1
|
Mittal A, Kakkar R. Nitric Oxide Synthases and Their Inhibitors: A Review. LETT DRUG DES DISCOV 2020. [DOI: 10.2174/1570180816666190222154457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nitric Oxide (NO), an important biological mediator, is involved in the regulation of the cardiovascular, nervous and immune systems in mammals. Synthesis of NO is catalyzed by its biosynthetic enzyme, Nitric Oxide Synthase (NOS). There are three main isoforms of the enzyme, neuronal NOS, endothelial NOS and inducible NOS, which have very similar structures but differ in their expression and activities. NO is produced in the active site of the enzyme in two distinct cycles from oxidation of the substrate L-arg (L-arginine) in nicotinamide adenine dinucleotide phosphate (NADPH)-dependent reaction. NOS has gained considerable attention of biochemists due to its complexity and unique catalytic mechanism. The review focuses on NOS structure, its function and catalytic reaction mechanism. In particular, the review is concluded with a discussion on the role of all three isoforms of NOS in physiological and pathological conditions and their inhibitors with a focus on the role of computational techniques in their development.
Collapse
Affiliation(s)
- Anshika Mittal
- Computational Chemistry Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India
| | - Rita Kakkar
- Computational Chemistry Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India
| |
Collapse
|
2
|
Maccallini C, Gallorini M, Cataldi A, Amoroso R. Targeting iNOS As a Valuable Strategy for the Therapy of Glioma. ChemMedChem 2020; 15:339-344. [PMID: 31851765 DOI: 10.1002/cmdc.201900580] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/06/2019] [Indexed: 12/27/2022]
Abstract
Gliomas are the most prevalent primary tumors of the brain and spinal cord. Histologically, they share features of normal glial cells, but whether gliomas originate from normal glial cells, glial or neural precursors, stem cells, or other cell types remains a topic of investigation. The enhanced expression of inducible nitric oxide synthase (iNOS) has been reported as a hallmark of chemoresistance in gliomas, and several lines of evidence have reported that a decreased proliferation of glioma cells could be related to the selective inhibition of iNOS. This review aims to summarize the current understanding of iNOS expression and activity modulation in the regulation of glioma pathogenesis, along with compounds that could act as therapeutic agents against glioma.
Collapse
Affiliation(s)
- Cristina Maccallini
- Department of Pharmacy, University G. d'Annunzio, Via dei Vestini 31, 66100, Chieti, Italy
| | - Marialucia Gallorini
- Department of Pharmacy, University G. d'Annunzio, Via dei Vestini 31, 66100, Chieti, Italy
| | - Amelia Cataldi
- Department of Pharmacy, University G. d'Annunzio, Via dei Vestini 31, 66100, Chieti, Italy
| | - Rosa Amoroso
- Department of Pharmacy, University G. d'Annunzio, Via dei Vestini 31, 66100, Chieti, Italy
| |
Collapse
|
3
|
Cinelli MA, Do HT, Miley GP, Silverman RB. Inducible nitric oxide synthase: Regulation, structure, and inhibition. Med Res Rev 2020; 40:158-189. [PMID: 31192483 PMCID: PMC6908786 DOI: 10.1002/med.21599] [Citation(s) in RCA: 401] [Impact Index Per Article: 100.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/14/2019] [Accepted: 05/13/2019] [Indexed: 12/11/2022]
Abstract
A considerable number of human diseases have an inflammatory component, and a key mediator of immune activation and inflammation is inducible nitric oxide synthase (iNOS), which produces nitric oxide (NO) from l-arginine. Overexpressed or dysregulated iNOS has been implicated in numerous pathologies including sepsis, cancer, neurodegeneration, and various types of pain. Extensive knowledge has been accumulated about the roles iNOS plays in different tissues and organs. Additionally, X-ray crystal and cryogenic electron microscopy structures have shed new insights on the structure and regulation of this enzyme. Many potent iNOS inhibitors with high selectivity over related NOS isoforms, neuronal NOS, and endothelial NOS, have been discovered, and these drugs have shown promise in animal models of endotoxemia, inflammatory and neuropathic pain, arthritis, and other disorders. A major issue in iNOS inhibitor development is that promising results in animal studies have not translated to humans; there are no iNOS inhibitors approved for human use. In addition to assay limitations, both the dual modalities of iNOS and NO in disease states (ie, protective vs harmful effects) and the different roles and localizations of NOS isoforms create challenges for therapeutic intervention. This review summarizes the structure, function, and regulation of iNOS, with focus on the development of iNOS inhibitors (historical and recent). A better understanding of iNOS' complex functions is necessary before specific drug candidates can be identified for classical indications such as sepsis, heart failure, and pain; however, newer promising indications for iNOS inhibition, such as depression, neurodegenerative disorders, and epilepsy, have been discovered.
Collapse
Affiliation(s)
- Maris A. Cinelli
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Center for Developmental Therapeutics, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
- Current address: Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824
| | - Ha T. Do
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Center for Developmental Therapeutics, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
- Current address: Mersana Therapeutics, Inc., Cambridge, MA 02139
| | - Galen P. Miley
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Center for Developmental Therapeutics, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Richard B. Silverman
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Center for Developmental Therapeutics, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
4
|
Leach DG, Newton JM, Florez MA, Lopez-Silva TL, Jones AA, Young S, Sikora AG, Hartgerink JD. Drug-Mimicking Nanofibrous Peptide Hydrogel for Inhibition of Inducible Nitric Oxide Synthase. ACS Biomater Sci Eng 2019; 5:6755-6765. [PMID: 33304997 DOI: 10.1021/acsbiomaterials.9b01447] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this work, we develop a drug-mimicking nanofibrous peptide hydrogel that shows long-term bioactivity comparable to a small-molecule inhibitor of inducible nitric oxide synthase (iNOS). The iNOS inhibitor, N 6-(1-iminoethyl)-l-lysine (l-NIL), is a positively charged amino acid whose structure could be readily integrated into the framework of a positively charged multidomain peptide (MDP) through the modification of lysine side chains. This new l-NIL-MDP maintains the self-assembling properties of the base peptide, forming β-sheet nanofibers, which entangle into a thixotropic hydrogel. The l-NIL-MDP hydrogel supports cell growth in vitro and allows syringe-directed delivery that persists in a targeted location in vivo for several weeks. Multiple characterization assays demonstrate the bioactivity of the l-NIL-MDP hydrogel to be comparable to the l-NIL small molecule. This includes iNOS inhibition of macrophages in vitro, reduced nitrotyrosine immunostaining in murine subcutaneous histology, and reduced serum levels of vascular endothelial growth factor in vivo. This study expands the toolbox of available peptide hydrogel scaffold designs that can modify biological activity without the need for any additional small-molecule drugs, proteins, or cells.
Collapse
Affiliation(s)
- David G Leach
- Department of Chemistry and Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - Jared M Newton
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, Texas 77030, United States.,Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Marcus A Florez
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, Texas 77030, United States.,Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Tania L Lopez-Silva
- Department of Chemistry and Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - Adrianna A Jones
- Department of Chemistry and Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | - Simon Young
- Department of Oral & Maxillofacial Surgery, University of Texas Health Science Center, Houston, Texas 77054, United States
| | - Andrew G Sikora
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Jeffrey D Hartgerink
- Department of Chemistry and Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
5
|
Minhas R, Bansal Y, Bansal G. Inducible nitric oxide synthase inhibitors: A comprehensive update. Med Res Rev 2019; 40:823-855. [PMID: 31502681 DOI: 10.1002/med.21636] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 12/27/2022]
Abstract
Inducible nitric oxide synthase (iNOS), which is expressed in response to bacterial/proinflammatory stimuli, generates nitric oxide (NO) that provides cytoprotection. Overexpression of iNOS increases the levels of NO, and this increased NO level is implicated in pathophysiology of complex multifactorial diseases like Parkinson's disease, Alzheimer's disease, multiple sclerosis, rheumatoid arthritis, and inflammatory bowel disease. Selective inhibition of iNOS is an effective approach in treatment of such complex diseases. l-Arginine, being a substrate for iNOS, is the natural lead to develop iNOS inhibitors. More than 200 research reports on development of nitric oxide synthase inhibitors by different research groups across the globe have appeared in literature so far. The first review on iNOS, in 2002, discussed the iNOS inhibitors under two classes that is, amino acid and non-amino acid derivatives. Other review articles discussing specific chemical classes of iNOS inhibitors also appeared during last decade. In the present review, all reports on both natural and synthetic iNOS inhibitors, published 2002 onwards, are studied, classified, and discussed to provide comprehensive information on iNOS inhibitors. The synthetic inhibitors are broadly classified into two categories that is, arginine and non-arginine analogs. The latter are further classified into amidines, five- or six-membered heterocyclics, fused cyclics, steroidal type, and chalcones analogs. Structures of the most/significantly potent compounds from each report are provided to know the functional groups important for incurring iNOS inhibitory activity and selectivity. This review is aimed to provide a comprehensive view to the medicinal chemists for rational designing of novel and potent iNOS inhibitors.
Collapse
Affiliation(s)
- Richa Minhas
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Yogita Bansal
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Gulshan Bansal
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| |
Collapse
|
6
|
Deryagina VP, Reutov VP. Modulation of the formation of active forms of nitrogen by ingredients of plant products in the inhibition of carcinogenesis. ADVANCES IN MOLECULAR ONCOLOGY 2019. [DOI: 10.17650/2313-805x-2019-6-1-18-36] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Affiliation(s)
- V. P. Deryagina
- N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
| | - V. P. Reutov
- Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences
| |
Collapse
|
7
|
Nash KM, Schiefer IT, Shah ZA. Development of a reactive oxygen species-sensitive nitric oxide synthase inhibitor for the treatment of ischemic stroke. Free Radic Biol Med 2018; 115:395-404. [PMID: 29275014 DOI: 10.1016/j.freeradbiomed.2017.12.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/28/2017] [Accepted: 12/20/2017] [Indexed: 01/25/2023]
Abstract
Ischemic stroke is caused by a blockage of cerebral blood flow resulting in neuronal and glial hypoxia leading to inflammatory and reactive oxygen species (ROS)-mediated cell death. Nitric oxide (NO) formed by NO synthase (NOS) is known to be protective in ischemic stroke, however NOS has been shown to 'uncouple' under oxidative conditions to instead produce ROS. Nitrones are antioxidant molecules that are shown to trap ROS to then decompose and release NO. In this study, the nitrone 5 was designed such that its decomposition product is a NOS inhibitor, 6, effectively leading to NOS inhibition specifically at the site of ROS production. The ability of 5 to spin-trap radicals and decompose to 6 was observed using EPR and LC-MS/MS. The pro-drug concept was tested in vitro by measuring cell viability and 6 formation in SH-SY5Y cells subjected to oxygen glucose deprivation (OGD). 5 was found to be more efficacious and more potent than PBN, and was able to increase phospho-Akt while reducing nitrotyrosine and cleaved caspase-3 levels. 6 treatment, but not 5, was found to decrease NO production in LPS-stimulated microglia. Doppler flowmetry on anesthetized mice showed increased cerebral blood flow upon intravenous administration of 1mg/kg of 5, but a return to baseline upon administration of 10mg/kg, likely due to its dual nature of antioxidant/NO-donor and NOS-inhibition. Mice treated with 5 after permanent ischemia exhibited a >30% reduction in infarct volume, and higher formation of 6 in ischemic tissue resulting in region specific effects limited to the infarct area.
Collapse
Affiliation(s)
- Kevin M Nash
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, USA
| | - Isaac T Schiefer
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, OH 43614, USA.
| | - Zahoor A Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, OH 43614, USA.
| |
Collapse
|
8
|
Serafim RAM, Pernichelle FG, Ferreira EI. The latest advances in the discovery of nitric oxide hybrid drug compounds. Expert Opin Drug Discov 2017; 12:941-953. [PMID: 28664751 DOI: 10.1080/17460441.2017.1344400] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
INTRODUCTION There is a great interest in Nitric oxide (NO) within medicinal chemistry since it's involved in human signaling pathways. Prodrugs or hybrid compounds containing NO-donor scaffolds linked to an active compound are valuable, due to their potential for modulating many pathological conditions due to NO's biological properties when released in addition to the native drug. Compounds that selectively inhibit nitric oxide synthase isoforms (NOS) can also increase therapeutic capacity, particularly in the treatment of chronic diseases. However, search for bioactive compounds to efficiently and selectively modulate NO is still a challenge in drug discovery. Areas covered: In this review, the authors highlight the recent advances in the strategies used to discover NO-hybrid derivatives, especially those related to anti-inflammatory, cardiovascular, anticancer and anti-microorganism activities. They also focus on: nitric oxide synthase inhibitors, NO delivery materials and other related activities. Expert opinion: The process of molecular hybridization can be used to obtain NO-releasing compounds that also interact with different targets. The main problem with this approach is to control NO multiple actions in the right biological system. However, the use of NO-releasing groups with many different scaffolds leads to new molecular structures for bioactive compounds, suggesting synergies.
Collapse
Affiliation(s)
- Ricardo A M Serafim
- a LAPEN: Laboratory of Design and Synthesis of Chemotherapeutic Potentially Active against Neglected Diseases, Department of Pharmacy, Faculty of Pharmaceutical Sciences , University of São Paulo - FCF/USP , São Paulo , Brazil
| | - Filipe G Pernichelle
- a LAPEN: Laboratory of Design and Synthesis of Chemotherapeutic Potentially Active against Neglected Diseases, Department of Pharmacy, Faculty of Pharmaceutical Sciences , University of São Paulo - FCF/USP , São Paulo , Brazil
| | - Elizabeth I Ferreira
- a LAPEN: Laboratory of Design and Synthesis of Chemotherapeutic Potentially Active against Neglected Diseases, Department of Pharmacy, Faculty of Pharmaceutical Sciences , University of São Paulo - FCF/USP , São Paulo , Brazil
| |
Collapse
|