analogues) valine. The biosynthetic data points toward an unusual pathway for pyrrole formation via condensation of aspartate with diverse fatty acids that give rise to a unique pyrrole-3,4-dicarboxylate core and variable linear or terminally branched alkyl side chains. In addition, the bioactivity and mode of action of synnepyrrole A were characterized in Bacillus subtilis. Orienting assessment of the phenotype of synnepyrrole A-treated bacteria by high-resolution microscopy suggested the cytoplasmic membrane as the target structure. Further characterization of the membrane effects demonstrated dissipation of the membrane potential and intracellular acidification indicative of protonophore activity. At slightly higher concentrations, synnepyrrole A compromised the barrier function of the cytoplasmic membrane, allowing the passage of otherwise membrane-impermeable dye molecules.
Collapse
Affiliation(s)
- Lei Zhang
- Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Lidia Alejo Esquembre
- Department of Microbial Bioactive Compounds, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany
| | - Shu-Ning Xia
- Department of Microbial Bioactive Compounds, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany
| | - Filipp Oesterhelt
- Department of Microbial Bioactive Compounds, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany
| | - Chambers C Hughes
- Department of Microbial Bioactive Compounds, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany.,Cluster of Excellence EXC 2124: Controlling Microbes to Fight Infection, University of Tübingen, 72076 Tübingen, Germany.,German Center for Infection Research, Partner Site Tübingen, 72076 Tübingen, Germany
| | - Heike Brötz-Oesterhelt
- Department of Microbial Bioactive Compounds, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany.,Cluster of Excellence EXC 2124: Controlling Microbes to Fight Infection, University of Tübingen, 72076 Tübingen, Germany.,German Center for Infection Research, Partner Site Tübingen, 72076 Tübingen, Germany
| | - Robin Teufel
- Pharmaceutical Biology, Department of Pharmaceutical Sciences, Klingelbergstrasse 50, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
5
|
Corpuz JC, Patel A, Davis TD, Podust LM, McCammon JA, Burkart MD. Essential Role of Loop Dynamics in Type II NRPS Biomolecular Recognition. ACS Chem Biol 2022; 17:2890-2898. [PMID: 36173802 PMCID: PMC9808923 DOI: 10.1021/acschembio.2c00523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Non-ribosomal peptides play a critical role in the clinic as therapeutic agents. To access more chemically diverse therapeutics, non-ribosomal peptide synthetases (NRPSs) have been targeted for engineering through combinatorial biosynthesis; however, this has been met with limited success in part due to the lack of proper protein-protein interactions between non-cognate proteins. Herein, we report our use of chemical biology to enable X-ray crystallography, molecular dynamics (MD) simulations, and biochemical studies to elucidate binding specificities between peptidyl carrier proteins (PCPs) and adenylation (A) domains. Specifically, we determined X-ray crystal structures of a type II PCP crosslinked to its cognate A domain, PigG and PigI, and of PigG crosslinked to a non-cognate PigI homologue, PltF. The crosslinked PCP-A domain structures possess large protein-protein interfaces that predominantly feature hydrophobic interactions, with specific electrostatic interactions that orient the substrate for active site delivery. MD simulations of the PCP-A domain complexes and unbound PCP structures provide a dynamical evaluation of the transient interactions formed at PCP-A domain interfaces, which confirm the previously hypothesized role of a PCP loop as a crucial recognition element. Finally, we demonstrate that the interfacial interactions at the PCP loop 1 region can be modified to control PCP binding specificity through gain-of-function mutations. This work suggests that loop conformational preferences and dynamism account for improved shape complementary in the PCP-A domain interactions. Ultimately, these studies show how crystallographic, biochemical, and computational methods can be used to rationally re-engineer NRPSs for non-cognate interactions.
Collapse
Affiliation(s)
- Joshua C. Corpuz
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0332, USA
| | - Ashay Patel
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0332, USA
| | - Tony D. Davis
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0332, USA
| | - Larissa M. Podust
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0332, USA
| | - J. Andrew McCammon
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0332, USA
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla CA 92093, USA
| | - Michael D. Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0332, USA
| |
Collapse
|
6
|
Mikshiev VY, Tolstoy PM, Puzyk AM, Kirichenko SO, Antonov AS. peri-Interactions in 1,8-bis(dimethylamino)naphthalene ortho-ketimine cations facilitate [1,5]-hydride shift: selective synthesis of 1,2,3,4-tetrahydrobenzo[ h]quinazolines. Org Biomol Chem 2022; 20:4559-4568. [PMID: 35593098 DOI: 10.1039/d2ob00674j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Selective heterocyclization leading to 1,2,3,4-tetrahydrobenzo[h]quinazolines from ortho-ketimines of 1,8-bis(dimethylamino)naphthalene (DmanIms) under acid catalysis has been revealed. In contrast to the rather unreactive N,N-dimethylaniline ortho-ketimine, DmanIms readily undergo this transformation without an additional catalyst. This distinction in the reactivity underscores the importance of the second peri-NMe2 group in DmanIms, which facilitates a [1,5]-hydride shift and the subsequent cyclization. The cascade of peri-interactions emerging between 1-NMe2 and 8-NMe2 groups has been identified as a reason for the catalytic effect: (1) the hydrogen bond in the DmanIm dication constrains 1-NMe2 in the desired position providing proximity of reaction centers, (2) the repulsion of the lone pairs of 8-NMe2 group and unrelaxed 1-NMe2 group arising right after deprotonation process reduces the Gibbs free energy of activation (ΔG‡) for the straight hydride shift, and (3) the electrostatic interaction between 8-NMe2 and the charged NCH2+ group in the intermediate increases the ΔG‡ for the reverse hydride shift.
Collapse
Affiliation(s)
- Vladimir Y Mikshiev
- Institute of Chemistry, St Petersburg State University, Universitetskij pr. 26, 198504 St Petersburg, Russian Federation.
| | - Peter M Tolstoy
- Institute of Chemistry, St Petersburg State University, Universitetskij pr. 26, 198504 St Petersburg, Russian Federation.
| | - Aleksandra M Puzyk
- Institute of Chemistry, St Petersburg State University, Universitetskij pr. 26, 198504 St Petersburg, Russian Federation.
| | - Sergey O Kirichenko
- Institute of Chemistry, St Petersburg State University, Universitetskij pr. 26, 198504 St Petersburg, Russian Federation.
| | - Alexander S Antonov
- Institute of Chemistry, St Petersburg State University, Universitetskij pr. 26, 198504 St Petersburg, Russian Federation.
| |
Collapse
|