1
|
Ortjohann M, Leippe M. Molecular Characterization of Ancient Prosaposin-like Proteins from the Protist Dictyostelium discoideum. Biochemistry 2024; 63:2768-2777. [PMID: 39421968 PMCID: PMC11542183 DOI: 10.1021/acs.biochem.4c00479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
To combat the permanent exposure to potential pathogens every organism relies on an immune system. Important factors in innate immunity are antimicrobial peptides (AMPs) that are structurally highly diverse. Some AMPs are known to belong to the saposin-like proteins (SAPLIPs), a group of polypeptides with a broad functional spectrum. The model organism Dictyostelium discoideum possesses a remarkably large arsenal of potential SAPLIPs, which are termed amoebapore-like peptides (Apls), but the knowledge about these proteins is very limited. Here, we report about the biochemical characterization of AplE1, AplE2, AplK1, and AplK2, which are derived from the two precursor proteins AplE and AplK, thereby resembling prosaposins of vertebrates. We produced these Apls as recombinant polypeptides in Escherichia coli using a self-splicing intein to remove an affinity tag used for purification. All recombinant Apls exhibited pore-forming activity in a pH-dependent manner, as evidenced by liposome depolarization, showing higher activities the more acidic the setting was. Lipid preference was detected for negatively charged phospholipids and in particular for cardiolipin. Antimicrobial activity against various bacteria was found to be inferior in classical microdilution assays. However, all of the Apls studied permeabilized the cytoplasmic membrane of live Bacillus subtilis. Collectively, we assume that the selected Apls interact by their cationic charge with negatively charged bacterial membranes in acidic environments such as phagolysosomes and eventually lyse the target cells by pore formation.
Collapse
Affiliation(s)
- Marius Ortjohann
- Comparative Immunobiology,
Zoological Institute, Christian-Albrechts-Universität
Kiel, Am Botanischen Garten 1-9, D-24118 Kiel, Germany
| | - Matthias Leippe
- Comparative Immunobiology,
Zoological Institute, Christian-Albrechts-Universität
Kiel, Am Botanischen Garten 1-9, D-24118 Kiel, Germany
| |
Collapse
|
2
|
Oftedal TF, Diep DB, Kjos M. Design of Novel Saposin-like Bacteriocins Using a Hybrid Approach. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10264-w. [PMID: 38713419 DOI: 10.1007/s12602-024-10264-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2024] [Indexed: 05/08/2024]
Abstract
A multitude of approaches will be required to respond to the threat posed by the emergence and spread of antibiotic resistant pathogens. Bacteriocins have gained increasing attention as a possible alternative to antibiotics, as such peptide antimicrobials have mechanisms of action different from antibiotics and are therefore equally potent against antibiotic resistant bacteria as their susceptible counterparts. A group of bacteriocins known as saposin-like bacteriocins is believed to act directly on the bacterial membrane. Based on seven saposin-like leaderless bacteriocins, we have constructed a library of hybrid peptides containing all combinations of the N- and C-terminal halves of the native bacteriocins. All hybrid peptides were synthesized using in vitro protein expression and assayed for antimicrobial activity towards several pathogens. Of the 42 hybrid peptides, antimicrobial activity was confirmed for 11 novel hybrid peptides. Furthermore, several of the hybrid peptides exhibited altered antimicrobial spectra and apparent increase in potency compared to the peptides from which they were derived. The most promising hybrid, termed ISP26, was then obtained synthetically and shown to inhibit most of the Gram-positive species tested, including opportunistic pathogens and food spoilage bacteria. Additionally, ISP26 was shown to inhibit Acinetobacter, a species of Gram-negative bacteria frequently isolated from nosocomial infections. The activity of the hybrid library provides valuable insights into the design and screening of new active bacteriocins.
Collapse
Affiliation(s)
- Thomas F Oftedal
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway.
| | - Dzung B Diep
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Morten Kjos
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
3
|
Cheung LKY, Dupuis JH, Dee DR, Bryksa BC, Yada RY. Roles of Plant-Specific Inserts in Plant Defense. TRENDS IN PLANT SCIENCE 2020; 25:682-694. [PMID: 32526173 DOI: 10.1016/j.tplants.2020.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/10/2020] [Accepted: 02/14/2020] [Indexed: 06/11/2023]
Abstract
Ubiquitously expressed in plants, the plant-specific insert (PSI) of typical plant aspartic proteases (tpAPs) has been associated with plant development, stress response, and defense processes against invading pathogens. Despite sharing high sequence identity, structural studies revealed possible different mechanisms of action among species. The PSI induces signaling pathways of defense hormones in vivo and demonstrates broad-spectrum activity against phytopathogens in vitro. Recent characterization of the PSI-tpAP relationship uncovered novel, nonconventional intracellular protein transport pathways and improved tpAP production yields for industrial applications. In spite of research to date, relatively little is known about the structure-function relationships of PSIs. A comprehensive understanding of their biological roles may benefit plant protection strategies against virulent phytopathogens.
Collapse
Affiliation(s)
- Lennie K Y Cheung
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - John H Dupuis
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Derek R Dee
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Brian C Bryksa
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Rickey Y Yada
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada. @ubc.ca
| |
Collapse
|
4
|
Hu LJ, Wu XQ, Li HY, Zhao Q, Wang YC, Ye JR. An Effector, BxSapB1, Induces Cell Death and Contributes to Virulence in the Pine Wood Nematode Bursaphelenchus xylophilus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:452-463. [PMID: 30351223 DOI: 10.1094/mpmi-10-18-0275-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The pine wood nematode (PWN) Bursaphelenchus xylophilus has caused serious damage to pine forests in China. Effectors secreted by phytonematodes play a role in host infection. We identified and characterized an effector, BxSapB1, based on the B. xylophilus transcriptome at the early stages of infection and the transient expression of proteins in Nicotiana benthamiana. BxSapB1 triggered cell death in N. benthamiana when secreted into the apoplast, and this effect was independent of N. benthamiana brassinosteroid-insensitive 1-associated kinase 1 (NbBAK1) and suppressor of BIR1-1 (NbSOBIR1). The signal peptide of BxSapB1 was proven to be functional in yeast using the yeast signal sequence trap system and BxSapB1 was strongly expressed in the subventral gland cells of B. xylophilus, as revealed by in-situ hybridization. In addition, based on local BLAST analysis, the BxSapB1 showed 100% identity to BUX.s00139.62, which was identified from the B. xylophilus secretome during Pinus thunbergii infection. BxSapB1 was upregulated in a highly virulent strain and downregulated in a weakly virulent strain of PWN at the early stages of infection. RNA interference assays showed that silencing BxSapB1 resulted in decreased expression of pathogenesis-related genes (PtPR-1b, PtPR-3, and PtPR-5) as well as delayed onset of symptoms in P. thunbergii infected by B. xylophilus. The combined data suggest that BxSapB1 can trigger cell death in N. benthamiana and that it contributes to the virulence in B. xylophilus during parasitic interaction.
Collapse
Affiliation(s)
- Long-Jiao Hu
- 1 Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
- 2 Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University; and
| | - Xiao-Qin Wu
- 1 Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
- 2 Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University; and
| | - Hai-Yang Li
- 3 Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qun Zhao
- 1 Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
- 2 Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University; and
| | - Yuan-Chao Wang
- 3 Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jian-Ren Ye
- 1 Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
- 2 Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University; and
| |
Collapse
|
5
|
Johansson J, Curstedt T. Synthetic surfactants with SP-B and SP-C analogues to enable worldwide treatment of neonatal respiratory distress syndrome and other lung diseases. J Intern Med 2019; 285:165-186. [PMID: 30357986 DOI: 10.1111/joim.12845] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Treatment of neonatal respiratory distress syndrome (RDS) using animal-derived lung surfactant preparations has reduced the mortality of handling premature infants with RDS to a 50th of that in the 1960s. The supply of animal-derived lung surfactants is limited and only a part of the preterm babies is treated. Thus, there is a need to develop well-defined synthetic replicas based on key components of natural surfactant. A synthetic product that equals natural-derived surfactants would enable cost-efficient production and could also facilitate the development of the treatments of other lung diseases than neonatal RDS. Recently the first synthetic surfactant that contains analogues of the two hydrophobic surfactant proteins B (SP-B) and SP-C entered clinical trials for the treatment of neonatal RDS. The development of functional synthetic analogues of SP-B and SP-C, however, is considerably more challenging than anticipated 30 years ago when the first structural information of the native proteins became available. For SP-B, a complex three-dimensional dimeric structure stabilized by several disulphides has necessitated the design of miniaturized analogues. The main challenge for SP-C has been the pronounced amyloid aggregation propensity of its transmembrane region. The development of a functional non-aggregating SP-C analogue that can be produced synthetically was achieved by designing the amyloidogenic native sequence so that it spontaneously forms a stable transmembrane α-helix.
Collapse
Affiliation(s)
- J Johansson
- Department of Neurobiology, Care Sciences and Society, Section for Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden
| | - T Curstedt
- Laboratory for Surfactant Research, Department of Molecular Medicine and Surgery, Karolinska Institutet at Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
6
|
Frey ME, D'Ippolito S, Pepe A, Daleo GR, Guevara MG. Transgenic expression of plant-specific insert of potato aspartic proteases (StAP-PSI) confers enhanced resistance to Botrytis cinerea in Arabidopsis thaliana. PHYTOCHEMISTRY 2018; 149:1-11. [PMID: 29428248 DOI: 10.1016/j.phytochem.2018.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 02/01/2018] [Accepted: 02/03/2018] [Indexed: 05/20/2023]
Abstract
The plant-specific insert of Solanum tuberosum aspartic proteases (StAP-PSI) has high structural similarity with NK-lysin and granulysin, two saposin-like proteins (SAPLIPs) with antimicrobial activity. Recombinant StAP-PSI and some SAPLIPs show antimicrobial activity against pathogens that affect human and plants. In this work, we transformed Arabidopsis thaliana plants with StAP-PSI encoding sequence with its corresponding signal peptide under the control of the cauliflower mosaic virus (CaMV) 35S promoter. Results obtained show that StAP-PSI significantly enhances Arabidopsis resistance against Botrytis cinerea infection. StAP-PSI is secreted into the leaf apoplast and acts directly against pathogens; thereby complementing plant innate immune responses. Data obtained from real-time PCR assays show that the constitutive expression of StAP-PSI induces the expression of genes that regulate jasmonic acid signalling pathway, such as PDF1.2, in response to infection due to necrotrophic pathogens. On the other hand, according to the data described for other antimicrobial peptides, the presence of the StAP-PSI protein in the apoplast of A. thaliana leaves is responsible for the expression of salicylic acid-associated genes, such as PR-1, irrespective of infection with B. cinerea. These results indicate that the increased resistance demonstrated by A. thaliana plants that constitutively express StAP-PSI owing to B. cinerea infection compared to the wild-type plants is a consequence of two factors, i.e., the antifungal activity of StAP-PSI and the overexpression of A. thaliana defense genes induced by the constitutive expression of StAP-PSI. We suggest that the use of this protein would help in minimizing the ecological and health risks that arise from the use of pesticides. We suggest that the use of this protein would help in minimizing the ecological and health risks that arise from the spreading of resistance of agriculturally important pathogens.
Collapse
Affiliation(s)
- María Eugenia Frey
- Biological Research Institute, National Council of Scientific and Technique Research (CONICET), University of Mar del Plata, Mar del Plata (UNMDP), Argentina
| | - Sebastián D'Ippolito
- Biological Research Institute, National Council of Scientific and Technique Research (CONICET), University of Mar del Plata, Mar del Plata (UNMDP), Argentina
| | - Alfonso Pepe
- Biological Research Institute, National Council of Scientific and Technique Research (CONICET), University of Mar del Plata, Mar del Plata (UNMDP), Argentina
| | - Gustavo Raúl Daleo
- Biological Research Institute, National Council of Scientific and Technique Research (CONICET), University of Mar del Plata, Mar del Plata (UNMDP), Argentina
| | - María Gabriela Guevara
- Biological Research Institute, National Council of Scientific and Technique Research (CONICET), University of Mar del Plata, Mar del Plata (UNMDP), Argentina.
| |
Collapse
|
7
|
Dhakshinamoorthy R, Bitzhenner M, Cosson P, Soldati T, Leippe M. The Saposin-Like Protein AplD Displays Pore-Forming Activity and Participates in Defense Against Bacterial Infection During a Multicellular Stage of Dictyostelium discoideum. Front Cell Infect Microbiol 2018; 8:73. [PMID: 29662839 PMCID: PMC5890168 DOI: 10.3389/fcimb.2018.00073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/27/2018] [Indexed: 11/15/2022] Open
Abstract
Due to their archaic life style and microbivor behavior, amoebae may represent a source of antimicrobial peptides and proteins. The amoebic protozoon Dictyostelium discoideum has been a model organism in cell biology for decades and has recently also been used for research on host-pathogen interactions and the evolution of innate immunity. In the genome of D. discoideum, genes can be identified that potentially allow the synthesis of a variety of antimicrobial proteins. However, at the protein level only very few antimicrobial proteins have been characterized that may interact directly with bacteria and help in fighting infection of D. discoideum with potential pathogens. Here, we focus on a large group of gene products that structurally belong to the saposin-like protein (SAPLIP) family and which members we named provisionally Apls (amoebapore-like peptides) according to their similarity to a comprehensively studied antimicrobial and cytotoxic pore-forming protein of the protozoan parasite Entamoeba histolytica. We focused on AplD because it is the only Apl gene that is reported to be primarily transcribed further during the multicellular stages such as the mobile slug stage. Upon knock-out (KO) of the gene, aplD− slugs became highly vulnerable to virulent Klebsiella pneumoniae. AplD− slugs harbored bacterial clumps in their interior and were unable to slough off the pathogen in their slime sheath. Re-expression of AplD in aplD− slugs rescued the susceptibility toward K. pneumoniae. The purified recombinant protein rAplD formed pores in liposomes and was also capable of permeabilizing the membrane of live Bacillus megaterium. We propose that the multifarious Apl family of D. discoideum comprises antimicrobial effector polypeptides that are instrumental to interact with bacteria and their phospholipid membranes. The variety of its members would allow a complementary and synergistic action against a variety of microbes, which the amoeba encounters in its environment.
Collapse
Affiliation(s)
| | - Moritz Bitzhenner
- Zoological Institute, Comparative Immunobiology, University of Kiel, Kiel, Germany
| | - Pierre Cosson
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Thierry Soldati
- Department of Biochemistry, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Matthias Leippe
- Zoological Institute, Comparative Immunobiology, University of Kiel, Kiel, Germany
| |
Collapse
|
8
|
Bryksa BC, Yada RY. Protein Structure Insights into the Bilayer Interactions of the Saposin-Like Domain of Solanum tuberosum Aspartic Protease. Sci Rep 2017; 7:16911. [PMID: 29208977 PMCID: PMC5717070 DOI: 10.1038/s41598-017-16734-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 11/16/2017] [Indexed: 12/26/2022] Open
Abstract
Many plant aspartic proteases contain a saposin-like domain whose principal functions are intracellular sorting and host defence. Its structure is characterised by helical segments cross-linked by three highly conserved cystines. The present study on the saposin-like domain of Solanum tuberosum aspartic protease revealed that acidification from inactive to active conditions causes dimerisation and a strand-to-helix secondary structure transition independent of bilayer interaction. Bilayer fusion was shown to occur under reducing conditions yielding a faster shift to larger vesicle sizes relative to native conditions, implying that a lower level structural motif might be bilayer-active. Characterisation of peptide sequences based on the domain’s secondary structural regions showed helix-3 to be active (~4% of the full domain’s activity), and mutation of its sole positively charged residue resulted in loss of activity and disordering of structure. Also, the peptides’ respective circular dichroism spectra suggested that native folding within the full domain is dependent on surrounding structure. Overall, the present study reveals that the aspartic protease saposin-like domain active structure is an open saposin fold dimer whose formation is pH-dependent, and that a bilayer-active motif shared among non-saposin membrane-active proteins including certain plant defence proteins is nested within an overall structure essential for native functionality.
Collapse
Affiliation(s)
- Brian C Bryksa
- Ontario Agricultural College, University of Guelph, N1G 2W1, Guelph, Ontario, Canada
| | - Rickey Y Yada
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, V6T 1Z4, British Columbia, Canada.
| |
Collapse
|
9
|
Krishnamoorthy A, Witkowski A, Tran JJ, Weers PMM, Ryan RO. Characterization of secondary structure and lipid binding behavior of N-terminal saposin like subdomain of human Wnt3a. Arch Biochem Biophys 2017; 630:38-46. [PMID: 28754322 DOI: 10.1016/j.abb.2017.07.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/14/2017] [Accepted: 07/24/2017] [Indexed: 02/06/2023]
Abstract
Wnt signaling is essential for embryonic development and adult homeostasis in multicellular organisms. A conserved feature among Wnt family proteins is the presence of two structural domains. Within the N-terminal (NT) domain there exists a motif that is superimposable upon saposin-like protein (SAPLIP) family members. SAPLIPs are found in plants, microbes and animals and possess lipid surface seeking activity. To investigate the function of the Wnt3a saposin-like subdomain (SLD), recombinant SLD was studied in isolation. Bacterial expression of this Wnt fragment was achieved only when the core SLD included 82 NT residues of Wnt3a (NT-SLD). Unlike SAPLIPs, NT-SLD required the presence of detergent to achieve solubility at neutral pH. Deletion of two hairpin loop extensions present in NT-SLD, but not other SAPLIPs, had no effect on the solubility properties of NT-SLD. Far UV circular dichroism spectroscopy of NT-SLD yielded 50-60% α-helix secondary structure. Limited proteolysis of isolated NT-SLD in buffer and detergent micelles showed no differences in cleavage kinetics. Unlike prototypical saposins, NT-SLD exhibited weak membrane-binding affinity and lacked cell lytic activity. In cell-based canonical Wnt signaling assays, NT-SLD was unable to induce stabilization of β-catenin or modulate the extent of β-catenin stabilization induced by full-length Wnt3a. Taken together, the results indicate neighboring structural elements within full-length Wnt3a affect SLD conformational stability. Moreover, SLD function(s) in Wnt proteins appear to have evolved away from those commonly attributed to SAPLIP family members.
Collapse
Affiliation(s)
- Aparna Krishnamoorthy
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Andrzej Witkowski
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA 94609, USA
| | - Jesse J Tran
- Department of Chemistry and Biochemistry, California State University, Long Beach, CA 90840, USA
| | - Paul M M Weers
- Department of Chemistry and Biochemistry, California State University, Long Beach, CA 90840, USA
| | - Robert O Ryan
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, CA 94720, USA; Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA 94609, USA.
| |
Collapse
|
10
|
Towle KM, Vederas JC. Structural features of many circular and leaderless bacteriocins are similar to those in saposins and saposin-like peptides. MEDCHEMCOMM 2017; 8:276-285. [PMID: 30108744 PMCID: PMC6072434 DOI: 10.1039/c6md00607h] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 12/09/2016] [Indexed: 12/14/2022]
Abstract
Bacteriocins are potent antimicrobial peptides that are ribosomally produced and exported by bacteria, presumably to aid elimination of competing microorganisms. Many circular and linear leaderless bacteriocins have a recuring three dimensional structural motif known as a saposin-like fold. Although these bacteriocin sizes and sequences are often quite different, and their mechanisms of action vary, this conserved motif of multiple helices appears critical for activity and may enable peptide-lipid and peptide-receptor interactions in target bacterial cell membranes. Comparisons between electrostatic surfaces and hydrophobic surface maps of different bacteriocins are discussed emphasizing similarities and differences in the context of proposed modes of action.
Collapse
Affiliation(s)
- K M Towle
- Department of Chemistry , University of Alberta , Edmonton , Alberta , T6G 2G2 Canada .
| | - J C Vederas
- Department of Chemistry , University of Alberta , Edmonton , Alberta , T6G 2G2 Canada .
| |
Collapse
|