1
|
Marson NA, Gallio AE, Mandal SK, Laskowski RA, Raven EL. In silico prediction of heme binding in proteins. J Biol Chem 2024; 300:107250. [PMID: 38569935 PMCID: PMC11101860 DOI: 10.1016/j.jbc.2024.107250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/11/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024] Open
Abstract
The process of heme binding to a protein is prevalent in almost all forms of life to control many important biological properties, such as O2-binding, electron transfer, gas sensing or to build catalytic power. In these cases, heme typically binds tightly (irreversibly) to a protein in a discrete heme binding pocket, with one or two heme ligands provided most commonly to the heme iron by His, Cys or Tyr residues. Heme binding can also be used as a regulatory mechanism, for example in transcriptional regulation or ion channel control. When used as a regulator, heme binds more weakly, with different heme ligations and without the need for a discrete heme pocket. This makes the characterization of heme regulatory proteins difficult, and new approaches are needed to predict and understand the heme-protein interactions. We apply a modified version of the ProFunc bioinformatics tool to identify heme-binding sites in a test set of heme-dependent regulatory proteins taken from the Protein Data Bank and AlphaFold models. The potential heme binding sites identified can be easily visualized in PyMol and, if necessary, optimized with RosettaDOCK. We demonstrate that the methodology can be used to identify heme-binding sites in proteins, including in cases where there is no crystal structure available, but the methodology is more accurate when the quality of the structural information is high. The ProFunc tool, with the modification used in this work, is publicly available at https://www.ebi.ac.uk/thornton-srv/databases/profunc and can be readily adopted for the examination of new heme binding targets.
Collapse
Affiliation(s)
- Noa A Marson
- School of Chemistry, University of Bristol, Bristol, UK
| | | | | | - Roman A Laskowski
- European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Trust Genome Campus, Cambridge, UK
| | - Emma L Raven
- School of Chemistry, University of Bristol, Bristol, UK.
| |
Collapse
|
2
|
Fu J, Nisbett LM, Guo Y, Boon EM. NosP Detection of Heme Modulates Burkholderia thailandensis Biofilm Formation. Biochemistry 2023; 62:2426-2441. [PMID: 37498555 PMCID: PMC10478957 DOI: 10.1021/acs.biochem.3c00187] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Aggregated bacteria embedded within self-secreted extracellular polymeric substances, or biofilms, are resistant to antibiotics and cause chronic infections. As such, they are a significant public health threat. Heme is an abundant iron source for pathogenic bacteria during infection; many bacteria have systems to detect heme assimilated from host cells, which is correlated with the transition between acute and chronic infection states. Here, we investigate the heme-sensing function of a newly discovered multifactorial sensory hemoprotein called NosP and its role in biofilm regulation in the soil-dwelling bacterium Burkholderia thailandensis, the close surrogate of Bio-Safety-Level-3 pathogen Burkholderia pseudomallei. The NosP family protein has previously been shown to exhibit both nitric oxide (NO)- and heme-sensing functions and to regulate biofilms through NosP-associated histidine kinases and two-component systems. Our in vitro studies suggest that BtNosP exhibits heme-binding kinetics and thermodynamics consistent with a labile heme-responsive protein and that the holo-form of BtNosP acts as an inhibitor of its associated histidine kinase BtNahK. Furthermore, our in vivo studies suggest that increasing the concentration of extracellular heme decreases B. thailandensis biofilm formation, and deletion of nosP and nahK abolishes this phenotype, consistent with a model that BtNosP detects heme and exerts an inhibitory effect on BtNahK to decrease the biofilm.
Collapse
Affiliation(s)
- Jiayuan Fu
- Department of Chemistry and Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Lisa-Marie Nisbett
- Department of Chemistry and Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Yulong Guo
- Department of Chemistry and Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Elizabeth M Boon
- Department of Chemistry and Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
3
|
Rathod DC, Vaidya SM, Hopp MT, Kühl T, Imhof D. Shapes and Patterns of Heme-Binding Motifs in Mammalian Heme-Binding Proteins. Biomolecules 2023; 13:1031. [PMID: 37509066 PMCID: PMC10377097 DOI: 10.3390/biom13071031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Heme is a double-edged sword. On the one hand, it has a pivotal role as a prosthetic group of hemoproteins in many biological processes ranging from oxygen transport and storage to miRNA processing. On the other hand, heme can transiently associate with proteins, thereby regulating biochemical pathways. During hemolysis, excess heme, which is released into the plasma, can bind to proteins and regulate their activity and function. The role of heme in these processes is under-investigated, with one problem being the lack of knowledge concerning recognition mechanisms for the initial association of heme with the target protein and the formation of the resulting complex. A specific heme-binding sequence motif is a prerequisite for such complex formation. Although numerous short signature sequences indicating a particular protein function are known, a comprehensive analysis of the heme-binding motifs (HBMs) which have been identified in proteins, concerning specific patterns and structural peculiarities, is missing. In this report, we focus on the evaluation of known mammalian heme-regulated proteins concerning specific recognition and structural patterns in their HBMs. The Cys-Pro dipeptide motifs are particularly emphasized because of their more frequent occurrence. This analysis presents a comparative insight into the sequence and structural anomalies observed during transient heme binding, and consequently, in the regulation of the relevant protein.
Collapse
Affiliation(s)
- Dhruv C Rathod
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, D-53121 Bonn, Germany
| | - Sonali M Vaidya
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, D-53121 Bonn, Germany
| | - Marie-T Hopp
- Department of Chemistry, Institute for Integrated Natural Sciences, University of Koblenz, D-56070 Koblenz, Germany
| | - Toni Kühl
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, D-53121 Bonn, Germany
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, D-53121 Bonn, Germany
| |
Collapse
|
4
|
Coudert E, Gehant S, de Castro E, Pozzato M, Baratin D, Neto T, Sigrist CJA, Redaschi N, Bridge A. Annotation of biologically relevant ligands in UniProtKB using ChEBI. Bioinformatics 2023; 39:6885442. [PMID: 36484697 PMCID: PMC9825770 DOI: 10.1093/bioinformatics/btac793] [Citation(s) in RCA: 114] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/09/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
MOTIVATION To provide high quality, computationally tractable annotation of binding sites for biologically relevant (cognate) ligands in UniProtKB using the chemical ontology ChEBI (Chemical Entities of Biological Interest), to better support efforts to study and predict functionally relevant interactions between protein sequences and structures and small molecule ligands. RESULTS We structured the data model for cognate ligand binding site annotations in UniProtKB and performed a complete reannotation of all cognate ligand binding sites using stable unique identifiers from ChEBI, which we now use as the reference vocabulary for all such annotations. We developed improved search and query facilities for cognate ligands in the UniProt website, REST API and SPARQL endpoint that leverage the chemical structure data, nomenclature and classification that ChEBI provides. AVAILABILITY AND IMPLEMENTATION Binding site annotations for cognate ligands described using ChEBI are available for UniProtKB protein sequence records in several formats (text, XML and RDF) and are freely available to query and download through the UniProt website (www.uniprot.org), REST API (www.uniprot.org/help/api), SPARQL endpoint (sparql.uniprot.org/) and FTP site (https://ftp.uniprot.org/pub/databases/uniprot/). SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Elisabeth Coudert
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, 1211 Geneva 4, Switzerland
| | - Sebastien Gehant
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, 1211 Geneva 4, Switzerland
| | - Edouard de Castro
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, 1211 Geneva 4, Switzerland
| | - Monica Pozzato
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, 1211 Geneva 4, Switzerland
| | - Delphine Baratin
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, 1211 Geneva 4, Switzerland
| | - Teresa Neto
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, 1211 Geneva 4, Switzerland
| | - Christian J A Sigrist
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, 1211 Geneva 4, Switzerland
| | - Nicole Redaschi
- Swiss-Prot Group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, 1211 Geneva 4, Switzerland
| | | | - The UniProt Consortium
BridgeAlan JAimoLucilaArgoud-PuyGhislaineAuchinclossAndrea HAxelsenKristian BBansalParitBaratinDelphineNetoTeresa M BatistaBlatterMarie-ClaudeBollemanJerven TBoutetEmmanuelBreuzaLionelGilBlanca CabreraCasals-CasasCristinaEchioukhKamal ChikhCoudertElisabethCucheBeatricede CastroEdouardEstreicherAnneFamigliettiMaria LFeuermannMarcGasteigerElisabethGaudetPascaleGehantSebastienGerritsenVivienneGosArnaudGruazNadineHuloChantalHyka-NouspikelNevilaJungoFlorenceKerhornouArnaudLe MercierPhilippeLieberherrDamienMassonPatrickMorgatAnneMuthukrishnanVenkateshPaesanoSalvoPedruzziIvoPilboutSandrinePourcelLucillePouxSylvainPozzatoMonicaPruessManuelaRedaschiNicoleRivoireCatherineSigristChristian J ASonessonKarinSundaramShyamalaBatemanAlexMartinMaria-JesusOrchardSandraMagraneMicheleAhmadShadabAlpiEmanueleBowler-BarnettEmily HBrittoRamonaA-JeeHema Bye-CukuraAustraDennyPaulDoganTuncaEbenezerThankGodFanJunGarmiriPenelopeda Costa GonzalesLeonardo JoseHatton-EllisEmmaHusseinAbdulrahmanIgnatchenkoAlexandrInsanaGiuseppeIshtiaqRizwanJoshiVishalJyothiDushyanthKandasaamySwaathiLockAntoniaLucianiAurelienLugaricMarijaLuoJieLussiYvonneMacDougallAlistairMadeiraFabioMahmoudyMahdiMishraAlokMoulangKatieNightingaleAndrewPundirSangyaQiGuoyingRajShriyaRaposoPedroRiceDaniel LSaidiRabieSantosRafaelSperettaElenaStephensonJamesTotooPrabhatTurnerEdwardTyagiNidhiVasudevPreethiWarnerKateWatkinsXavierZaruRossanaZellnerHermannWuCathy HArighiCecilia NArminskiLeslieChenChumingChenYongxingHuangHongzhanLaihoKatiMcGarveyPeterNataleDarren ARossKarenVinayakaC RWangQinghuaWangYuqiSwiss-Prot Group, SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, 1211 Geneva 4, SwitzerlandEuropean Molecular Biology Laboratory—European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridgeshire CB10 1SD, UKProtein Information Resource, University of Delaware, Newark, DE 19711, USAProtein Information Resource, Georgetown University Medical Center, Washington, DC 20007, USA
| |
Collapse
|
5
|
Dai Y, Fleischhacker AS, Liu L, Fayad S, Gunawan AL, Stuehr DJ, Ragsdale SW. Heme delivery to heme oxygenase-2 involves glyceraldehyde-3-phosphate dehydrogenase. Biol Chem 2022; 403:1043-1053. [PMID: 36302634 PMCID: PMC9661526 DOI: 10.1515/hsz-2022-0230] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/10/2022] [Indexed: 11/15/2022]
Abstract
Heme regulatory motifs (HRMs) are found in a variety of proteins with diverse biological functions. In heme oxygenase-2 (HO2), heme binds to the HRMs and is readily transferred to the catalytic site in the core of the protein. To further define this heme transfer mechanism, we evaluated the ability of GAPDH, a known heme chaperone, to transfer heme to the HRMs and/or the catalytic core of HO2. Our results indicate GAPDH and HO2 form a complex in vitro. We have followed heme insertion at both sites by fluorescence quenching in HEK293 cells with HO2 reporter constructs. Upon mutation of residues essential for heme binding at each site in our reporter construct, we found that HO2 binds heme at the core and the HRMs in live cells and that heme delivery to HO2 is dependent on the presence of GAPDH that is competent for heme binding. In sum, GAPDH is involved in heme delivery to HO2 but, surprisingly, not to a specific site on HO2. Our results thus emphasize the importance of heme binding to both the core and the HRMs and the interplay of HO2 with the heme pool via GAPDH to maintain cellular heme homeostasis.
Collapse
Affiliation(s)
- Yue Dai
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, NC-22, 9500 Euclid Avenue, Cleveland, OH44195, USA
| | - Angela S. Fleischhacker
- Department of Biological Chemistry, University of Michigan, 1150 W. Medical Center Dr., 5301 MSRB III, Ann Arbor, MI48109, USA
| | - Liu Liu
- Department of Biological Chemistry, University of Michigan, 1150 W. Medical Center Dr., 5301 MSRB III, Ann Arbor, MI48109, USA
| | - Sara Fayad
- Department of Biological Chemistry, University of Michigan, 1150 W. Medical Center Dr., 5301 MSRB III, Ann Arbor, MI48109, USA
| | - Amanda L. Gunawan
- Department of Biological Chemistry, University of Michigan, 1150 W. Medical Center Dr., 5301 MSRB III, Ann Arbor, MI48109, USA
| | - Dennis J. Stuehr
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, NC-22, 9500 Euclid Avenue, Cleveland, OH44195, USA
| | - Stephen W. Ragsdale
- Department of Biological Chemistry, University of Michigan, 1150 W. Medical Center Dr., 5301 MSRB III, Ann Arbor, MI48109, USA
| |
Collapse
|
6
|
Hunter GA, Ferreira GC. An Extended C-Terminus, the Possible Culprit for Differential Regulation of 5-Aminolevulinate Synthase Isoforms. Front Mol Biosci 2022; 9:920668. [PMID: 35911972 PMCID: PMC9329541 DOI: 10.3389/fmolb.2022.920668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/30/2022] [Indexed: 12/05/2022] Open
Abstract
5-Aminolevulinate synthase (ALAS; E.C. 2.3.1.37) is a pyridoxal 5′-phosphate (PLP)-dependent enzyme that catalyzes the key regulatory step of porphyrin biosynthesis in metazoa, fungi, and α-proteobacteria. ALAS is evolutionarily related to transaminases and is therefore classified as a fold type I PLP-dependent enzyme. As an enzyme controlling the key committed and rate-determining step of a crucial biochemical pathway ALAS is ideally positioned to be subject to allosteric feedback inhibition. Extensive kinetic and mutational studies demonstrated that the overall enzyme reaction is limited by subtle conformational changes of a hairpin loop gating the active site. These findings, coupled with structural information, facilitated early prediction of allosteric regulation of activity via an extended C-terminal tail unique to eukaryotic forms of the enzyme. This prediction was subsequently supported by the discoveries that mutations in the extended C-terminus of the erythroid ALAS isoform (ALAS2) cause a metabolic disorder known as X-linked protoporphyria not by diminishing activity, but by enhancing it. Furthermore, kinetic, structural, and molecular modeling studies demonstrated that the extended C-terminal tail controls the catalytic rate by modulating conformational flexibility of the active site loop. However, the precise identity of any such molecule remains to be defined. Here we discuss the most plausible allosteric regulators of ALAS activity based on divergences in AlphaFold-predicted ALAS structures and suggest how the mystery of the mechanism whereby the extended C-terminus of mammalian ALASs allosterically controls the rate of porphyrin biosynthesis might be unraveled.
Collapse
Affiliation(s)
- Gregory A. Hunter
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- *Correspondence: Gregory A. Hunter, ; Gloria C. Ferreira,
| | - Gloria C. Ferreira
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- Department of Chemistry, College of Arts and Sciences, University of South Florida, Tampa, FL, United States
- Global and Planetary Health, College of Public Health, University of South Florida, Tampa, FL, United States
- *Correspondence: Gregory A. Hunter, ; Gloria C. Ferreira,
| |
Collapse
|
7
|
Heme Oxygenase-1: An Anti-Inflammatory Effector in Cardiovascular, Lung, and Related Metabolic Disorders. Antioxidants (Basel) 2022; 11:antiox11030555. [PMID: 35326205 PMCID: PMC8944973 DOI: 10.3390/antiox11030555] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/24/2022] [Accepted: 03/10/2022] [Indexed: 12/12/2022] Open
Abstract
The heme oxygenase (HO) enzyme system catabolizes heme to carbon monoxide (CO), ferrous iron, and biliverdin-IXα (BV), which is reduced to bilirubin-IXα (BR) by biliverdin reductase (BVR). HO activity is represented by two distinct isozymes, the inducible form, HO-1, and a constitutive form, HO-2, encoded by distinct genes (HMOX1, HMOX2, respectively). HO-1 responds to transcriptional activation in response to a wide variety of chemical and physical stimuli, including its natural substrate heme, oxidants, and phytochemical antioxidants. The expression of HO-1 is regulated by NF-E2-related factor-2 and counter-regulated by Bach-1, in a heme-sensitive manner. Additionally, HMOX1 promoter polymorphisms have been associated with human disease. The induction of HO-1 can confer protection in inflammatory conditions through removal of heme, a pro-oxidant and potential catalyst of lipid peroxidation, whereas iron released from HO activity may trigger ferritin synthesis or ferroptosis. The production of heme-derived reaction products (i.e., BV, BR) may contribute to HO-dependent cytoprotection via antioxidant and immunomodulatory effects. Additionally, BVR and BR have newly recognized roles in lipid regulation. CO may alter mitochondrial function leading to modulation of downstream signaling pathways that culminate in anti-apoptotic, anti-inflammatory, anti-proliferative and immunomodulatory effects. This review will present evidence for beneficial effects of HO-1 and its reaction products in human diseases, including cardiovascular disease (CVD), metabolic conditions, including diabetes and obesity, as well as acute and chronic diseases of the liver, kidney, or lung. Strategies targeting the HO-1 pathway, including genetic or chemical modulation of HO-1 expression, or application of BR, CO gas, or CO donor compounds show therapeutic potential in inflammatory conditions, including organ ischemia/reperfusion injury. Evidence from human studies indicate that HO-1 expression may represent a biomarker of oxidative stress in various clinical conditions, while increases in serum BR levels have been correlated inversely to risk of CVD and metabolic disease. Ongoing human clinical trials investigate the potential of CO as a therapeutic in human disease.
Collapse
|
8
|
Heme oxygenase-1, carbon monoxide, and malaria – The interplay of chemistry and biology. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Fleischhacker AS, Sarkar A, Liu L, Ragsdale SW. Regulation of protein function and degradation by heme, heme responsive motifs, and CO. Crit Rev Biochem Mol Biol 2022; 57:16-47. [PMID: 34517731 PMCID: PMC8966953 DOI: 10.1080/10409238.2021.1961674] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Heme is an essential biomolecule and cofactor involved in a myriad of biological processes. In this review, we focus on how heme binding to heme regulatory motifs (HRMs), catalytic sites, and gas signaling molecules as well as how changes in the heme redox state regulate protein structure, function, and degradation. We also relate these heme-dependent changes to the affected metabolic processes. We center our discussion on two HRM-containing proteins: human heme oxygenase-2, a protein that binds and degrades heme (releasing Fe2+ and CO) in its catalytic core and binds Fe3+-heme at HRMs located within an unstructured region of the enzyme, and the transcriptional regulator Rev-erbβ, a protein that binds Fe3+-heme at an HRM and is involved in CO sensing. We will discuss these and other proteins as they relate to cellular heme composition, homeostasis, and trafficking. In addition, we will discuss the HRM-containing family of proteins and how the stability and activity of these proteins are regulated in a dependent manner through the HRMs. Then, after reviewing CO-mediated protein regulation of heme proteins, we turn our attention to the involvement of heme, HRMs, and CO in circadian rhythms. In sum, we stress the importance of understanding the various roles of heme and the distribution of the different heme pools as they relate to the heme redox state, CO, and heme binding affinities.
Collapse
Affiliation(s)
- Angela S. Fleischhacker
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Anindita Sarkar
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Liu Liu
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Stephen W. Ragsdale
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
10
|
Liu L, Dumbrepatil AB, Fleischhacker AS, Marsh ENG, Ragsdale SW. Heme oxygenase-2 is post-translationally regulated by heme occupancy in the catalytic site. J Biol Chem 2020; 295:17227-17240. [PMID: 33051205 PMCID: PMC7863905 DOI: 10.1074/jbc.ra120.014919] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 10/08/2020] [Indexed: 01/01/2023] Open
Abstract
Heme oxygenase-2 (HO2) and -1 (HO1) catalyze heme degradation to biliverdin, CO, and iron, forming an essential link in the heme metabolism network. Tight regulation of the cellular levels and catalytic activities of HO1 and HO2 is important for maintaining heme homeostasis. HO1 expression is transcriptionally regulated; however, HO2 expression is constitutive. How the cellular levels and activity of HO2 are regulated remains unclear. Here, we elucidate the mechanism of post-translational regulation of cellular HO2 levels by heme. We find that, under heme-deficient conditions, HO2 is destabilized and targeted for degradation, suggesting that heme plays a direct role in HO2 regulation. HO2 has three heme binding sites: one at its catalytic site and the others at its two heme regulatory motifs (HRMs). We report that, in contrast to other HRM-containing proteins, the cellular protein level and degradation rate of HO2 are independent of heme binding to the HRMs. Rather, under heme deficiency, loss of heme binding to the catalytic site destabilizes HO2. Consistently, an HO2 catalytic site variant that is unable to bind heme exhibits a constant low protein level and an enhanced protein degradation rate compared with the WT HO2. Finally, HO2 is degraded by the lysosome through chaperone-mediated autophagy, distinct from other HRM-containing proteins and HO1, which are degraded by the proteasome. These results reveal a novel aspect of HO2 regulation and deepen our understanding of HO2's role in maintaining heme homeostasis, paving the way for future investigation into HO2's pathophysiological role in heme deficiency response.
Collapse
Affiliation(s)
- Liu Liu
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Arti B Dumbrepatil
- Department of Chemistry, College of Literature, Science and Arts, University of Michigan, Ann Arbor, Michigan, USA
| | | | - E Neil G Marsh
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA; Department of Chemistry, College of Literature, Science and Arts, University of Michigan, Ann Arbor, Michigan, USA
| | - Stephen W Ragsdale
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
11
|
Guerra DD, Hurt KJ. Gasotransmitters in pregnancy: from conception to uterine involution. Biol Reprod 2020; 101:4-25. [PMID: 30848786 DOI: 10.1093/biolre/ioz038] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/14/2019] [Accepted: 03/06/2019] [Indexed: 12/13/2022] Open
Abstract
Gasotransmitters are endogenous small gaseous messengers exemplified by nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S or sulfide). Gasotransmitters are implicated in myriad physiologic functions including many aspects of reproduction. Our objective was to comprehensively review basic mechanisms and functions of gasotransmitters during pregnancy from conception to uterine involution and highlight future research opportunities. We searched PubMed and Web of Science databases using combinations of keywords nitric oxide, carbon monoxide, sulfide, placenta, uterus, labor, and pregnancy. We included English language publications on human and animal studies from any date through August 2018 and retained basic and translational articles with relevant original findings. All gasotransmitters activate cGMP signaling. NO and sulfide also covalently modify target protein cysteines. Protein kinases and ion channels transduce gasotransmitter signals, and co-expressed gasotransmitters can be synergistic or antagonistic depending on cell type. Gasotransmitters influence tubal transit, placentation, cervical remodeling, and myometrial contractility. NO, CO, and sulfide dilate resistance vessels, suppress inflammation, and relax myometrium to promote uterine quiescence and normal placentation. Cervical remodeling and rupture of fetal membranes coincide with enhanced oxidation and altered gasotransmitter metabolism. Mechanisms mediating cellular and organismal changes in pregnancy due to gasotransmitters are largely unknown. Altered gasotransmitter signaling has been reported for preeclampsia, intrauterine growth restriction, premature rupture of membranes, and preterm labor. However, in most cases specific molecular changes are not yet characterized. Nonclassical signaling pathways and the crosstalk among gasotransmitters are emerging investigation topics.
Collapse
Affiliation(s)
- Damian D Guerra
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA
| | - K Joseph Hurt
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA.,Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
12
|
Fleischhacker AS, Gunawan AL, Kochert BA, Liu L, Wales TE, Borowy MC, Engen JR, Ragsdale SW. The heme-regulatory motifs of heme oxygenase-2 contribute to the transfer of heme to the catalytic site for degradation. J Biol Chem 2020; 295:5177-5191. [PMID: 32152224 PMCID: PMC7170523 DOI: 10.1074/jbc.ra120.012803] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/03/2020] [Indexed: 11/06/2022] Open
Abstract
Heme-regulatory motifs (HRMs) are present in many proteins that are involved in diverse biological functions. The C-terminal tail region of human heme oxygenase-2 (HO2) contains two HRMs whose cysteine residues form a disulfide bond; when reduced, these cysteines are available to bind Fe3+-heme. Heme binding to the HRMs occurs independently of the HO2 catalytic active site in the core of the protein, where heme binds with high affinity and is degraded to biliverdin. Here, we describe the reversible, protein-mediated transfer of heme between the HRMs and the HO2 core. Using hydrogen-deuterium exchange (HDX)-MS to monitor the dynamics of HO2 with and without Fe3+-heme bound to the HRMs and to the core, we detected conformational changes in the catalytic core only in one state of the catalytic cycle-when Fe3+-heme is bound to the HRMs and the core is in the apo state. These conformational changes were consistent with transfer of heme between binding sites. Indeed, we observed that HRM-bound Fe3+-heme is transferred to the apo-core either upon independent expression of the core and of a construct spanning the HRM-containing tail or after a single turnover of heme at the core. Moreover, we observed transfer of heme from the core to the HRMs and equilibration of heme between the core and HRMs. We therefore propose an Fe3+-heme transfer model in which HRM-bound heme is readily transferred to the catalytic site for degradation to facilitate turnover but can also equilibrate between the sites to maintain heme homeostasis.
Collapse
Affiliation(s)
- Angela S Fleischhacker
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606
| | - Amanda L Gunawan
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606
| | - Brent A Kochert
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115
| | - Liu Liu
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606
| | - Thomas E Wales
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115
| | - Maelyn C Borowy
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115
| | - Stephen W Ragsdale
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606.
| |
Collapse
|
13
|
Heme Oxygenase-2 (HO-2) as a therapeutic target: Activators and inhibitors. Eur J Med Chem 2019; 183:111703. [PMID: 31550661 DOI: 10.1016/j.ejmech.2019.111703] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/13/2019] [Accepted: 09/14/2019] [Indexed: 12/24/2022]
Abstract
Heme oxygenase (HO) enzymes are involved in heme catabolism and several physiological functions. Among the different HO isoforms, HO-2 stands out for its neuroprotective properties and modulatory activity in male reproduction. However, unlike the HO-1 ligands, the potential therapeutic applications of HO-2 inhibitors/activators have not been extensively explored yet. Moreover, the physiological role of HO-2 is still unclear, mostly due to the lack of highly selective HO-2 chemical probes. To boost the interest on this intriguing target, the present review updates the knowledge on the structure-activity relationships of HO-2 inhibitors and activators, as well as their potential therapeutic applications. To the best of our knowledge, among HO-2 inhibitors, clemizole derivatives are the most selective HO-2 inhibitors reported so far (IC50 HO-1 >100 μM, IC50 HO-2 = 3.4 μM), while the HO-2 nonselective inhibitors described herein possess IC50 HO-2 values ≤ 10 μM. Furthermore, the development of HO-2 activators, such as menadione analogues, helped to understand the critical moieties required for HO-2 activation. Recent advances in the potential therapeutic applications of HO-2 inhibitors/activators cover the fields of neurodegenerative, cardiovascular, inflammatory, and reproductive diseases further stimulating the interest towards this target.
Collapse
|
14
|
Thakuri B, Graves AB, Chao A, Johansen SL, Goulding CW, Liptak MD. The affinity of MhuD for heme is consistent with a heme degrading function in vivo. Metallomics 2019; 10:1560-1563. [PMID: 30239544 DOI: 10.1039/c8mt00238j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
MhuD is a protein found in mycobacteria that can bind up to two heme molecules per protein monomer and catalyze the degradation of heme to mycobilin in vitro. Here the Kd1 for heme dissociation from heme-bound MhuD was determined to be 7.6 ± 0.8 nM and the Kd2 for heme dissocation from diheme-bound MhuD was determined to be 3.3 ± 1.1 μM. These data strongly suggest that MhuD is a competent heme oxygenase in vivo.
Collapse
Affiliation(s)
- Biswash Thakuri
- Department of Chemistry, University of Vermont, Burlington, Vermont 05405, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Kochert BA, Fleischhacker AS, Wales TE, Becker DF, Engen JR, Ragsdale SW. Dynamic and structural differences between heme oxygenase-1 and -2 are due to differences in their C-terminal regions. J Biol Chem 2019; 294:8259-8272. [PMID: 30944174 DOI: 10.1074/jbc.ra119.008592] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/02/2019] [Indexed: 11/06/2022] Open
Abstract
Heme oxygenase (HO) catalyzes heme degradation, a process crucial for regulating cellular levels of this vital, but cytotoxic, cofactor. Two HO isoforms, HO1 and HO2, exhibit similar catalytic mechanisms and efficiencies. They also share catalytic core structures, including the heme-binding site. Outside their catalytic cores are two regions unique to HO2: a 20-amino acid-long N-terminal extension and a C-terminal domain containing two heme regulatory motifs (HRMs) that bind heme independently of the core. Both HO isoforms contain a C-terminal hydrophobic membrane anchor; however, their sequences diverge. Here, using hydrogen-deuterium exchange MS, size-exclusion chromatography, and sedimentation velocity, we investigated how these divergent regions impact the dynamics and structure of the apo and heme-bound forms of HO1 and HO2. Our results reveal that heme binding to the catalytic cores of HO1 and HO2 causes similar dynamic and structural changes in regions (proximal, distal, and A6 helices) within and linked to the heme pocket. We observed that full-length HO2 is more dynamic than truncated forms lacking the membrane-anchoring region, despite sharing the same steady-state activity and heme-binding properties. In contrast, the membrane anchor of HO1 did not influence its dynamics. Furthermore, although residues within the HRM domain facilitated HO2 dimerization, neither the HRM region nor the N-terminal extension appeared to affect HO2 dynamics. In summary, our results highlight significant dynamic and structural differences between HO2 and HO1 and indicate that their dissimilar C-terminal regions play a major role in controlling the structural dynamics of these two proteins.
Collapse
Affiliation(s)
- Brent A Kochert
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115
| | | | - Thomas E Wales
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115
| | - Donald F Becker
- Department of Biochemistry, Redox Biology Center, University of Nebraska, Lincoln, Nebraska 68588
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115
| | - Stephen W Ragsdale
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109.
| |
Collapse
|
16
|
Shimizu T, Lengalova A, Martínek V, Martínková M. Heme: emergent roles of heme in signal transduction, functional regulation and as catalytic centres. Chem Soc Rev 2019; 48:5624-5657. [DOI: 10.1039/c9cs00268e] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Molecular mechanisms of unprecedented functions of exchangeable/labile heme and heme proteins including transcription, DNA binding, protein kinase activity, K+ channel functions, cis–trans isomerization, N–N bond formation, and other functions are described.
Collapse
Affiliation(s)
- Toru Shimizu
- Department of Biochemistry
- Faculty of Science
- Charles University
- Prague 2
- Czech Republic
| | - Alzbeta Lengalova
- Department of Biochemistry
- Faculty of Science
- Charles University
- Prague 2
- Czech Republic
| | - Václav Martínek
- Department of Biochemistry
- Faculty of Science
- Charles University
- Prague 2
- Czech Republic
| | - Markéta Martínková
- Department of Biochemistry
- Faculty of Science
- Charles University
- Prague 2
- Czech Republic
| |
Collapse
|
17
|
Fleischhacker AS, Carter EL, Ragsdale SW. Redox Regulation of Heme Oxygenase-2 and the Transcription Factor, Rev-Erb, Through Heme Regulatory Motifs. Antioxid Redox Signal 2018; 29:1841-1857. [PMID: 28990415 PMCID: PMC6217750 DOI: 10.1089/ars.2017.7368] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
SIGNIFICANCE Heme binds to and serves as a cofactor for a myriad of proteins that are involved in diverse biological processes. Hemoproteins also exhibit varying modes of heme binding, suggesting that the protein environment contributes to the functional versatility of this prosthetic group. The subject of this review is a subset of hemoproteins that contain at least one heme regulatory motif (HRM), which is a short sequence containing a Cys-Pro core that, in many cases, binds heme with the Cys acting as an axial ligand. Recent Advances: As more details about HRM-containing proteins are uncovered, some underlying commonalities are emerging, including a role in regulating protein stability. Further, the cysteines of some HRMs have been shown to form disulfide bonds. Because the cysteines must be in the reduced, dithiol form to act as a heme axial ligand, heme binds at these sites in a redox-regulated manner, as demonstrated for heme oxygenase-2 (HO2) and Rev-erbβ. CRITICAL ISSUES HRM-containing proteins have wide variations in heme affinity, utilize different axial ligand schemes, and exhibit differences in the ability to act as a redox sensor-all while having a wide variety of biological functions. Here, we highlight HO2 and Rev-erbβ to illustrate the similarities and differences between two hemoproteins that contain HRMs acting as redox sensors. FUTURE DIRECTIONS HRMs acting as redox sensors may be applicable to other HRM-containing proteins as many contain multiple HRMs and/or other cysteine residues, which may become more evident as the functional significance of HRMs is probed in additional proteins.
Collapse
Affiliation(s)
| | - Eric L Carter
- Department of Biological Chemistry, University of Michigan , Ann Arbor, Michigan
| | - Stephen W Ragsdale
- Department of Biological Chemistry, University of Michigan , Ann Arbor, Michigan
| |
Collapse
|
18
|
Paxman R, Plate L, Blackwood EA, Glembotski C, Powers ET, Wiseman RL, Kelly JW. Pharmacologic ATF6 activating compounds are metabolically activated to selectively modify endoplasmic reticulum proteins. eLife 2018; 7:37168. [PMID: 30084354 PMCID: PMC6080950 DOI: 10.7554/elife.37168] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/24/2018] [Indexed: 12/15/2022] Open
Abstract
Pharmacologic arm-selective unfolded protein response (UPR) signaling pathway activation is emerging as a promising strategy to ameliorate imbalances in endoplasmic reticulum (ER) proteostasis implicated in diverse diseases. The small molecule N-(2-hydroxy-5-methylphenyl)-3-phenylpropanamide (147) was previously identified (Plate et al., 2016) to preferentially activate the ATF6 arm of the UPR, promoting protective remodeling of the ER proteostasis network. Here we show that 147-dependent ATF6 activation requires metabolic oxidation to form an electrophile that preferentially reacts with ER proteins. Proteins covalently modified by 147 include protein disulfide isomerases (PDIs), known to regulate ATF6 activation. Genetic depletion of PDIs perturbs 147-dependent induction of the ATF6-target gene, BiP, implicating covalent modifications of PDIs in the preferential activation of ATF6 afforded by treatment with 147. Thus, 147 is a pro-drug that preferentially activates ATF6 signaling through a mechanism involving localized metabolic activation and selective covalent modification of ER resident proteins that regulate ATF6 activity.
Collapse
Affiliation(s)
- Ryan Paxman
- Department of Chemistry, The Scripps Research Institute, La Jolla, United States
| | - Lars Plate
- Department of Chemistry, The Scripps Research Institute, La Jolla, United States.,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, United States
| | - Erik A Blackwood
- Department of Biology, San Diego State University, San Diego, United States.,San Diego State University Heart Institute, San Diego State University, San Diego, United States
| | - Chris Glembotski
- Department of Biology, San Diego State University, San Diego, United States.,San Diego State University Heart Institute, San Diego State University, San Diego, United States
| | - Evan T Powers
- Department of Chemistry, The Scripps Research Institute, La Jolla, United States
| | - R Luke Wiseman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, United States
| | - Jeffery W Kelly
- Department of Chemistry, The Scripps Research Institute, La Jolla, United States.,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, United States.,The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, United States
| |
Collapse
|
19
|
Conger MA, Pokhrel D, Liptak MD. Tight binding of heme to Staphylococcus aureus IsdG and IsdI precludes design of a competitive inhibitor. Metallomics 2018; 9:556-563. [PMID: 28401968 DOI: 10.1039/c7mt00035a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The micromolar equilibrium constants for heme dissociation from IsdG and IsdI reported in the literature call into question whether these enzymes are actually members of the iron-regulated surface determinant system of Staphylococcus aureus, which harvests heme iron from a host during infection. In order to address this question, the heme dissociation constants for IsdG and IsdI were reevaluated using three approaches. The heme dissociation equilibrium constants were measured using a UV/Vis absorption-detected assay analyzed with an assumption-free model, and using a newly developed fluorescence-detected assay. The heme dissociation rate constants were estimated using apomyoglobin competition assays. Analyses of the UV/Vis absorption data revealed a critical flaw in the previous measurements; heme is 99.9% protein-bound at the micromolar concentrations needed for UV/Vis absorption spectroscopy, which renders accurate equilibrium constant measurement nearly impossible. However, fluorescence can be measured for more dilute samples, and analyses of these data resulted in dissociation equilibrium constants of 1.4 ± 0.6 nM and 12.9 ± 1.3 nM for IsdG and IsdI, respectively. Analyses of the kinetic data obtained from apomyoglobin competition assays estimated heme dissociation rate constants of 0.022 ± 0.002 s-1 for IsdG and 0.092 ± 0.008 s-1 for IsdI. Based upon these data, and what is known regarding the post-translational regulation of IsdG and IsdI, it is proposed that only IsdG is a member of the heme iron acquisition pathway and IsdI regulates heme homeostasis. Furthermore, the nanomolar dissociation constants mean that heme is bound tightly by IsdG and indicates that competitive inhibition of this protein will be difficult. Instead, uncompetitive inhibition based upon a detailed understanding of enzyme mechanism is a more promising antibiotic development strategy.
Collapse
Affiliation(s)
- Matthew A Conger
- Department of Chemistry, University of Vermont, Burlington, Vermont 05405, USA.
| | | | | |
Collapse
|
20
|
Carter EL, Ramirez Y, Ragsdale SW. The heme-regulatory motif of nuclear receptor Rev-erbβ is a key mediator of heme and redox signaling in circadian rhythm maintenance and metabolism. J Biol Chem 2017; 292:11280-11299. [PMID: 28500133 DOI: 10.1074/jbc.m117.783118] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/04/2017] [Indexed: 01/08/2023] Open
Abstract
Rev-erbβ is a heme-responsive transcription factor that regulates genes involved in circadian rhythm maintenance and metabolism, effectively bridging these critical cellular processes. Heme binding to Rev-erbβ indirectly facilitates its interaction with the nuclear receptor co-repressor (NCoR1), resulting in repression of Rev-erbβ target genes. Fe3+-heme binds in a 6-coordinate complex with axial His and Cys ligands, the latter provided by a heme-regulatory motif (HRM). Rev-erbβ was thought to be a heme sensor based on a weak Kd value for the Rev-erbβ·heme complex of 2 μm determined with isothermal titration calorimetry. However, our group demonstrated with UV-visible difference titrations that the Kd value is in the low nanomolar range, and the Fe3+-heme off-rate is on the order of 10-6 s-1 making Rev-erbβ ineffective as a sensor of Fe3+-heme. In this study, we dissected the kinetics of heme binding to Rev-erbβ and provided a Kd for Fe3+-heme of ∼0.1 nm Loss of the HRM axial thiolate via redox processes, including oxidation to a disulfide with a neighboring cysteine or dissociation upon reduction of Fe3+- to Fe2+-heme, decreased binding affinity by >20-fold. Furthermore, as measured in a co-immunoprecipitation assay, substitution of the His or Cys heme ligands in Rev-erbβ was accompanied by a significant loss of NCoR1 binding. These results demonstrate the importance of the Rev-erbβ HRM in regulating interactions with heme and NCoR1 and advance our understanding of how signaling through HRMs affects the major cellular processes of circadian rhythm maintenance and metabolism.
Collapse
Affiliation(s)
- Eric L Carter
- From the Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Yanil Ramirez
- From the Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Stephen W Ragsdale
- From the Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
21
|
Abstract
Heme oxygenases are composed of two isozymes, Hmox1 and Hmox2, that catalyze the degradation of heme to carbon monoxide (CO), ferrous iron, and biliverdin, the latter of which is subsequently converted to bilirubin. While initially considered to be waste products, CO and biliverdin/bilirubin have been shown over the last 20 years to modulate key cellular processes, such as inflammation, cell proliferation, and apoptosis, as well as antioxidant defense. This shift in paradigm has led to the importance of heme oxygenases and their products in cell physiology now being well accepted. The identification of the two human cases thus far of heme oxygenase deficiency and the generation of mice deficient in Hmox1 or Hmox2 have reiterated a role for these enzymes in both normal cell function and disease pathogenesis, especially in the context of cardiovascular disease. This review covers the current knowledge on the function of both Hmox1 and Hmox2 at both a cellular and tissue level in the cardiovascular system. Initially, the roles of heme oxygenases in vascular health and the regulation of processes central to vascular diseases are outlined, followed by an evaluation of the role(s) of Hmox1 and Hmox2 in various diseases such as atherosclerosis, intimal hyperplasia, myocardial infarction, and angiogenesis. Finally, the therapeutic potential of heme oxygenases and their products are examined in a cardiovascular disease context, with a focus on how the knowledge we have gained on these enzymes may be capitalized in future clinical studies.
Collapse
Affiliation(s)
- Anita Ayer
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, Australia; and Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham Veterans Administration Medical Center, Birmingham, Alabama
| | - Abolfazl Zarjou
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, Australia; and Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham Veterans Administration Medical Center, Birmingham, Alabama
| | - Anupam Agarwal
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, Australia; and Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham Veterans Administration Medical Center, Birmingham, Alabama
| | - Roland Stocker
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, Australia; and Nephrology Research and Training Center, University of Alabama at Birmingham, Birmingham Veterans Administration Medical Center, Birmingham, Alabama
| |
Collapse
|
22
|
Abstract
SIGNIFICANCE Acute kidney injury (AKI) and chronic kidney disease (CKD) represent a considerable burden in healthcare. The heme oxygenase (HO) system plays an important role in regulating oxidative stress and is protective in a variety of human and animal models of kidney disease. Preclinical studies of the HO system have led to the development of several clinical trials targeting the enzyme or its products. RECENT ADVANCES Connection of HO, ferritin, and other proteins involved in iron regulation has provided important insight into mechanisms of damage in AKI. Also, HO-1 expression is important in the pathogenesis of hypertension, diabetic kidney disease, and progression to end-stage renal disease. CRITICAL ISSUES Despite intriguing discoveries, no drugs targeting the HO system have been translated to the clinic. Meanwhile, treatments for AKI and CKD are urgently needed. Many factors have likely contributed to challenges in clinical translation, including variation in animal models, difficulties in obtaining human tissue, and complexity of the disease processes being studied. FUTURE DIRECTIONS The HO system represents a promising avenue of investigation that may lead to targeted therapeutics. Tissue-specific gene modulation, widening the scope of animal studies, and continued clinical research will provide valuable insight into the role HO plays in kidney homeostasis and disease. Antioxid. Redox Signal. 25, 165-183.
Collapse
Affiliation(s)
- Jeremie M Lever
- 1 Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham , Birmingham, Alabama
| | - Ravindra Boddu
- 1 Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham , Birmingham, Alabama
| | - James F George
- 2 Division of Cardiothoracic Surgery, Department of Surgery, The University of Alabama at Birmingham , Birmingham, Alabama
| | - Anupam Agarwal
- 1 Nephrology Research and Training Center, Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham , Birmingham, Alabama.,3 Birmingham Veterans Administration Medical Center , Birmingham, Alabama
| |
Collapse
|
23
|
Heme dynamics and trafficking factors revealed by genetically encoded fluorescent heme sensors. Proc Natl Acad Sci U S A 2016; 113:7539-44. [PMID: 27247412 DOI: 10.1073/pnas.1523802113] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Heme is an essential cofactor and signaling molecule. Heme acquisition by proteins and heme signaling are ultimately reliant on the ability to mobilize labile heme (LH). However, the properties of LH pools, including concentration, oxidation state, distribution, speciation, and dynamics, are poorly understood. Herein, we elucidate the nature and dynamics of LH using genetically encoded ratiometric fluorescent heme sensors in the unicellular eukaryote Saccharomyces cerevisiae We find that the subcellular distribution of LH is heterogeneous; the cytosol maintains LH at ∼20-40 nM, whereas the mitochondria and nucleus maintain it at concentrations below 2.5 nM. Further, we find that the signaling molecule nitric oxide can initiate the rapid mobilization of heme in the cytosol and nucleus from certain thiol-containing factors. We also find that the glycolytic enzyme glyceraldehyde phosphate dehydrogenase constitutes a major cellular heme buffer, and is responsible for maintaining the activity of the heme-dependent nuclear transcription factor heme activator protein (Hap1p). Altogether, we demonstrate that the heme sensors can be used to reveal fundamental aspects of heme trafficking and dynamics and can be used across multiple organisms, including Escherichia coli, yeast, and human cell lines.
Collapse
|
24
|
Davydov R, Fleischhacker AS, Bagai I, Hoffman BM, Ragsdale SW. Comparison of the Mechanisms of Heme Hydroxylation by Heme Oxygenases-1 and -2: Kinetic and Cryoreduction Studies. Biochemistry 2015; 55:62-8. [PMID: 26652036 DOI: 10.1021/acs.biochem.5b00943] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The two isoforms of human heme oxygenase (HO1 and HO2) catalyze oxidative degradation of heme to biliverdin, Fe, and CO. Unlike HO1, HO2 contains two C-terminal heme regulatory motifs (HRMs) centered at Cys265 and Cys282 that act as redox switches and, in their reduced dithiolate state, bind heme (Fleischhacker et al., Biochemistry , 2015 , 54 , 2693 - 2708 ). Here, we describe cryoreduction/annealing and electron paramagnetic resonance spectroscopic experiments to study the structural features of the oxyheme moiety in HO2 and to elucidate the initial steps in heme degradation. We conclude that the same mechanism of heme hydroxylation to α-meso-hydroxyheme is employed by both isoforms and that the HRMs do not affect the physicochemical properties of the oxy-Fe(II) and HOO-Fe(III) states of HO2. However, the absorption spectrum of oxy-Fe(II)-HO2 is slightly blue-shifted relative to that of HO1. Furthermore, heme hydroxylation proceeds three times more slowly, and the oxy-Fe(II) state is 100-fold less stable in HO2 than in HO1. These distinctions are attributed to slight structural variances in the two proteins, including differences in equilibrium between open versus closed conformations. Kinetic studies revealed that heme oxygenation by HO2 occurs solely at the catalytic core in that a variant of HO2 lacking the C-terminal HRM domain exhibits the same specific activity as one containing both the catalytic core and HRM domain; furthermore, a truncated variant containing only the HRM region binds but cannot oxidize heme. In summary, HO1 and HO2 share similar catalytic mechanisms, and the HRMs do not play a direct role in the HO2 catalytic cycle.
Collapse
Affiliation(s)
- Roman Davydov
- Department of Chemistry, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Angela S Fleischhacker
- Department of Biological Chemistry, University of Michigan Medical School , Ann Arbor, Michigan 48109, United States
| | - Ireena Bagai
- Department of Biological Chemistry, University of Michigan Medical School , Ann Arbor, Michigan 48109, United States
| | - Brian M Hoffman
- Department of Chemistry, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Stephen W Ragsdale
- Department of Biological Chemistry, University of Michigan Medical School , Ann Arbor, Michigan 48109, United States
| |
Collapse
|
25
|
Carter EL, Gupta N, Ragsdale SW. High Affinity Heme Binding to a Heme Regulatory Motif on the Nuclear Receptor Rev-erbβ Leads to Its Degradation and Indirectly Regulates Its Interaction with Nuclear Receptor Corepressor. J Biol Chem 2015; 291:2196-222. [PMID: 26670607 DOI: 10.1074/jbc.m115.670281] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Indexed: 01/11/2023] Open
Abstract
Rev-erbα and Rev-erbβ are heme-binding nuclear receptors (NR) that repress the transcription of genes involved in regulating metabolism, inflammation, and the circadian clock. Previous gene expression and co-immunoprecipitation studies led to a model in which heme binding to Rev-erbα recruits nuclear receptor corepressor 1 (NCoR1) into an active repressor complex. However, in contradiction, biochemical and crystallographic studies have shown that heme decreases the affinity of the ligand-binding domain of Rev-erb NRs for NCoR1 peptides. One explanation for this discrepancy is that the ligand-binding domain and NCoR1 peptides used for in vitro studies cannot replicate the key features of the full-length proteins used in cellular studies. However, the combined in vitro and cellular results described here demonstrate that heme does not directly promote interactions between full-length Rev-erbβ (FLRev-erbβ) and an NCoR1 construct encompassing all three NR interaction domains. NCoR1 tightly binds both apo- and heme-replete FLRev-erbβ·DNA complexes; furthermore, heme, at high concentrations, destabilizes the FLRev-erbβ·NCoR1 complex. The interaction between FLRev-erbβ and NCoR1 as well as Rev-erbβ repression at the Bmal1 promoter appear to be modulated by another cellular factor(s), at least one of which is related to the ubiquitin-proteasome pathway. Our studies suggest that heme is involved in regulating the degradation of Rev-erbβ in a manner consistent with its role in circadian rhythm maintenance. Finally, the very slow rate constant (10(-6) s(-1)) of heme dissociation from Rev-erbβ rules out a prior proposal that Rev-erbβ acts as an intracellular heme sensor.
Collapse
Affiliation(s)
- Eric L Carter
- From the Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Nirupama Gupta
- From the Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Stephen W Ragsdale
- From the Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
26
|
Bagai I, Sarangi R, Fleischhacker A, Sharma A, Hoffman BM, Zuiderweg ERP, Ragsdale SW. Spectroscopic studies reveal that the heme regulatory motifs of heme oxygenase-2 are dynamically disordered and exhibit redox-dependent interaction with heme. Biochemistry 2015; 54:2693-708. [PMID: 25849895 PMCID: PMC4423204 DOI: 10.1021/bi501489r] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 03/09/2015] [Indexed: 11/28/2022]
Abstract
Heme oxygenase (HO) catalyzes a key step in heme homeostasis: the O2- and NADPH-cytochrome P450 reductase-dependent conversion of heme to biliverdin, Fe, and CO through a process in which the heme participates both as a prosthetic group and as a substrate. Mammals contain two isoforms of this enzyme, HO2 and HO1, which share the same α-helical fold forming the catalytic core and heme binding site, as well as a membrane spanning helix at their C-termini. However, unlike HO1, HO2 has an additional 30-residue N-terminus as well as two cysteine-proline sequences near the C-terminus that reside in heme regulatory motifs (HRMs). While the role of the additional N-terminal residues of HO2 is not yet understood, the HRMs have been proposed to reversibly form a thiol/disulfide redox switch that modulates the affinity of HO2 for ferric heme as a function of cellular redox poise. To further define the roles of the N- and C-terminal regions unique to HO2, we used multiple spectroscopic techniques to characterize these regions of the human HO2. Nuclear magnetic resonance spectroscopic experiments with HO2 demonstrate that, when the HRMs are in the oxidized state (HO2(O)), both the extra N-terminal and the C-terminal HRM-containing regions are disordered. However, protein NMR experiments illustrate that, under reducing conditions, the C-terminal region gains some structure as the Cys residues in the HRMs undergo reduction (HO2(R)) and, in experiments employing a diamagnetic protoporphyrin, suggest a redox-dependent interaction between the core and the HRM domains. Further, electron nuclear double resonance and X-ray absorption spectroscopic studies demonstrate that, upon reduction of the HRMs to the sulfhydryl form, a cysteine residue from the HRM region ligates to a ferric heme. Taken together with EPR measurements, which show the appearance of a new low-spin heme signal in reduced HO2, it appears that a cysteine residue(s) in the HRMs directly interacts with a second bound heme.
Collapse
Affiliation(s)
- Ireena Bagai
- Department
of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48019, United States
| | - Ritimukta Sarangi
- Stanford
Synchrotron
Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Angela
S. Fleischhacker
- Department
of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48019, United States
| | - Ajay Sharma
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Brian M. Hoffman
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Erik R. P. Zuiderweg
- Department
of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48019, United States
| | - Stephen W. Ragsdale
- Department
of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48019, United States
| |
Collapse
|