1
|
Fitzpatrick PF, Daubner SC. Biochemical and biophysical approaches to characterization of the aromatic amino acid hydroxylases. Methods Enzymol 2024; 704:345-361. [PMID: 39300655 DOI: 10.1016/bs.mie.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The aromatic amino acid hydroxylases phenylalanine hydroxylase, tyrosine hydroxylase, and tryptophan hydroxylase utilize a non-heme iron to catalyze the hydroxylation of the aromatic rings of their amino acid substrates, with a tetrahydropterin serving as the source of the electrons necessary for the monooxygenation reaction. These enzymes have been subjected to a variety of biochemical and biophysical approaches, resulting in a detailed understanding of their structures and mechanism. We summarize here the experimental approaches that have led to this understanding.
Collapse
Affiliation(s)
- Paul F Fitzpatrick
- Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, TX, United States.
| | - S Colette Daubner
- Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, TX, United States
| |
Collapse
|
2
|
Pierce BS, Schmittou AN, York NJ, Madigan RP, Nino PF, Foss FW, Lockart MM. Improved resolution of 3-mercaptopropionate dioxygenase active site provided by ENDOR spectroscopy offers insight into catalytic mechanism. J Biol Chem 2024; 300:105777. [PMID: 38395308 PMCID: PMC10966181 DOI: 10.1016/j.jbc.2024.105777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
3-mercaptopropionate (3MPA) dioxygenase (MDO) is a mononuclear nonheme iron enzyme that catalyzes the O2-dependent oxidation of thiol-bearing substrates to yield the corresponding sulfinic acid. MDO is a member of the cysteine dioxygenase family of small molecule thiol dioxygenases and thus shares a conserved sequence of active site residues (Serine-155, Histidine-157, and Tyrosine-159), collectively referred to as the SHY-motif. It has been demonstrated that these amino acids directly interact with the mononuclear Fe-site, influencing steady-state catalysis, catalytic efficiency, O2-binding, and substrate coordination. However, the underlying mechanism by which this is accomplished is poorly understood. Here, pulsed electron paramagnetic resonance spectroscopy [1H Mims electron nuclear double resonance spectroscopy] is applied to validate density functional theory computational models for the MDO Fe-site simultaneously coordinated by substrate and nitric oxide (NO), (3MPA/NO)-MDO. The enhanced resolution provided by electron nuclear double resonance spectroscopy allows for direct observation of Fe-bound substrate conformations and H-bond donation from Tyr159 to the Fe-bound NO ligand. Further inclusion of SHY-motif residues within the validated model reveals a distinct channel restricting movement of the Fe-bound NO-ligand. It has been argued that the iron-nitrosyl emulates the structure of potential Fe(III)-superoxide intermediates within the MDO catalytic cycle. While the merit of this assumption remains unconfirmed, the model reported here offers a framework to evaluate oxygen binding at the substrate-bound Fe-site and possible reaction mechanisms. It also underscores the significance of hydrogen bonding interactions within the enzymatic active site.
Collapse
Affiliation(s)
- Brad S Pierce
- Department of Chemistry & Biochemistry, University of Alabama, Tuscaloosa, Alabama, USA.
| | - Allison N Schmittou
- Department of Chemistry & Biochemistry, University of Alabama, Tuscaloosa, Alabama, USA
| | - Nicholas J York
- Department of Chemistry & Biochemistry, University of Alabama, Tuscaloosa, Alabama, USA
| | - Ryan P Madigan
- Department of Chemistry & Biochemistry, The University of Texas at Arlington, Arlington, Texas, USA
| | - Paula F Nino
- Department of Chemistry & Biochemistry, The University of Texas at Arlington, Arlington, Texas, USA
| | - Frank W Foss
- Department of Chemistry & Biochemistry, The University of Texas at Arlington, Arlington, Texas, USA
| | - Molly M Lockart
- Department of Chemistry and Biochemistry, Samford University, Homewood, Alabama, USA.
| |
Collapse
|
3
|
York NJ, Lockart MM, Schmittou AN, Pierce BS. Cyanide replaces substrate in obligate-ordered addition of nitric oxide to the non-heme mononuclear iron AvMDO active site. J Biol Inorg Chem 2023; 28:285-299. [PMID: 36809458 PMCID: PMC10075186 DOI: 10.1007/s00775-023-01990-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/12/2023] [Indexed: 02/23/2023]
Abstract
Thiol dioxygenases are a subset of non-heme mononuclear iron oxygenases that catalyze the O2-dependent oxidation of thiol-bearing substrates to yield sulfinic acid products. Cysteine dioxygenase (CDO) and 3-mercaptopropionic acid (3MPA) dioxygenase (MDO) are the most extensively characterized members of this enzyme family. As with many non-heme mononuclear iron oxidase/oxygenases, CDO and MDO exhibit an obligate-ordered addition of organic substrate before dioxygen. As this substrate-gated O2-reactivity extends to the oxygen-surrogate, nitric oxide (NO), EPR spectroscopy has long been used to interrogate the [substrate:NO:enzyme] ternary complex. In principle, these studies can be extrapolated to provide information about transient iron-oxo intermediates produced during catalytic turnover with dioxygen. In this work, we demonstrate that cyanide mimics the native thiol-substrate in ordered-addition experiments with MDO cloned from Azotobacter vinelandii (AvMDO). Following treatment of the catalytically active Fe(II)-AvMDO with excess cyanide, addition of NO yields a low-spin (S = 1/2) (CN/NO)-Fe-complex. Continuous wave and pulsed X-band EPR characterization of this complex produced in wild-type and H157N variant AvMDO reveal multiple nuclear hyperfine features diagnostic of interactions within the first- and outer-coordination sphere of the enzymatic Fe-site. Spectroscopically validated computational models indicate simultaneous coordination of two cyanide ligands replaces the bidentate (thiol and carboxylate) coordination of 3MPA allowing for NO-binding at the catalytically relevant O2-binding site. This promiscuous substrate-gated reactivity of AvMDO with NO provides an instructive counterpoint to the high substrate-specificity exhibited by mammalian CDO for L-cysteine.
Collapse
Affiliation(s)
- Nicholas J York
- Department of Chemistry and Biochemistry, University of Alabama, 250 Hackberry Lane, Tuscaloosa, AL, 35487, USA
| | - Molly M Lockart
- Department of Chemistry and Biochemistry, Samford University, 800 Lakeshore Drive, Homewood, AL, 35229, USA
| | - Allison N Schmittou
- Department of Chemistry and Biochemistry, University of Alabama, 250 Hackberry Lane, Tuscaloosa, AL, 35487, USA
| | - Brad S Pierce
- Department of Chemistry and Biochemistry, University of Alabama, 250 Hackberry Lane, Tuscaloosa, AL, 35487, USA.
| |
Collapse
|
4
|
Fitzpatrick PF. The aromatic amino acid hydroxylases: Structures, catalysis, and regulation of phenylalanine hydroxylase, tyrosine hydroxylase, and tryptophan hydroxylase. Arch Biochem Biophys 2023; 735:109518. [PMID: 36639008 DOI: 10.1016/j.abb.2023.109518] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/01/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023]
Abstract
The aromatic amino acid hydroxylases phenylalanine hydroxylase, tyrosine hydroxylase, and tryptophan hydroxylase are non-heme iron enzymes that catalyze key physiological reactions. This review discusses the present understanding of the common catalytic mechanism of these enzymes and recent advances in understanding the relationship between their structures and their regulation.
Collapse
Affiliation(s)
- Paul F Fitzpatrick
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, 78229, USA.
| |
Collapse
|
5
|
Li M, Subedi BP, Fitzpatrick PF, Emerson JP. Thermodynamics of iron, tetrahydrobiopterin, and phenylalanine binding to phenylalanine hydroxylase from Chromobacterium violaceum. Arch Biochem Biophys 2022; 729:109378. [PMID: 35995215 PMCID: PMC10184773 DOI: 10.1016/j.abb.2022.109378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 11/02/2022]
Abstract
Phenylalanine hydroxylase (PheH) is a pterin-dependent, mononuclear nonheme iron(II) oxygenase that uses the oxidative power of O2 to hydroxylate phenylalanine to form tyrosine. PheH is a member of a superfamily of O2-activating enzymes that utilizes a common metal binding motif: the 2-His-1-carboxylate facial triad. Like most members of this superfamily, binding of substrates to PheH results in a reorganization of its active site to allow O2 activation. Exploring the energetics of each step before O2 activation can provide mechanistic insight into the initial steps that support the highly specific O2 activation pathway carried out by this metalloenzyme. Here the thermal stability of PheH and its substrate complexes were investigated under an anaerobic environment by using differential scanning calorimetry. In context with known binding constants for PheH, a thermodynamic cycle associated with iron(II), tetrahydrobiopterin (BH4), and phenylalanine binding to the active site was generated, showing a distinctive cooperativity between the binding of BH4 and Phe. The addition of phenylalanine and BH4 to PheH·Fe increased the stability of this enzyme (ΔTm of 8.5 (±0.7) °C with an associated δΔH of 43.0 (±2.9) kcal/mol). The thermodynamic data presented here gives insight into the complicated interactions between metal center, cofactor, and substrate, and how this interplay sets the stage for highly specific, oxidative C-H activation in this enzyme.
Collapse
Affiliation(s)
- Mingjie Li
- Department of Chemistry, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Bishnu P Subedi
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Paul F Fitzpatrick
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX, 78229, USA.
| | - Joseph P Emerson
- Department of Chemistry, Mississippi State University, Mississippi State, MS, 39762, USA.
| |
Collapse
|
6
|
York NJ, Lockart MM, Pierce BS. Low-Spin Cyanide Complexes of 3-Mercaptopropionic Acid Dioxygenase (MDO) Reveal the Impact of Outer-Sphere SHY-Motif Residues. Inorg Chem 2021; 60:18639-18651. [PMID: 34883020 PMCID: PMC10078988 DOI: 10.1021/acs.inorgchem.1c01519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
3-Mercaptopropionic acid (3MPA) dioxygenase (MDO) is a non-heme Fe(II)/O2-dependent oxygenase that catalyzes the oxidation of thiol-substrates to yield the corresponding sulfinic acid. Hydrogen-bonding interactions between the Fe-site and a conserved set of three outer-sphere residues (Ser-His-Tyr) play an important catalytic role in the mechanism of this enzyme. Collectively referred to as the SHY-motif, the functional role of these residues remains poorly understood. Here, catalytically inactive Fe(III)-MDO precomplexed with 3MPA was titrated with cyanide to yield a low-spin (S = 1/2) (3MPA/CN)-bound ternary complex (referred to as 1C). UV-visible and electron paramagnetic resonance (EPR) spectroscopy were used to monitor the binding of 3MPA and cyanide. Comparisons of results obtained from SHY-motif variants (H157N and Y159F) were performed to investigate specific H-bonding interactions. For the wild-type enzyme, the binding of 3MPA- and cyanide to the enzymatic Fe-site is selective and results in a homogeneous ternary complex. However, this selectivity is lost for the Y159F variant, suggesting that H-bonding interactions contributed from Tyr159 gate ligand coordination at the Fe-site. Significantly, the g-values for the low-spin ferric site are diagnostic of the directionality of Tyr159 H-bond donation. Computational models coupled with CASSCF/NEVPT2-calculated g-values were used to verify that a major shift in the central g-value (g2) displayed between wild-type and SHY variants could be attributed to the loss of Tyr159 H-bond donation to the Fe-bound cyanide. Applied to native cosubstrate, this H-bond donation provides a means to stabilize Fe-bound dioxygen and potentially explains the attenuated (∼15-fold) rate of catalytic turnover previously reported for MDO SHY-motif variants.
Collapse
Affiliation(s)
- Nicholas J York
- Department of Chemistry & Biochemistry, University of Alabama, 250 Hackberry Lane, Tuscaloosa, Alabama 35487, United States
| | - Molly M Lockart
- Department of Chemistry & Biochemistry, University of Alabama, 250 Hackberry Lane, Tuscaloosa, Alabama 35487, United States
| | - Brad S Pierce
- Department of Chemistry & Biochemistry, University of Alabama, 250 Hackberry Lane, Tuscaloosa, Alabama 35487, United States
| |
Collapse
|
7
|
Abstract
Earlier, we established that nickel or iron heteroligand complexes, which include PhOH (nickel complexes) or tyrosine residue (nickel or iron complexes), are not only hydrocarbon oxidation catalysts (in the case of PhOH), but also simulate the active centers of enzymes (PhOH, tyrosine). The AFM method established the self-organization of nickel or iron heteroligand complexes, which included tyrosine residue or PhOH, into supramolecular structures on a modified silicon surface. Supramolecular structures were formed as a result of H-bonds and other non-covalent intermolecular interactions and, to a certain extent, reflected the structures involved in the mechanisms of reactions of homogeneous and enzymatic catalysis. Using the AFM method, we obtained evidence at the model level in favor of the involvement of the tyrosine fragment as one of the possible regulatory factors in the functioning of Ni(Fe)ARD dioxygenases or monooxygenases of the family of cytochrome P450. The principles of actions of these oxygenases were used to create highly efficient catalytic systems for the oxidation of hydrocarbons.
Collapse
|
8
|
McCracken J, Casey TM, Hausinger RP. 1H-HYSCORE Reveals Structural Details at the Fe(II) Active Site of Taurine:2-Oxoglutarate Dioxygenase. APPLIED MAGNETIC RESONANCE 2021; 52:971-994. [PMID: 35250178 PMCID: PMC8896577 DOI: 10.1007/s00723-020-01288-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/23/2020] [Accepted: 10/15/2020] [Indexed: 06/14/2023]
Abstract
Proton Hyperfine Sublevel Correlation (1H-HYSCORE) experiments have been used to probe the ligation structure of the Fe(II) active site of taurine:2-oxoglutarate dioxygenase (TauD), a non-heme Fe(II) hydroxylase. To facilitate Electron Paramagnetic Resonance (EPR) experiments, Fe(II) derivatives of the enzyme were studied using nitric oxide as a substitute for molecular oxygen. The addition of NO to the enzyme yields an S = 3/2 {FeNO}7 paramagnetic center characterized by nearly axial EPR spectra with g⊥ = 4 and g|| = 2. Using results from (i) an X-ray crystallographic study of TauD crystallized under anaerobic conditions in the presence of both cosubstrate 2-oxoglutarate and substrate taurine, (ii) a published theoretical description of the {FeNO}7 derivative of this form of the enzyme, and (iii) previous 2H-Electron Spin Echo Envelope Modulation (ESEEM) studies, we were able to assign the proton cross peaks detected in orientation-selected 1H-HYSCORE spectra. Discrete contributions from the protons of two coordinated histidine ligands were resolved. If substrate taurine is absent from the complex, orientation-selective HYSCORE spectra show cross peaks that are less resolved and when combined with information obtained from continuous wave EPR, support an alternate binding scheme for 2-oxoglutarate. HYSCORE studies of TauD in the absence of 2-oxoglutarate show additional 1H cross peaks that can be assigned to two distinct bound water molecules. In addition, 1H and 14N cross peaks that arise from the coordinated histidine side chains show a change in NO coordination for this species. For all of the TauD species, 1H hyperfine couplings and their orientations are sensitive to the detailed electronic structure of the {FeNO}7 center.
Collapse
Affiliation(s)
- John McCracken
- Department of Chemistry, Michigan State University, East Lansing, MI 48824
| | - Thomas M. Casey
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106
| | - Robert P. Hausinger
- Departments of Biochemistry and Molecular Biology, and Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
9
|
York NJ, Lockart MM, Sardar S, Khadka N, Shi W, Stenkamp RE, Zhang J, Kiser PD, Pierce BS. Structure of 3-mercaptopropionic acid dioxygenase with a substrate analog reveals bidentate substrate binding at the iron center. J Biol Chem 2021; 296:100492. [PMID: 33662397 PMCID: PMC8050391 DOI: 10.1016/j.jbc.2021.100492] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/18/2021] [Accepted: 02/26/2021] [Indexed: 12/20/2022] Open
Abstract
Thiol dioxygenases are a subset of nonheme iron oxygenases that catalyze the formation of sulfinic acids from sulfhydryl-containing substrates and dioxygen. Among this class, cysteine dioxygenases (CDOs) and 3-mercaptopropionic acid dioxygenases (3MDOs) are the best characterized, and the mode of substrate binding for CDOs is well understood. However, the manner in which 3-mercaptopropionic acid (3MPA) coordinates to the nonheme iron site in 3MDO remains a matter of debate. A model for bidentate 3MPA coordination at the 3MDO Fe-site has been proposed on the basis of computational docking, whereas steady-state kinetics and EPR spectroscopic measurements suggest a thiolate-only coordination of the substrate. To address this gap in knowledge, we determined the structure of Azobacter vinelandii 3MDO (Av3MDO) in complex with the substrate analog and competitive inhibitor, 3-hydroxypropionic acid (3HPA). The structure together with DFT computational modeling demonstrates that 3HPA and 3MPA associate with iron as chelate complexes with the substrate-carboxylate group forming an additional interaction with Arg168 and the thiol bound at the same position as in CDO. A chloride ligand was bound to iron in the coordination site assigned as the O2-binding site. Supporting HYSCORE spectroscopic experiments were performed on the (3MPA/NO)-bound Av3MDO iron nitrosyl (S = 3/2) site. In combination with spectroscopic simulations and optimized DFT models, this work provides an experimentally verified model of the Av3MDO enzyme-substrate complex, effectively resolving a debate in the literature regarding the preferred substrate-binding denticity. These results elegantly explain the observed 3MDO substrate specificity, but leave unanswered questions regarding the mechanism of substrate-gated reactivity with dioxygen.
Collapse
Affiliation(s)
- Nicholas J York
- Department of Chemistry & Biochemistry, University of Alabama, Tuscaloosa, Alabama, USA
| | - Molly M Lockart
- Department of Chemistry & Biochemistry, University of Alabama, Tuscaloosa, Alabama, USA
| | - Sinjinee Sardar
- Department of Chemistry & Biochemistry, The University of Texas at Arlington, Arlington, Texas, USA
| | - Nimesh Khadka
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Wuxian Shi
- National Synchrotron Light Source-II, Brookhaven National Laboratory, Upton, New York, USA
| | - Ronald E Stenkamp
- Departments of Biological Structure and Biochemistry, University of Washington, Seattle, Washington, USA
| | - Jianye Zhang
- Department of Ophthalmology, School of Medicine, University of California, Irvine, Irvine, California, USA
| | - Philip D Kiser
- Department of Ophthalmology, School of Medicine, University of California, Irvine, Irvine, California, USA; Department of Physiology & Biophysics, School of Medicine, University of California, Irvine, Irvine, California, USA; Research Service, VA Long Beach Healthcare System, Long Beach, California, USA.
| | - Brad S Pierce
- Department of Chemistry & Biochemistry, University of Alabama, Tuscaloosa, Alabama, USA.
| |
Collapse
|
10
|
Subedi BP, Fitzpatrick PF. Mutagenesis of an Active-Site Loop in Tryptophan Hydroxylase Dramatically Slows the Formation of an Early Intermediate in Catalysis. J Am Chem Soc 2018; 140:5185-5192. [PMID: 29589922 DOI: 10.1021/jacs.8b00936] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Solution studies of the aromatic amino acid hydroxylases are consistent with the FeIVO intermediate not forming until both the amino acid and tetrahydropterin substrates have bound. Structural studies have shown that the positions of active-site loops differs significantly between the free enzyme and the enzyme-amino acid-tetrahydropterin complex. In tryptophan hydroxylase (TrpH) these mobile loops contain residues 124-134 and 365-371, with a key interaction involving Ile366. The I366N mutation in TrpH results in decreases of 1-2 orders of magnitude in the kcat and kcat/ Km values. Single turnover analyses establish that the limiting rate constant for turnover is product release for the wild-type enzyme but is formation of the first detectable intermediate I in catalysis in the mutant enzyme. The mutation does not alter the kinetics of NO binding to the ternary complex nor does it uncouple FeIVO formation from amino acid hydroxylation. The effects on the kcat value of wild-type TrpH of changing viscosity are consistent with rate-limiting product release. While the effect of viscosity on the kcat/ KO2 value is small, consistent with reversible oxygen binding, the effects on the kcat/ Km values for tryptophan and the tetrahydropterin are large, with the latter value exceeding the expected limit and varying with the identity of the viscogen. In contrast, the kinetic parameters of I366N TrpH show small changes with viscosity. The results are consistent with binding of the amino acid and pterin substrate to form the ternary complex being directly coupled to closure of loops over the active site and formation of the reactive complex. The mutation destabilizes this initial event.
Collapse
Affiliation(s)
- Bishnu P Subedi
- Department of Biochemistry and Structural Biology , University of Texas Health Science Center at San Antonio , San Antonio , Texas 78229 , United States
| | - Paul F Fitzpatrick
- Department of Biochemistry and Structural Biology , University of Texas Health Science Center at San Antonio , San Antonio , Texas 78229 , United States
| |
Collapse
|
11
|
Subedi BP, Fitzpatrick PF. Kinetic Mechanism and Intrinsic Rate Constants for the Reaction of a Bacterial Phenylalanine Hydroxylase. Biochemistry 2016; 55:6848-6857. [DOI: 10.1021/acs.biochem.6b01012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bishnu P. Subedi
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio Texas 78229, United States
| | - Paul F. Fitzpatrick
- Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio Texas 78229, United States
| |
Collapse
|
12
|
Proshlyakov DA, McCracken J, Hausinger RP. Spectroscopic analyses of 2-oxoglutarate-dependent oxygenases: TauD as a case study. J Biol Inorg Chem 2016; 22:367-379. [PMID: 27812832 DOI: 10.1007/s00775-016-1406-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/25/2016] [Indexed: 11/28/2022]
Abstract
A wide range of spectroscopic approaches have been used to interrogate the mononuclear iron metallocenter in 2-oxoglutarate (2OG)-dependent oxygenases. The results from these spectroscopic studies have provided valuable insights into the structural changes at the active site during substrate binding and catalysis, thus providing critical information that complements investigations of these enzymes by X-ray crystallography, biochemical, and computational approaches. This mini-review highlights taurine hydroxylase (taurine:2OG dioxygenase, TauD) as a case study to illustrate the wealth of knowledge that can be generated by applying a diverse array of spectroscopic investigations to a single enzyme. In particular, electronic absorption, circular dichroism, magnetic circular dichroism, conventional and pulse electron paramagnetic, Mössbauer, X-ray absorption, and resonance Raman methods have been exploited to uncover the properties of the metal site in TauD.
Collapse
Affiliation(s)
- Denis A Proshlyakov
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - John McCracken
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - Robert P Hausinger
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA. .,Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
13
|
McCracken J, Cappillino PJ, McNally JS, Krzyaniak MD, Howart M, Tarves PC, Caradonna JP. Characterization of Water Coordination to Ferrous Nitrosyl Complexes with fac-N2O, cis-N2O2, and N2O3 Donor Ligands. Inorg Chem 2015; 54:6486-97. [DOI: 10.1021/acs.inorgchem.5b00788] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- John McCracken
- Department of Chemistry, Michigan State University, East
Lansing, Michigan 48824, United States
| | - Patrick J. Cappillino
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
- Department of Chemistry and Biochemistry, University of Massachusetts at Dartmouth, North Dartmouth, Massachusetts 02347, United States
| | - Joshua S. McNally
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Matthew D. Krzyaniak
- Department of Chemistry, Michigan State University, East
Lansing, Michigan 48824, United States
| | - Michael Howart
- Department of Chemistry, Michigan State University, East
Lansing, Michigan 48824, United States
| | - Paul C. Tarves
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - John P. Caradonna
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|