1
|
Chen W, Qiu M, Paizs P, Sadowski M, Ramonaite T, Zborovsky L, Mejias-Luque R, Janßen KP, Kinross J, Goldin RD, Rebec M, Liebeke M, Takats Z, McKenzie JS, Strittmatter N. Universal, untargeted detection of bacteria in tissues using metabolomics workflows. Nat Commun 2025; 16:165. [PMID: 39747039 PMCID: PMC11697447 DOI: 10.1038/s41467-024-55457-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 12/12/2024] [Indexed: 01/04/2025] Open
Abstract
Fast and reliable identification of bacteria directly in clinical samples is a critical factor in clinical microbiological diagnostics. Current approaches require time-consuming bacterial isolation and enrichment procedures, delaying stratified treatment. Here, we describe a biomarker-based strategy that utilises bacterial small molecular metabolites and lipids for direct detection of bacteria in complex samples using mass spectrometry (MS). A spectral metabolic library of 233 bacterial species is mined for markers showing specificity at different phylogenetic levels. Using a univariate statistical analysis method, we determine 359 so-called taxon-specific markers (TSMs). We apply these TSMs to the in situ detection of bacteria using healthy and cancerous gastrointestinal tissues as well as faecal samples. To demonstrate the MS method-agnostic nature, samples are analysed using spatial metabolomics and traditional bulk-based metabolomics approaches. In this work, TSMs are found in >90% of samples, suggesting the general applicability of this workflow to detect bacterial presence with standard MS-based analytical methods.
Collapse
Affiliation(s)
- Wei Chen
- Department of Bioscience, School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Min Qiu
- Department of Bioscience, School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Petra Paizs
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Miriam Sadowski
- Department of Symbiosis, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Toma Ramonaite
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Lieby Zborovsky
- Department of Bioscience, School of Natural Sciences, Technical University of Munich, Garching, Germany
| | - Raquel Mejias-Luque
- Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Klaus-Peter Janßen
- Department of Surgery, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - James Kinross
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Robert D Goldin
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Monica Rebec
- North West London Pathology, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Manuel Liebeke
- Department of Symbiosis, Max Planck Institute for Marine Microbiology, Bremen, Germany
- Department for Metabolomics, Institute for Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Zoltan Takats
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
- Department of Immunomedicine, University of Regensburg, Regensburg, Germany
| | - James S McKenzie
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom.
| | - Nicole Strittmatter
- Department of Bioscience, School of Natural Sciences, Technical University of Munich, Garching, Germany.
| |
Collapse
|
2
|
Lee J, Wellenstein K, Rahnavard A, Nelson AT, Holter MM, Cummings BP, Yeliseyev V, Castoldi A, Clish CB, Bry L, Siegel D, Kahn BB. Beneficial metabolic effects of PAHSAs depend on the gut microbiota in diet-induced obese mice but not in chow-fed mice. Proc Natl Acad Sci U S A 2024; 121:e2318691121. [PMID: 38968121 PMCID: PMC11252816 DOI: 10.1073/pnas.2318691121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/31/2024] [Indexed: 07/07/2024] Open
Abstract
Dietary lipids play an essential role in regulating the function of the gut microbiota and gastrointestinal tract, and these luminal interactions contribute to mediating host metabolism. Palmitic Acid Hydroxy Stearic Acids (PAHSAs) are a family of lipids with antidiabetic and anti-inflammatory properties, but whether the gut microbiota contributes to their beneficial effects on host metabolism is unknown. Here, we report that treating chow-fed female and male germ-free (GF) mice with PAHSAs improves glucose tolerance, but these effects are lost upon high fat diet (HFD) feeding. However, transfer of feces from PAHSA-treated, but not vehicle-treated, chow-fed conventional mice increases insulin sensitivity in HFD-fed GF mice. Thus, the gut microbiota is necessary for, and can transmit, the insulin-sensitizing effects of PAHSAs in HFD-fed GF male mice. Analyses of the cecal metagenome and lipidome of PAHSA-treated mice identified multiple lipid species that associate with the gut commensal Bacteroides thetaiotaomicron (Bt) and with insulin sensitivity resulting from PAHSA treatment. Supplementing live, and to some degree, heat-killed Bt to HFD-fed female mice prevented weight gain, reduced adiposity, improved glucose tolerance, fortified the colonic mucus barrier and reduced systemic inflammation compared to HFD-fed controls. These effects were not observed in HFD-fed male mice. Furthermore, ovariectomy partially reversed the beneficial Bt effects on host metabolism, indicating a role for sex hormones in mediating the Bt probiotic effects. Altogether, these studies highlight the fact that PAHSAs can modulate the gut microbiota and that the microbiota is necessary for the beneficial metabolic effects of PAHSAs in HFD-fed mice.
Collapse
Affiliation(s)
- Jennifer Lee
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA02215
| | - Kerry Wellenstein
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA02215
| | - Ali Rahnavard
- Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, George Washington University, Washington, DC20052
| | - Andrew T. Nelson
- Division of Pharmaceutical Chemistry, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA92093
| | - Marlena M. Holter
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Cornell University, Ithaca, NY14850
| | - Bethany P. Cummings
- Department of Surgery, School of Medicine, University of California, Davis, Sacramento, CA95817
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis School of Veterinary Medicine, Davis, CA95616
| | - Vladimir Yeliseyev
- Massachusetts Host-Microbiome Center, Department of Pathology, Brigham & Women's Hospital and Harvard Medical School, Boston, MA02115
| | - Angela Castoldi
- Laboratory of Immunopathology Keizo Asami, Federal University of Pernambuco, Recife50670-901, Brazil
| | - Clary B. Clish
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
| | - Lynn Bry
- Massachusetts Host-Microbiome Center, Department of Pathology, Brigham & Women's Hospital and Harvard Medical School, Boston, MA02115
| | - Dionicio Siegel
- Division of Pharmaceutical Chemistry, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA92093
| | - Barbara B. Kahn
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA02215
| |
Collapse
|
3
|
Wood PL. Metabolic and Lipid Biomarkers for Pathogenic Algae, Fungi, Cyanobacteria, Mycobacteria, Gram-Positive Bacteria, and Gram-Negative Bacteria. Metabolites 2024; 14:378. [PMID: 39057701 PMCID: PMC11278827 DOI: 10.3390/metabo14070378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 06/27/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
The utilization of metabolomics and lipidomics analytical platforms in the study of pathogenic microbes is slowly expanding. These research approaches will significantly contribute to the establishment of microbial metabolite and lipid databases of significant value to all researchers in microbiology. In this review, we present a high-level overview of some examples of biomarkers that can be used to detect the presence of microbes, monitor the expansion/decline of a microbe population, and add to our understanding of microbe biofilms and pathogenicity. In addition, increased knowledge of the metabolic functions of pathogenic microbes can contribute to our understanding of microbes that are utilized in diverse industrial applications. Our review focuses on lipids, secondary metabolites, and non-ribosomal peptides that can be monitored using electrospray ionization high-resolution mass spectrometry (ESI-HRMS).
Collapse
Affiliation(s)
- Paul L Wood
- Metabolomics Unit, College of Veterinary Medicine, Lincoln Memorial University, 6965 Cumberland Gap Parkway, Harrogate, TN 37752, USA
| |
Collapse
|
4
|
Mirretta Barone C, Heaver SL, Gruber L, Zundel F, Vu DL, Ley RE. Spatially resolved lipidomics shows conditional transfer of lipids produced by Bacteroides thetaiotaomicron into the mouse gut. Cell Host Microbe 2024; 32:1025-1036.e5. [PMID: 38795710 DOI: 10.1016/j.chom.2024.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 03/19/2024] [Accepted: 04/30/2024] [Indexed: 05/28/2024]
Abstract
The extent to which bacterial lipids produced by the gut microbiota penetrate host tissues is unclear. Here, we combined mass spectrometry approaches to identify lipids produced by the human gut symbiont Bacteroides thetaiotaomicron (B. theta) and spatially track these bacterial lipids in the mouse colon. We characterize 130 B. theta lipids by liquid chromatography-tandem mass spectrometry (LC-MS/MS), using wild-type and mutant B. theta strains to confidently identify lipid structures and their interconnected pathways in vitro. Of these, 103 B. theta lipids can be detected and spatially mapped in a single MALDI mass spectrometry imaging run. We map unlabeled bacterial lipids across colon sections of germ-free and specific-pathogen-free (SPF) mice and mice mono-colonized with wild-type or sphingolipid-deficient (BTMUT) B. theta. We observe co-localization of bacterially derived phosphatidic acid with host tissues in BTMUT mice, consistent with lipid penetration into host tissues. These results indicate limited and selective transfer of bacterial lipids to the host.
Collapse
Affiliation(s)
- Claudia Mirretta Barone
- Department of Microbiome Science, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Stacey L Heaver
- Department of Microbiome Science, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Lars Gruber
- Department of Microbiome Science, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Fabian Zundel
- Department of Microbiome Science, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Dai Long Vu
- Mass Spectrometry Facility, Max Planck Institute for Biology Tübingen, Tübingen, Germany.
| | - Ruth E Ley
- Department of Microbiome Science, Max Planck Institute for Biology Tübingen, Tübingen, Germany; Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
5
|
Xiao X, Le HH, Lee MT, Lamm D, Johnson EL, Brito IL. Prevotella copri variants among a single host diverge in sphingolipid production. mBio 2024; 15:e0240923. [PMID: 38236049 PMCID: PMC10865984 DOI: 10.1128/mbio.02409-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/15/2023] [Indexed: 01/19/2024] Open
Abstract
Sphingolipids serve as vital structural and signaling components of the cell membranes in both eukaryotes and prokaryotes. Within the gut microbiome, Bacteroides species have been identified as major producers of sphingolipids, and Bacteroides-produced sphingolipids have been shown to be modulators of host immune and metabolic functions. While Bacteroides species are a prominent feature of the gut microbiomes of populations living in industrialized countries, Prevotella copri, a member of the same phyla, albeit a different family, is the dominant feature across the remainder of the global population, although their sphingolipid-producing capabilities have not been as thoroughly investigated. To fill this gap, we examined the genomes of over 60 diverse isolates of P. copri and identified several key enzymes involved in sphingolipid synthesis in P. copri. Combining bioorthogonal labeling and liquid chromatography-mass spectrometry (LC-MS) based lipidomics, we functionally characterized the first step in P. copri de novo sphingolipid synthesis in addition to profiling the sphingolipidomes of P. copri strains, identifying key enzymes that may play roles in producing a diverse set of P. copri sphingolipids. Given the limited genetic engineering tools amenable for use in P. copri, our approach takes advantage of comparative genomics and phenotypic profiling to explore sphingolipid production in these understudied, yet highly prevalent, organisms.IMPORTANCESphingolipids are important signaling molecules for maintaining metabolic and immune homeostasis in the host. These lipids are also produced by gut commensals, most notably by Bacteroides species. Despite the global prevalence of Prevotella copri in gut microbiomes of individuals, little is known about the types of sphingolipids they produce and whether they are similar in composition and structure to those produced by Bacteroides. Given the varied associations of P. copri with diverse sphingolipid-related health outcomes, such as rheumatoid arthritis and glucose intolerance, it is important to first characterize the specific sphingolipids produced by individual strains of P. copri and to identify the genes involved in their pathways of production. This characterization of P. copri-derived sphingolipids provides further insight into how bacterial sphingolipid production can serve as a mechanism for microbial modulation of host phenotypes.
Collapse
Affiliation(s)
- Xieyue Xiao
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York State, USA
| | - Henry H. Le
- Division of Nutritional Sciences, Cornell University, Ithaca, New York State, USA
| | - Min-Ting Lee
- Division of Nutritional Sciences, Cornell University, Ithaca, New York State, USA
| | - Daniel Lamm
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York State, USA
| | - Elizabeth L. Johnson
- Division of Nutritional Sciences, Cornell University, Ithaca, New York State, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Ilana L. Brito
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York State, USA
| |
Collapse
|
6
|
Kleiboeker BA, Frankfater C, Davey ME, Hsu FF. Lipidomic analysis of Porphyromonas gingivalis reveals novel glycerol bisphosphoceramide, phosphatidyl-, and phosphoglycerol dipeptide lipid families. J Lipid Res 2023; 64:100470. [PMID: 37924978 PMCID: PMC10757044 DOI: 10.1016/j.jlr.2023.100470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023] Open
Abstract
Porphyromonas gingivalis, like other members of the phylum Bacteroidetes (synonym Bacteroidota), synthesizes several classes of dihydroceramides and peptidolipids. Using a similar strategy as that recently used to delimit the lipidome of its close relative Bacteroides fragilis, we applied linear ion trap multiple-stage mass spectrometry (linear ion trap MSn) with high-resolution mass spectrometry, to structurally characterize the complete lipidome of P. gingivalis and compare it to B. fragilis. This analysis discovered that the P. gingivalis lipidome consists of several previously unidentified lipid families, including dihydroceramide-1-phosphophate, acylated dihydroceramide-1-phosphophate, phosphoglycerol glycylserine lipid, and bis(phosphodihydroceramide) glycerol. Interestingly, we also found a novel sphingolipid family containing a polyunsaturated long-chain base, and a new lipoglycylserine phosphatic acid containing unsaturated acyl chains not reported for the lipid family. The comprehensive coverage of the lipidome of P. gingivalis conducted in this study has revealed more than 140 lipid species including several novel lipids in over 20 lipid families/subfamilies.
Collapse
Affiliation(s)
- Brian A Kleiboeker
- Mass Spectrometry Resource, Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Cheryl Frankfater
- Mass Spectrometry Resource, Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Mary E Davey
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, USA
| | - Fong-Fu Hsu
- Mass Spectrometry Resource, Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
7
|
Hsu FF. Multiple stage linear ion-trap mass spectrometry toward characterization of native bacterial lipids-a critical review. Biochimie 2023; 215:88-99. [PMID: 37567358 DOI: 10.1016/j.biochi.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/25/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Great strides in the field of lipidomics driven by advances in mass spectrometry techniques in the last decade have moved lipid analysis to a new level and significantly improved our understanding of lipid biochemistry. Multiple stage mass spectrometry (MSn) with high resolution mass spectrometry (HRMS) that allows sequential isolation, fragmentation, and recognition of ion structures, is a powerful tool for characterization of complex and diversified lipid in bacterial cells, in which lipids are often critical for cell aggregation and dissociation, and play important biological roles. In addition to common phospholipids, many bacteria contain unique lipids that are specific to the bacterium genus and even to the bacterium species. In this review, application of linear ion-trap (LIT) MSn in the structural characterization of native bacterial lipids including (1) novel lipids consisting of many isomeric structures, (2) lipids with unique functional groups and modification, (3) complex sphingolipids, peptidolipids, and lipocyclopeptides from various bacteria are presented. LIT MSn approach affords realization of the mechanisms underlying the fragmentation processes, resulting in identification of complex lipid structures that would be very difficult to define using other analytical methods.
Collapse
Affiliation(s)
- Fong-Fu Hsu
- Mass Spectrometry Resource, Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Box 8127, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
8
|
Fernandez-Julia P, Black GW, Cheung W, Van Sinderen D, Munoz-Munoz J. Fungal β-glucan-facilitated cross-feeding activities between Bacteroides and Bifidobacterium species. Commun Biol 2023; 6:576. [PMID: 37253778 DOI: 10.1038/s42003-023-04970-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/23/2023] [Indexed: 06/01/2023] Open
Abstract
The human gut microbiota (HGM) is comprised of a very complex network of microorganisms, which interact with the host thereby impacting on host health and well-being. β-glucan has been established as a dietary polysaccharide supporting growth of particular gut-associated bacteria, including members of the genera Bacteroides and Bifidobacterium, the latter considered to represent beneficial or probiotic bacteria. However, the exact mechanism underpinning β-glucan metabolism by gut commensals is not fully understood. We show that mycoprotein represents an excellent source for β-glucan, which is consumed by certain Bacteroides species as primary degraders, such as Bacteroides cellulosilyticus WH2. The latter bacterium employs two extracellular, endo-acting enzymes, belonging to glycoside hydrolase families 30 and 157, to degrade mycoprotein-derived β-glucan, thereby releasing oligosaccharides into the growth medium. These released oligosaccharides can in turn be utilized by other gut microbes, such as Bifidobacterium and Lactiplantibacillus, which thus act as secondary degraders. We used a cross-feeding approach to track how both species are able to grow in co-culture.
Collapse
Affiliation(s)
- Pedro Fernandez-Julia
- Microbial Enzymology Lab, Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, NE1 8ST, Tyne & Wear, England, UK
| | - Gary W Black
- Microbial Enzymology Lab, Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, NE1 8ST, Tyne & Wear, England, UK
| | - William Cheung
- Microbial Enzymology Lab, Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, NE1 8ST, Tyne & Wear, England, UK
| | - Douwe Van Sinderen
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Jose Munoz-Munoz
- Microbial Enzymology Lab, Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, NE1 8ST, Tyne & Wear, England, UK.
| |
Collapse
|