1
|
Costello A, Peterson AA, Chen PH, Bagirzadeh R, Lanster DL, Badran AH. Genetic Code Expansion History and Modern Innovations. Chem Rev 2024. [PMID: 39466033 DOI: 10.1021/acs.chemrev.4c00275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The genetic code is the foundation for all life. With few exceptions, the translation of nucleic acid messages into proteins follows conserved rules, which are defined by codons that specify each of the 20 proteinogenic amino acids. For decades, leading research groups have developed a catalogue of innovative approaches to extend nature's amino acid repertoire to include one or more noncanonical building blocks in a single protein. In this review, we summarize advances in the history of in vitro and in vivo genetic code expansion, and highlight recent innovations that increase the scope of biochemically accessible monomers and codons. We further summarize state-of-the-art knowledge in engineered cellular translation, as well as alterations to regulatory mechanisms that improve overall genetic code expansion. Finally, we distill existing limitations of these technologies into must-have improvements for the next generation of technologies, and speculate on future strategies that may be capable of overcoming current gaps in knowledge.
Collapse
Affiliation(s)
- Alan Costello
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
| | - Alexander A Peterson
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
| | - Pei-Hsin Chen
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
- Doctoral Program in Chemical and Biological Sciences The Scripps Research Institute; La Jolla, California 92037, United States
| | - Rustam Bagirzadeh
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
| | - David L Lanster
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
- Doctoral Program in Chemical and Biological Sciences The Scripps Research Institute; La Jolla, California 92037, United States
| | - Ahmed H Badran
- Department of Chemistry The Scripps Research Institute; La Jolla, California 92037, United States
- Department of Integrative Structural and Computational Biology The Scripps Research Institute; La Jolla, California 92037, United States
| |
Collapse
|
2
|
Koch NG, Budisa N. Evolution of Pyrrolysyl-tRNA Synthetase: From Methanogenesis to Genetic Code Expansion. Chem Rev 2024; 124:9580-9608. [PMID: 38953775 PMCID: PMC11363022 DOI: 10.1021/acs.chemrev.4c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
Over 20 years ago, the pyrrolysine encoding translation system was discovered in specific archaea. Our Review provides an overview of how the once obscure pyrrolysyl-tRNA synthetase (PylRS) tRNA pair, originally responsible for accurately translating enzymes crucial in methanogenic metabolic pathways, laid the foundation for the burgeoning field of genetic code expansion. Our primary focus is the discussion of how to successfully engineer the PylRS to recognize new substrates and exhibit higher in vivo activity. We have compiled a comprehensive list of ncAAs incorporable with the PylRS system. Additionally, we also summarize recent successful applications of the PylRS system in creating innovative therapeutic solutions, such as new antibody-drug conjugates, advancements in vaccine modalities, and the potential production of new antimicrobials.
Collapse
Affiliation(s)
- Nikolaj G. Koch
- Department
of Chemistry, Institute of Physical Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
| | - Nediljko Budisa
- Biocatalysis
Group, Institute of Chemistry, Technische
Universität Berlin, 10623 Berlin, Germany
- Chemical
Synthetic Biology Chair, Department of Chemistry, University of Manitoba, Winnipeg MB R3T 2N2, Canada
| |
Collapse
|
3
|
Allen MC, Karplus PA, Mehl RA, Cooley RB. Genetic Encoding of Phosphorylated Amino Acids into Proteins. Chem Rev 2024; 124:6592-6642. [PMID: 38691379 DOI: 10.1021/acs.chemrev.4c00110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Reversible phosphorylation is a fundamental mechanism for controlling protein function. Despite the critical roles phosphorylated proteins play in physiology and disease, our ability to study individual phospho-proteoforms has been hindered by a lack of versatile methods to efficiently generate homogeneous proteins with site-specific phosphoamino acids or with functional mimics that are resistant to phosphatases. Genetic code expansion (GCE) is emerging as a transformative approach to tackle this challenge, allowing direct incorporation of phosphoamino acids into proteins during translation in response to amber stop codons. This genetic programming of phospho-protein synthesis eliminates the reliance on kinase-based or chemical semisynthesis approaches, making it broadly applicable to diverse phospho-proteoforms. In this comprehensive review, we provide a brief introduction to GCE and trace the development of existing GCE technologies for installing phosphoserine, phosphothreonine, phosphotyrosine, and their mimics, discussing both their advantages as well as their limitations. While some of the technologies are still early in their development, others are already robust enough to greatly expand the range of biologically relevant questions that can be addressed. We highlight new discoveries enabled by these GCE approaches, provide practical considerations for the application of technologies by non-GCE experts, and also identify avenues ripe for further development.
Collapse
Affiliation(s)
- Michael C Allen
- Department of Biochemistry and Biophysics, Oregon State University, GCE4All Research Center, 2011 Agricultural and Life Sciences, Corvallis, Oregon 97331 United States
| | - P Andrew Karplus
- Department of Biochemistry and Biophysics, Oregon State University, GCE4All Research Center, 2011 Agricultural and Life Sciences, Corvallis, Oregon 97331 United States
| | - Ryan A Mehl
- Department of Biochemistry and Biophysics, Oregon State University, GCE4All Research Center, 2011 Agricultural and Life Sciences, Corvallis, Oregon 97331 United States
| | - Richard B Cooley
- Department of Biochemistry and Biophysics, Oregon State University, GCE4All Research Center, 2011 Agricultural and Life Sciences, Corvallis, Oregon 97331 United States
| |
Collapse
|
4
|
Gan Q, Fan C. Orthogonal Translation for Site-Specific Installation of Post-translational Modifications. Chem Rev 2024; 124:2805-2838. [PMID: 38373737 PMCID: PMC11230630 DOI: 10.1021/acs.chemrev.3c00850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Post-translational modifications (PTMs) endow proteins with new properties to respond to environmental changes or growth needs. With the development of advanced proteomics techniques, hundreds of distinct types of PTMs have been observed in a wide range of proteins from bacteria, archaea, and eukarya. To identify the roles of these PTMs, scientists have applied various approaches. However, high dynamics, low stoichiometry, and crosstalk between PTMs make it almost impossible to obtain homogeneously modified proteins for characterization of the site-specific effect of individual PTM on target proteins. To solve this problem, the genetic code expansion (GCE) strategy has been introduced into the field of PTM studies. Instead of modifying proteins after translation, GCE incorporates modified amino acids into proteins during translation, thus generating site-specifically modified proteins at target positions. In this review, we summarize the development of GCE systems for orthogonal translation for site-specific installation of PTMs.
Collapse
Affiliation(s)
- Qinglei Gan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Chenguang Fan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
5
|
Eddins AJ, Bednar RM, Jana S, Pung AH, Mbengi L, Meyer K, Perona JJ, Cooley RB, Karplus PA, Mehl RA. Truncation-Free Genetic Code Expansion with Tetrazine Amino Acids for Quantitative Protein Ligations. Bioconjug Chem 2023; 34:2243-2254. [PMID: 38047550 DOI: 10.1021/acs.bioconjchem.3c00380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Quantitative labeling of biomolecules is necessary to advance areas of antibody-drug conjugation, super-resolution microscopy imaging of molecules in live cells, and determination of the stoichiometry of protein complexes. Bio-orthogonal labeling to genetically encodable noncanonical amino acids (ncAAs) offers an elegant solution; however, their suboptimal reactivity and stability hinder the utility of this method. Previously, we showed that encoding stable 1,2,4,5-tetrazine (Tet)-containing ncAAs enables rapid, complete conjugation, yet some expression conditions greatly limited the quantitative reactivity of the Tet-protein. Here, we demonstrate that reduction of on-protein Tet ncAAs impacts their reactivity, while the leading cause of the unreactive protein is near-cognate suppression (NCS) of UAG codons by endogenous aminoacylated tRNAs. To overcome incomplete conjugation due to NCS, we developed a more catalytically efficient tRNA synthetase and developed a series of new machinery plasmids harboring the aminoacyl tRNA synthetase/tRNA pair (aaRS/tRNA pair). These plasmids enable robust production of homogeneously reactive Tet-protein in truncation-free cell lines, eliminating the contamination caused by NCS and protein truncation. Furthermore, these plasmid systems utilize orthogonal synthetic origins, which render these machinery vectors compatible with any common expression system. Through developing these new machinery plasmids, we established that the aaRS/tRNA pair plasmid copy-number greatly affects the yields and quality of the protein produced. We then produced quantitatively reactive soluble Tet-Fabs, demonstrating the utility of this system for rapid, homogeneous conjugations of biomedically relevant proteins.
Collapse
Affiliation(s)
- Alex J Eddins
- Department of Biochemistry and Biophysics, Oregon State University, 2011 Agricultural and Life Sciences, Corvallis, Oregon 97331, United States
- GCE4All Biomedical Technology Development and Dissemination Center, Oregon State University, 2011 Agricultural and Life Sciences, Corvallis, Oregon 97331, United States
| | - Riley M Bednar
- Department of Biochemistry and Biophysics, Oregon State University, 2011 Agricultural and Life Sciences, Corvallis, Oregon 97331, United States
- GCE4All Biomedical Technology Development and Dissemination Center, Oregon State University, 2011 Agricultural and Life Sciences, Corvallis, Oregon 97331, United States
| | - Subhashis Jana
- Department of Biochemistry and Biophysics, Oregon State University, 2011 Agricultural and Life Sciences, Corvallis, Oregon 97331, United States
- GCE4All Biomedical Technology Development and Dissemination Center, Oregon State University, 2011 Agricultural and Life Sciences, Corvallis, Oregon 97331, United States
| | - Abigail H Pung
- Department of Biochemistry and Biophysics, Oregon State University, 2011 Agricultural and Life Sciences, Corvallis, Oregon 97331, United States
- GCE4All Biomedical Technology Development and Dissemination Center, Oregon State University, 2011 Agricultural and Life Sciences, Corvallis, Oregon 97331, United States
| | - Lea Mbengi
- Department of Chemistry, Portland State University, Portland, Oregon 97207, United States
| | - Kyle Meyer
- Department of Chemistry, Portland State University, Portland, Oregon 97207, United States
| | - John J Perona
- Department of Chemistry, Portland State University, Portland, Oregon 97207, United States
| | - Richard B Cooley
- Department of Biochemistry and Biophysics, Oregon State University, 2011 Agricultural and Life Sciences, Corvallis, Oregon 97331, United States
- GCE4All Biomedical Technology Development and Dissemination Center, Oregon State University, 2011 Agricultural and Life Sciences, Corvallis, Oregon 97331, United States
| | - P Andrew Karplus
- Department of Biochemistry and Biophysics, Oregon State University, 2011 Agricultural and Life Sciences, Corvallis, Oregon 97331, United States
- GCE4All Biomedical Technology Development and Dissemination Center, Oregon State University, 2011 Agricultural and Life Sciences, Corvallis, Oregon 97331, United States
| | - Ryan A Mehl
- Department of Biochemistry and Biophysics, Oregon State University, 2011 Agricultural and Life Sciences, Corvallis, Oregon 97331, United States
- GCE4All Biomedical Technology Development and Dissemination Center, Oregon State University, 2011 Agricultural and Life Sciences, Corvallis, Oregon 97331, United States
| |
Collapse
|
6
|
Peng T, Das T, Ding K, Hang HC. Functional analysis of protein post-translational modifications using genetic codon expansion. Protein Sci 2023; 32:e4618. [PMID: 36883310 PMCID: PMC10031814 DOI: 10.1002/pro.4618] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Post-translational modifications (PTMs) of proteins not only exponentially increase the diversity of proteoforms, but also contribute to dynamically modulating the localization, stability, activity, and interaction of proteins. Understanding the biological consequences and functions of specific PTMs has been challenging for many reasons, including the dynamic nature of many PTMs and the technical limitations to access homogenously modified proteins. The genetic code expansion technology has emerged to provide unique approaches for studying PTMs. Through site-specific incorporation of unnatural amino acids (UAAs) bearing PTMs or their mimics into proteins, genetic code expansion allows the generation of homogenous proteins with site-specific modifications and atomic resolution both in vitro and in vivo. With this technology, various PTMs and mimics have been precisely introduced into proteins. In this review, we summarize the UAAs and approaches that have been recently developed to site-specifically install PTMs and their mimics into proteins for functional studies of PTMs.
Collapse
Affiliation(s)
- Tao Peng
- State Key Laboratory of Chemical OncogenomicsSchool of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate SchoolShenzhenChina
- Institute of Chemical Biology, Shenzhen Bay LaboratoryShenzhenChina
| | - Tandrila Das
- Departments of Immunology and Microbiology and ChemistryScripps ResearchLa JollaCaliforniaUSA
| | - Ke Ding
- State Key Laboratory of Chemical OncogenomicsSchool of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate SchoolShenzhenChina
| | - Howard C. Hang
- Departments of Immunology and Microbiology and ChemistryScripps ResearchLa JollaCaliforniaUSA
| |
Collapse
|
7
|
Avila-Crump S, Hemshorn ML, Jones CM, Mbengi L, Meyer K, Griffis JA, Jana S, Petrina GE, Pagar VV, Karplus PA, Petersson EJ, Perona JJ, Mehl RA, Cooley RB. Generating Efficient Methanomethylophilus alvus Pyrrolysyl-tRNA Synthetases for Structurally Diverse Non-Canonical Amino Acids. ACS Chem Biol 2022; 17:3458-3469. [PMID: 36383641 PMCID: PMC9833845 DOI: 10.1021/acschembio.2c00639] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Genetic code expansion (GCE) technologies commonly use the pyrrolysyl-tRNA synthetase (PylRS)/tRNAPyl pairs from Methanosarcina mazei (Mm) and Methanosarcina barkeri (Mb) for site-specific incorporation of non-canonical amino acids (ncAAs) into proteins. Recently a homologous PylRS/tRNAPyl pair from Candidatus Methanomethylophilus alvus Mx1201 (Ma) was developed that, lacking the N-terminal tRNA-recognition domain of most PylRSs, overcomes insolubility, instability, and proteolysis issues seen with Mb/Mm PylRSs. An open question is how to alter Ma PylRS specificity to encode specific ncAAs with high efficiency. Prior work focused on "transplanting" ncAA substrate specificity by reconstructing the same active site mutations found in functional Mm/Mb PylRSs in Ma PylRS. Here, we found that this strategy produced low-efficiency Ma PylRSs for encoding three structurally diverse ncAAs: acridonyl-alanine (Acd), 3-nitro-tyrosine, and m-methyl-tetrazinyl-phenylalanine (Tet3.0-Me). On the other hand, efficient Ma PylRS variants were generated by a conventional life/death selection process from a large library of active site mutants: for Acd encoding, one variant was highly functional in HEK293T cells at just 10 μM Acd; for nitroY encoding, two variants also encoded 3-chloro, 3-bromo-, and 3-iodo-tyrosine at high efficiency; and for Tet-3.0-Me, all variants were more functional at lower ncAA concentrations. All Ma PylRS variants identified through selection had at least two different active site residues when compared with their Mb PylRS counterparts. We conclude that Ma and Mm/Mb PylRSs are sufficiently different that "active site transplantation" yields suboptimal Ma GCE systems. This work establishes a paradigm for expanding the utility of the promising Ma PylRS/tRNAPyl GCE platform.
Collapse
Affiliation(s)
- Savanna Avila-Crump
- Oregon State University, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331, USA
| | - Marcus L. Hemshorn
- Oregon State University, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331, USA
| | - Chloe M. Jones
- Biochemistry and Molecular Biophysics Graduate Group; University of Pennsylvania; 3700 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Lea Mbengi
- Department of Chemistry, Portland State University, P.O. Box 751, Portland, Oregon 97207, USA
| | - Kyle Meyer
- Department of Chemistry, Portland State University, P.O. Box 751, Portland, Oregon 97207, USA
| | - Joshua A. Griffis
- Oregon State University, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331, USA
| | - Subhashis Jana
- Oregon State University, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331, USA
| | - Grace E. Petrina
- Oregon State University, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331, USA
| | - Vinayak V. Pagar
- Department of Chemistry; University of Pennsylvania; 231 South 34th Street; Philadelphia, PA 19104, USA
| | - P. Andrew Karplus
- Oregon State University, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331, USA
| | - E. James Petersson
- Department of Chemistry; University of Pennsylvania; 231 South 34th Street; Philadelphia, PA 19104, USA
| | - John J. Perona
- Department of Chemistry, Portland State University, P.O. Box 751, Portland, Oregon 97207, USA
| | - Ryan A. Mehl
- Oregon State University, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331, USA
| | - Richard B. Cooley
- Oregon State University, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331, USA
| |
Collapse
|
8
|
Tittle JM, Schwark DG, Biddle W, Schmitt MA, Fisk JD. Impact of queuosine modification of endogenous E. coli tRNAs on sense codon reassignment. Front Mol Biosci 2022; 9:938114. [PMID: 36120552 PMCID: PMC9471426 DOI: 10.3389/fmolb.2022.938114] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
The extent to which alteration of endogenous tRNA modifications may be exploited to improve genetic code expansion efforts has not been broadly investigated. Modifications of tRNAs are strongly conserved evolutionarily, but the vast majority of E. coli tRNA modifications are not essential. We identified queuosine (Q), a non-essential, hypermodified guanosine nucleoside found in position 34 of the anticodons of four E. coli tRNAs as a modification that could potentially be utilized to improve sense codon reassignment. One suggested purpose of queuosine modification is to reduce the preference of tRNAs with guanosine (G) at position 34 of the anticodon for decoding cytosine (C) ending codons over uridine (U) ending codons. We hypothesized that introduced orthogonal translation machinery with adenine (A) at position 34 would reassign U-ending codons more effectively in queuosine-deficient E. coli. We evaluated the ability of introduced orthogonal tRNAs with AUN anticodons to reassign three of the four U-ending codons normally decoded by Q34 endogenous tRNAs: histidine CAU, asparagine AAU, and aspartic acid GAU in the presence and absence of queuosine modification. We found that sense codon reassignment efficiencies in queuosine-deficient strains are slightly improved at Asn AAU, equivalent at His CAU, and less efficient at Asp GAU codons. Utilization of orthogonal pair-directed sense codon reassignment to evaluate competition events that do not occur in the standard genetic code suggests that tRNAs with inosine (I, 6-deaminated A) at position 34 compete much more favorably against G34 tRNAs than Q34 tRNAs. Continued evaluation of sense codon reassignment following targeted alterations to endogenous tRNA modifications has the potential to shed new light on the web of interactions that combine to preserve the fidelity of the genetic code as well as identify opportunities for exploitation in systems with expanded genetic codes.
Collapse
|
9
|
Mala P, Saraogi I. Enhanced Codon-Anticodon Interaction at In-Frame UAG Stop Codon Improves the Efficiency of Non-Natural Amino Acid Mutagenesis. ACS Chem Biol 2022; 17:1051-1060. [PMID: 35532803 DOI: 10.1021/acschembio.1c00782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The introduction of non-natural amino acids into proteins through the stop codon readthrough methodology has been used to design proteins for diverse applications. However, this method suffers from low yields of the modified protein, as the suppressor tRNA that recognizes the stop codon is unable to compete effectively with release factor 1 (RF1), which terminates translation. We reasoned that a suppressor tRNA with improved interaction with the UAG stop codon on the mRNA will be able to compete more effectively with RF1. To test this idea, we inserted two 2,6-diaminopurine (D) units in the tRNA anticodon stem loop, including one at the third position of the tRNA anticodon. The modified suppressor tRNA could potentially form additional H-bonds between the N2-exocyclic amine of D and the C2 carbonyl group of uracil, thereby enhancing mRNA-tRNA interaction and/or altering tRNA conformation. The stronger interaction at the codon-anticodon interface resulted in improved UAG decoding efficiency and a higher yield of the modified protein containing a non-natural amino acid at multiple sites. Our findings are consistent with the importance of hydrogen bonding and tRNA conformation at the tRNA-mRNA duplex interface during in-frame UAG suppression, which improves protein translation at multiple UAG stop sites. This work provides valuable inputs toward improved non-natural amino acid mutagenesis for creating designer proteins.
Collapse
Affiliation(s)
- Purnima Mala
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India
| | - Ishu Saraogi
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India
| |
Collapse
|
10
|
Biddle W, Schwark DG, Schmitt MA, Fisk JD. Directed Evolution Pipeline for the Improvement of Orthogonal Translation Machinery for Genetic Code Expansion at Sense Codons. Front Chem 2022; 10:815788. [PMID: 35252113 PMCID: PMC8891652 DOI: 10.3389/fchem.2022.815788] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/24/2022] [Indexed: 12/30/2022] Open
Abstract
The expansion of the genetic code beyond a single type of noncanonical amino acid (ncAA) is hindered by inefficient machinery for reassigning the meaning of sense codons. A major obstacle to using directed evolution to improve the efficiency of sense codon reassignment is that fractional sense codon reassignments lead to heterogeneous mixtures of full-length proteins with either a ncAA or a natural amino acid incorporated in response to the targeted codon. In stop codon suppression systems, missed incorporations lead to truncated proteins; improvements in activity may be inferred from increased protein yields or the production of downstream reporters. In sense codon reassignment, the heterogeneous proteins produced greatly complicate the development of screens for variants of the orthogonal machinery with improved activity. We describe the use of a previously-reported fluorescence-based screen for sense codon reassignment as the first step in a directed evolution workflow to improve the incorporation of a ncAA in response to the Arg AGG sense codon. We first screened a library with diversity introduced into both the orthogonal Methanocaldococcus jannaschii tyrosyl tRNA anticodon loop and the cognate aminoacyl tRNA synthetase (aaRS) anticodon binding domain for variants that improved incorporation of tyrosine in response to the AGG codon. The most efficient variants produced fluorescent proteins at levels indistinguishable from the E. coli translation machinery decoding tyrosine codons. Mutations to the M. jannaschii aaRS that were found to improve tyrosine incorporation were transplanted onto a M. jannaschii aaRS evolved for the incorporation of para-azidophenylalanine. Improved ncAA incorporation was evident using fluorescence- and mass-based reporters. The described workflow is generalizable and should enable the rapid tailoring of orthogonal machinery capable of activating diverse ncAAs to any sense codon target. We evaluated the selection based improvements of the orthogonal pair in a host genomically engineered for reduced target codon competition. Using this particular system for evaluation of arginine AGG codon reassignment, however, E. coli strains with genomes engineered to remove competing tRNAs did not outperform a standard laboratory E. coli strain in sense codon reassignment.
Collapse
|
11
|
Porter JJ, Heil CS, Lueck JD. Therapeutic promise of engineered nonsense suppressor tRNAs. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021; 12:e1641. [PMID: 33567469 PMCID: PMC8244042 DOI: 10.1002/wrna.1641] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022]
Abstract
Nonsense mutations change an amino acid codon to a premature termination codon (PTC) generally through a single-nucleotide substitution. The generation of a PTC results in a defective truncated protein and often in severe forms of disease. Because of the exceedingly high prevalence of nonsense-associated diseases and a unifying mechanism, there has been a concerted effort to identify PTC therapeutics. Most clinical trials for PTC therapeutics have been conducted with small molecules that promote PTC read through and incorporation of a near-cognate amino acid. However, there is a need for PTC suppression agents that recode PTCs with the correct amino acid while being applicable to PTC mutations in many different genomic landscapes. With these characteristics, a single therapeutic will be able to treat several disease-causing PTCs. In this review, we will focus on the use of nonsense suppression technologies, in particular, suppressor tRNAs (sup-tRNAs), as possible therapeutics for correcting PTCs. Sup-tRNAs have many attractive qualities as possible therapeutic agents although there are knowledge gaps on their function in mammalian cells and technical hurdles that need to be overcome before their promise is realized. This article is categorized under: RNA Processing > tRNA Processing Translation > Translation Regulation.
Collapse
Affiliation(s)
- Joseph J. Porter
- Department of Pharmacology and PhysiologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Christina S. Heil
- Department of Pharmacology and PhysiologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - John D. Lueck
- Department of Pharmacology and PhysiologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
- Department of NeurologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
| |
Collapse
|
12
|
Brauchi SE, Steinberg XP. Studying ion channel conformation dynamics by encoding coumarin as unnatural amino acid. Methods Enzymol 2021; 653:239-266. [PMID: 34099174 DOI: 10.1016/bs.mie.2021.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Monitoring the conformational changes of proteins is critical to understand their function. Ion channels are membrane-bound minute machines controlling the passage of ions across biological membranes. The precise labeling of ion channels with fluorescent probes allows studying their dynamics and facilitates their characterization by high-resolution optical techniques. Here we describe a protocol for the use of a small fluorescent reporter, incorporated by expansion of the genetic code in the host cell. An important advantage of using small probes is that they are less likely to perturb protein structure, function, and trafficking. In our hands, Tyr-coumarin proved to be useful to measure the conformational changes occurring in the narrow space of the permeation pathway in single capsaicin receptors. The method described here could be directly translated to the study of membrane receptors, non-electrogenic transporters, or membrane-bound enzymes.
Collapse
Affiliation(s)
- Sebastian E Brauchi
- Physiology Institute, Universidad Austral de Chile, Valdivia, Chile; Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Valdivia, Chile.
| | | |
Collapse
|
13
|
Galles GD, Infield DT, Mehl RA, Ahern CA. Selection and validation of orthogonal tRNA/synthetase pairs for the encoding of unnatural amino acids across kingdoms. Methods Enzymol 2021; 654:3-18. [PMID: 34120719 DOI: 10.1016/bs.mie.2021.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
As an increasing number of protein structures are resolved at atomic and near-atomic resolution, conventional amino acid mutagenesis may be insufficient to test many mechanistic hypotheses. As a result, the development of new tRNA/aminoacyl-tRNA synthetase (aaRS) pairs has become an important tool for determining intricate molecular interactions and understanding protein structures. This chapter describes in detail the directed evolution of new tRNA/aaRS pairs in Escherichia coli for the incorporation of non-canonical amino acids (ncAA). Section 1 describes the selection of new tRNA/aaRS pairs in E. coli. Section 2 details the use of a synthetase to incorporate an ncAA into a mammalian cell line, and Sections 1 and 2 both include methods on the determination of synthetase efficacy and fidelity.
Collapse
Affiliation(s)
- Grace D Galles
- Department of Molecular Physiology and Biophysics, University of Iowa College of Medicine, Iowa City, IA, United States; Unnatural Protein Facility, Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, United States
| | - Daniel T Infield
- Department of Molecular Physiology and Biophysics, University of Iowa College of Medicine, Iowa City, IA, United States
| | - Ryan A Mehl
- Unnatural Protein Facility, Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, United States
| | - Christopher A Ahern
- Department of Molecular Physiology and Biophysics, University of Iowa College of Medicine, Iowa City, IA, United States.
| |
Collapse
|
14
|
Manandhar M, Chun E, Romesberg FE. Genetic Code Expansion: Inception, Development, Commercialization. J Am Chem Soc 2021; 143:4859-4878. [DOI: 10.1021/jacs.0c11938] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Miglena Manandhar
- Synthorx, a Sanofi Company, La Jolla, California 92037, United States
| | - Eugene Chun
- Synthorx, a Sanofi Company, La Jolla, California 92037, United States
| | | |
Collapse
|
15
|
Harding CJ, Sutherland E, Hanna JG, Houston DR, Czekster CM. Bypassing the requirement for aminoacyl-tRNA by a cyclodipeptide synthase enzyme. RSC Chem Biol 2021; 2:230-240. [PMID: 33937777 PMCID: PMC8084100 DOI: 10.1039/d0cb00142b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 04/14/2021] [Accepted: 12/26/2020] [Indexed: 12/18/2022] Open
Abstract
Cyclodipeptide synthases (CDPSs) produce a variety of cyclic dipeptide products by utilising two aminoacylated tRNA substrates. We sought to investigate the minimal requirements for substrate usage in this class of enzymes as the relationship between CDPSs and their substrates remains elusive. Here, we investigated the Bacillus thermoamylovorans enzyme, BtCDPS, which synthesises cyclo(l-Leu-l-Leu). We systematically tested where specificity arises and, in the process, uncovered small molecules (activated amino esters) that will suffice as substrates, although catalytically poor. We solved the structure of BtCDPS to 1.7 Å and combining crystallography, enzymatic assays and substrate docking experiments propose a model for how the minimal substrates interact with the enzyme. This work is the first report of a CDPS enzyme utilizing a molecule other than aa-tRNA as a substrate; providing insights into substrate requirements and setting the stage for the design of improved simpler substrates.
Collapse
Affiliation(s)
- Christopher J Harding
- School of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews Fife KY16 9ST UK
| | - Emmajay Sutherland
- School of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews Fife KY16 9ST UK
| | - Jane G Hanna
- Arab Academy for Science, Technology, and Maritime Transport (AASTMT) Cairo Campus Egypt
| | - Douglas R Houston
- Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh Waddington 1 Building, King's Buildings Edinburgh EH9 3BF UK
| | - Clarissa M Czekster
- School of Biology, Biomedical Sciences Research Complex, University of St Andrews, St Andrews Fife KY16 9ST UK
| |
Collapse
|
16
|
Karbalaei-Heidari HR, Budisa N. Combating Antimicrobial Resistance With New-To-Nature Lanthipeptides Created by Genetic Code Expansion. Front Microbiol 2020; 11:590522. [PMID: 33250877 PMCID: PMC7674664 DOI: 10.3389/fmicb.2020.590522] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/13/2020] [Indexed: 01/10/2023] Open
Abstract
Due to the rapid emergence of multi-resistant bacterial strains in recent decades, the commercially available effective antibiotics are becoming increasingly limited. On the other hand, widespread antimicrobial peptides (AMPs) such as the lantibiotic nisin has been used worldwide for more than 40 years without the appearance of significant bacterial resistance. Lantibiotics are ribosomally synthesized antimicrobials generated by posttranslational modifications. Their biotechnological production is of particular interest to redesign natural scaffolds improving their pharmaceutical properties, which has great potential for therapeutic use in human medicine and other areas. However, conventional protein engineering methods are limited to 20 canonical amino acids prescribed by the genetic code. Therefore, the expansion of the genetic code as the most advanced approach in Synthetic Biology allows the addition of new amino acid building blocks (non-canonical amino acids, ncAAs) during protein translation. We now have solid proof-of-principle evidence that bioexpression with these novel building blocks enabled lantibiotics with chemical properties transcending those produced by natural evolution. The unique scaffolds with novel structural and functional properties are the result of this bioengineering. Here we will critically examine and evaluate the use of the expanded genetic code and its alternatives in lantibiotics research over the last 7 years. We anticipate that Synthetic Biology, using engineered lantibiotics and even more complex scaffolds will be a promising tool to address an urgent problem of antibiotic resistance, especially in a class of multi-drug resistant microbes known as superbugs.
Collapse
Affiliation(s)
- Hamid Reza Karbalaei-Heidari
- Department of Biology, Faculty of Sciences, Shiraz University, Shiraz, Iran
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | - Nediljko Budisa
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
- Institute of Chemistry, Technical University of Berlin, Berlin, Germany
| |
Collapse
|
17
|
A rationally designed orthogonal synthetase for genetically encoded fluorescent amino acids. Heliyon 2020; 6:e05140. [PMID: 33083608 PMCID: PMC7550906 DOI: 10.1016/j.heliyon.2020.e05140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 01/25/2023] Open
Abstract
The incorporation of non-canonical amino acids into proteins has emerged as a promising strategy to manipulate and study protein structure-function relationships with superior precision in vitro and in vivo. To date, fluorescent non-canonical amino acids (f-ncAA) have been successfully incorporated in proteins expressed in bacterial systems, Xenopus oocytes, and HEK-293T cells. Here, we describe the rational generation of a novel orthogonal aminoacyl-tRNA synthetase based on the E. coli tyrosine synthetase that is capable of encoding the f-ncAA tyr-coumarin in HEK-293T cells.
Collapse
|
18
|
Oscar BG, Zhu L, Wolfendeen H, Rozanov ND, Chang A, Stout KT, Sandwisch JW, Porter JJ, Mehl RA, Fang C. Dissecting Optical Response and Molecular Structure of Fluorescent Proteins With Non-canonical Chromophores. Front Mol Biosci 2020; 7:131. [PMID: 32733917 PMCID: PMC7358599 DOI: 10.3389/fmolb.2020.00131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 06/02/2020] [Indexed: 12/21/2022] Open
Abstract
Tracking the structural dynamics of fluorescent protein chromophores holds the key to unlocking the fluorescence mechanisms in real time and enabling rational design principles of these powerful and versatile bioimaging probes. By combining recent chemical biology and ultrafast spectroscopy advances, we prepared the superfolder green fluorescent protein (sfGFP) and its non-canonical amino acid (ncAA) derivatives with a single chlorine, bromine, and nitro substituent at the ortho site to the phenolate oxygen of the embedded chromophore, and characterized them using an integrated toolset of femtosecond transient absorption and tunable femtosecond stimulated Raman spectroscopy (FSRS), aided by quantum calculations of the vibrational normal modes. A dominant vibrational cooling time constant of ~4 and 11 ps is revealed in Cl-GFP and Br-GFP, respectively, facilitating a ~30 and 12% increase of the fluorescent quantum yield vs. the parent sfGFP. Similar time constants were also retrieved from the transient absorption spectra, substantiating the correlated electronic and vibrational motions on the intrinsic molecular timescales. Key carbon-halogen stretching motions coupled with phenolate ring motions of the deprotonated chromophores at ca. 908 and 890 cm-1 in Cl-GFP and Br-GFP exhibit enhanced activities in the electronic excited state and blue-shift during a distinct vibrational cooling process on the ps timescale. The retrieved structural dynamics change due to targeted site-specific halogenation of the chromophore thus provides an effective means to design new GFP derivatives and enrich the bioimaging probe toolset for life and medical sciences.
Collapse
Affiliation(s)
- Breland G. Oscar
- Department of Chemistry, Oregon State University, Corvallis, OR, United States
| | - Liangdong Zhu
- Department of Chemistry, Oregon State University, Corvallis, OR, United States
| | - Hayati Wolfendeen
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, United States
| | - Nikita D. Rozanov
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR, United States
| | - Alvin Chang
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR, United States
| | - Kenneth T. Stout
- Department of Chemistry, Oregon State University, Corvallis, OR, United States
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR, United States
| | - Jason W. Sandwisch
- Department of Chemistry, Oregon State University, Corvallis, OR, United States
| | - Joseph J. Porter
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, United States
| | - Ryan A. Mehl
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, United States
| | - Chong Fang
- Department of Chemistry, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
19
|
Overcoming Near-Cognate Suppression in a Release Factor 1-Deficient Host with an Improved Nitro-Tyrosine tRNA Synthetase. J Mol Biol 2020; 432:4690-4704. [PMID: 32569745 DOI: 10.1016/j.jmb.2020.06.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/10/2020] [Accepted: 06/13/2020] [Indexed: 12/15/2022]
Abstract
Genetic code expansion (GCE) technologies incorporate non-canonical amino acids (ncAAs) into proteins at amber stop codons. To avoid unwanted truncated protein and improve ncAA-protein yields, genomically recoded strains of Escherichia coli lacking Release Factor 1 (RF1) are becoming increasingly popular expression hosts for GCE applications. In the absence of RF1, however, endogenous near-cognate amber suppressing tRNAs can lead to contaminating protein forms with natural amino acids in place of the ncAA. Here, we show that a second-generation amino-acyl tRNA synthetase (aaRS)/tRNACUA pair for site-specific incorporation of 3-nitro-tyrosine could not outcompete near-cognate suppression in an RF1-deficient expression host and therefore could not produce homogenously nitrated protein. To resolve this, we used Rosetta to target positions in the nitroTyr aaRS active site for improved substrate binding, and then constructed of a small library of variants to subject to standard selection protocols. The top selected variant had an ~2-fold greater efficiency, and remarkably, this relatively small improvement enabled homogeneous incorporation of nitroTyr in an RF1-deficient expression host and thus eliminates truncation issues associated with typical RF1-containing expression hosts. Structural and biochemical data suggest the aaRS efficiency improvement is based on higher affinity substrate binding. Taken together, the modest improvement in aaRS efficiency provides a large practical impact and expands our ability to study the role protein nitration plays in disease development through producing homogenous, truncation-free nitroTyr-containing protein. This work establishes Rosetta-guided design and incremental aaRS improvement as a viable and accessible path to improve GCE systems challenged by truncation and/or near-cognate suppression issues.
Collapse
|
20
|
Chuawong P, Likittrakulwong W, Suebka S, Wiriyatanakorn N, Saparpakorn P, Taweesablamlert A, Sudprasert W, Hendrickson T, Svasti J. Anticodon-binding domain swapping in a nondiscriminating aspartyl-tRNA synthetase reveals contributions to tRNA specificity and catalytic activity. Proteins 2020; 88:1133-1142. [PMID: 32067260 DOI: 10.1002/prot.25881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 11/15/2019] [Accepted: 02/12/2020] [Indexed: 11/10/2022]
Abstract
The nondiscriminating aspartyl-tRNA synthetase (ND-AspRS), found in many archaea and bacteria, covalently attaches aspartic acid to tRNAAsp and tRNAAsn generating a correctly charged Asp-tRNAAsp and an erroneous Asp-tRNAAsn . This relaxed tRNA specificity is governed by interactions between the tRNA and the enzyme. In an effort to assess the contributions of the anticodon-binding domain to tRNA specificity, we constructed two chimeric enzymes, Chimera-D and Chimera-N, by replacing the native anticodon-binding domain in the Helicobacter pylori ND-AspRS with that of a discriminating AspRS (Chimera-D) and an asparaginyl-tRNA synthetase (AsnRS, Chimera-N), both from Escherichia coli. Both chimeric enzymes showed similar secondary structure compared to wild-type (WT) ND-AspRS and maintained the ability to form dimeric complexes in solution. Although less catalytically active than WT, Chimera-D was more discriminating as it aspartylated tRNAAsp over tRNAAsn with a specificity ratio of 7.0 compared to 2.9 for the WT enzyme. In contrast, Chimera-N exhibited low catalytic activity toward tRNAAsp and was unable to aspartylate tRNAAsn . The observed catalytic activities for the two chimeras correlate with their heterologous toxicity when expressed in E. coli. Molecular dynamics simulations show a reduced hydrogen bond network at the interface between the anticodon-binding domain and the catalytic domain in Chimera-N compared to Chimera-D or WT, explaining its lower stability and catalytic activity.
Collapse
Affiliation(s)
- Pitak Chuawong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Wirot Likittrakulwong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand.,Faculty of Agricultural Technology, Pibulsongkram Rajabhat University, Phitsanulok, Thailand
| | - Suwimon Suebka
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand.,Faculty of Science and Technology, Valaya Alongkorn Rajabhat University, Pathum Thani, Thailand
| | | | | | - Amata Taweesablamlert
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Wanwisa Sudprasert
- Department of Applied Radiation and Isotopes, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | | | - Jisnuson Svasti
- Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, Thailand
| |
Collapse
|
21
|
Crnković A, Vargas-Rodriguez O, Söll D. Plasticity and Constraints of tRNA Aminoacylation Define Directed Evolution of Aminoacyl-tRNA Synthetases. Int J Mol Sci 2019; 20:ijms20092294. [PMID: 31075874 PMCID: PMC6540133 DOI: 10.3390/ijms20092294] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 04/29/2019] [Accepted: 05/07/2019] [Indexed: 02/07/2023] Open
Abstract
Genetic incorporation of noncanonical amino acids (ncAAs) has become a powerful tool to enhance existing functions or introduce new ones into proteins through expanded chemistry. This technology relies on the process of nonsense suppression, which is made possible by directing aminoacyl-tRNA synthetases (aaRSs) to attach an ncAA onto a cognate suppressor tRNA. However, different mechanisms govern aaRS specificity toward its natural amino acid (AA) substrate and hinder the engineering of aaRSs for applications beyond the incorporation of a single l-α-AA. Directed evolution of aaRSs therefore faces two interlinked challenges: the removal of the affinity for cognate AA and improvement of ncAA acylation. Here we review aspects of AA recognition that directly influence the feasibility and success of aaRS engineering toward d- and β-AAs incorporation into proteins in vivo. Emerging directed evolution methods are described and evaluated on the basis of aaRS active site plasticity and its inherent constraints.
Collapse
Affiliation(s)
- Ana Crnković
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
| | - Oscar Vargas-Rodriguez
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
- Department of Chemistry, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
22
|
Chemla Y, Ozer E, Algov I, Alfonta L. Context effects of genetic code expansion by stop codon suppression. Curr Opin Chem Biol 2018; 46:146-155. [DOI: 10.1016/j.cbpa.2018.07.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 05/01/2018] [Accepted: 07/13/2018] [Indexed: 10/28/2022]
|
23
|
Muzika M, Muskat NH, Sarid S, Ben-David O, Mehl RA, Arbely E. Chemically-defined lactose-based autoinduction medium for site-specific incorporation of non-canonical amino acids into proteins. RSC Adv 2018; 8:25558-25567. [PMID: 30713681 PMCID: PMC6333248 DOI: 10.1039/c8ra04359k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/08/2018] [Indexed: 11/21/2022] Open
Abstract
Genetic code expansion technology enables the site-specific incorporation of dozens of non-canonical amino acids (NCAAs) into proteins expressed in live cells. The NCAAs can introduce various chemical functionalities into proteins, ranging from natural post-translational modifications, to spectroscopic probes and chemical handles for bioorthogonal reactions. These chemical groups provide powerful tools for structural, biochemical, and biophysical studies, which may require significant quantities of recombinantly expressed proteins. NCAAs are usually encoded by an in-frame stop codon, such as the TAG (amber) stop codon, which leads to the expression of C-terminally truncated proteins. In addition, the incubation medium should be supplemented with the NCAA at a final concentration of 1-10 mM, which may be challenging when the availability of the NCAA is limited. Hence, bacterial expression of proteins carrying NCAAs can benefit from improvement in protein yield per given amount of added NCAA. Here, we demonstrate the applicability of an optimized chemically-defined lactose-based autoinduction (AI) medium to the expression of proteins carrying a NCAA, using the archaeal pyrrolysyl-tRNA synthetase/tRNA pair from the Methanosarcina genus. Per given amount of added NCAA, the use of AI medium improved protein expression levels by up to 3-fold, compared to IPTG induction, without an increase in misincorporation of canonical amino acids in response to the in-frame stop codon. The suggested medium composition can be used with various Escherichia coli variants transformed with different expression vectors and incubated at different temperatures.
Collapse
Affiliation(s)
- Michael Muzika
- Department of Chemistry and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel. ; ; Tel: +972-(0)8-6428739
| | - Natali H Muskat
- Department of Chemistry and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel. ; ; Tel: +972-(0)8-6428739
| | - Shani Sarid
- Department of Chemistry and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel. ; ; Tel: +972-(0)8-6428739
| | - Oshrit Ben-David
- Department of Chemistry and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel. ; ; Tel: +972-(0)8-6428739
| | - Ryan A Mehl
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, 97331, Oregon, USA
| | - Eyal Arbely
- Department of Chemistry and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel. ; ; Tel: +972-(0)8-6428739
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| |
Collapse
|
24
|
Chen H, Venkat S, McGuire P, Gan Q, Fan C. Recent Development of Genetic Code Expansion for Posttranslational Modification Studies. Molecules 2018; 23:E1662. [PMID: 29986538 PMCID: PMC6100177 DOI: 10.3390/molecules23071662] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 12/29/2022] Open
Abstract
Nowadays advanced mass spectrometry techniques make the identification of protein posttranslational modifications (PTMs) much easier than ever before. A series of proteomic studies have demonstrated that large numbers of proteins in cells are modified by phosphorylation, acetylation and many other types of PTMs. However, only limited studies have been performed to validate or characterize those identified modification targets, mostly because PTMs are very dynamic, undergoing large changes in different growth stages or conditions. To overcome this issue, the genetic code expansion strategy has been introduced into PTM studies to genetically incorporate modified amino acids directly into desired positions of target proteins. Without using modifying enzymes, the genetic code expansion strategy could generate homogeneously modified proteins, thus providing powerful tools for PTM studies. In this review, we summarized recent development of genetic code expansion in PTM studies for research groups in this field.
Collapse
Affiliation(s)
- Hao Chen
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA.
| | - Sumana Venkat
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA.
| | - Paige McGuire
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA.
| | - Qinglei Gan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA.
| | - Chenguang Fan
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR 72701, USA.
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA.
| |
Collapse
|
25
|
Sungwienwong I, Hostetler ZM, Blizzard RJ, Porter JJ, Driggers CM, Mbengi LZ, Villegas JA, Speight LC, Saven JG, Perona JJ, Kohli RM, Mehl RA, Petersson EJ. Improving target amino acid selectivity in a permissive aminoacyl tRNA synthetase through counter-selection. Org Biomol Chem 2018; 15:3603-3610. [PMID: 28397914 DOI: 10.1039/c7ob00582b] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The amino acid acridon-2-ylalanine (Acd) can be a valuable probe of protein dynamics, either alone or as part of a Förster resonance energy transfer (FRET) or photo-induced electron transfer (eT) probe pair. We have previously reported the genetic incorporation of Acd by an aminoacyl tRNA synthetase (RS). However, this RS, developed from a library of permissive RSs, also incorporates N-phenyl-aminophenylalanine (Npf), a trace byproduct of one Acd synthetic route. We have performed negative selections in the presence of Npf and analyzed the selectivity of the resulting AcdRSs by in vivo protein expression and detailed kinetic analyses of the purified RSs. We find that selection conferred a ∼50-fold increase in selectivity for Acd over Npf, eliminating incorporation of Npf contaminants, and allowing one to use a high yielding Acd synthetic route for improved overall expression of Acd-containing proteins. More generally, our report also provides a cautionary tale on the use of permissive RSs, as well as a strategy for improving selectivity for the target amino acid.
Collapse
Affiliation(s)
- Itthipol Sungwienwong
- Department of Chemistry, University of Pennsylvania, 213 South 34th Street, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kean KM, Porter JJ, Mehl RA, Karplus PA. Structural insights into a thermostable variant of human carbonic anhydrase II. Protein Sci 2017; 27:573-577. [PMID: 29139171 DOI: 10.1002/pro.3347] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 11/07/2022]
Abstract
Carbonic anhydrase is an enzyme of interest for many biotechnological developments including carbon sequestration. These applications often require harsh conditions, so there is a need for the development of thermostable variants. One of the most thermostable human carbonic anhydrase II (HCAIIts) variants was patented in 2006. Here, we report the ultra-high resolution crystal structure of HCAIIts. The structural changes seen are consistent with each of the six mutations involved acting largely independently and variously resulting in increased H-bonding, improved packing, and reduced side chain entropy loss on folding to yield the increased stability. We further suggest that for four of the mutations, improvements in backbone conformational energetics is also a contributor and that considerations of such conformational propensities of individual amino acids are often overlooked.
Collapse
Affiliation(s)
- Kelsey M Kean
- Department of Biochemistry and Biophysics, 2011 Agriculture and Life Sciences Building, Oregon State University, Corvallis, Oregon, 97331
| | - Joseph J Porter
- Department of Biochemistry and Biophysics, 2011 Agriculture and Life Sciences Building, Oregon State University, Corvallis, Oregon, 97331
| | - Ryan A Mehl
- Department of Biochemistry and Biophysics, 2011 Agriculture and Life Sciences Building, Oregon State University, Corvallis, Oregon, 97331
| | - P Andrew Karplus
- Department of Biochemistry and Biophysics, 2011 Agriculture and Life Sciences Building, Oregon State University, Corvallis, Oregon, 97331
| |
Collapse
|
27
|
Zheng Y, Lajoie MJ, Italia JS, Chin MA, Church GM, Chatterjee A. Performance of optimized noncanonical amino acid mutagenesis systems in the absence of release factor 1. MOLECULAR BIOSYSTEMS 2017; 12:1746-9. [PMID: 27027374 DOI: 10.1039/c6mb00070c] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Site-specific incorporation of noncanonical amino acids (ncAAs) into proteins expressed in E. coli using UAG-suppression competes with termination mediated by release factor 1 (RF1). Recently, unconditional deletion of RF1 was achieved in a genomically recoded E. coli (C321), devoid of all endogenous UAG stop codons. Here we evaluate the efficiency of ncAA incorporation in this strain using optimized suppression vectors. Even though the absence of RF1 does not benefit the suppression efficiency of a single UAG codon, multi-site incorporation of a series of chemically distinct ncAAs was significantly improved.
Collapse
Affiliation(s)
- Yunan Zheng
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA.
| | - Marc J Lajoie
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA and Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - James S Italia
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA.
| | - Melissa A Chin
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA.
| | - George M Church
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Abhishek Chatterjee
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA.
| |
Collapse
|
28
|
Abstract
The genetic code-the language used by cells to translate their genomes into proteins that perform many cellular functions-is highly conserved throughout natural life. Rewriting the genetic code could lead to new biological functions such as expanding protein chemistries with noncanonical amino acids (ncAAs) and genetically isolating synthetic organisms from natural organisms and viruses. It has long been possible to transiently produce proteins bearing ncAAs, but stabilizing an expanded genetic code for sustained function in vivo requires an integrated approach: creating recoded genomes and introducing new translation machinery that function together without compromising viability or clashing with endogenous pathways. In this review, we discuss design considerations and technologies for expanding the genetic code. The knowledge obtained by rewriting the genetic code will deepen our understanding of how genomes are designed and how the canonical genetic code evolved.
Collapse
Affiliation(s)
- Takahito Mukai
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511;
| | - Marc J Lajoie
- Department of Biochemistry, University of Washington, Seattle, Washington 98195
| | - Markus Englert
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511;
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511; .,Department of Chemistry, Yale University, New Haven, Connecticut 06511
| |
Collapse
|
29
|
Reynolds NM, Vargas-Rodriguez O, Söll D, Crnković A. The central role of tRNA in genetic code expansion. Biochim Biophys Acta Gen Subj 2017; 1861:3001-3008. [PMID: 28323071 DOI: 10.1016/j.bbagen.2017.03.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 03/14/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND The development of orthogonal translation systems (OTSs) for genetic code expansion (GCE) has allowed for the incorporation of a diverse array of non-canonical amino acids (ncAA) into proteins. Transfer RNA, the central molecule in the translation of the genetic message into proteins, plays a significant role in the efficiency of ncAA incorporation. SCOPE OF REVIEW Here we review the biochemical basis of OTSs for genetic code expansion. We focus on the role of tRNA and discuss strategies used to engineer tRNA for the improvement of ncAA incorporation into proteins. MAJOR CONCLUSIONS The engineering of orthogonal tRNAs for GCE has significantly improved the incorporation of ncAAs. However, there are numerous unintended consequences of orthogonal tRNA engineering that cannot be predicted ab initio. GENERAL SIGNIFICANCE Genetic code expansion has allowed for the incorporation of a great diversity of ncAAs and novel chemistries into proteins, making significant contributions to our understanding of biological molecules and interactions. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue.
Collapse
Affiliation(s)
- Noah M Reynolds
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA.
| | - Oscar Vargas-Rodriguez
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA; Department of Chemistry, Yale University, New Haven, CT 06520-8114, USA
| | - Ana Crnković
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA.
| |
Collapse
|
30
|
Rauch BJ, Klimek J, David L, Perona JJ. Persulfide Formation Mediates Cysteine and Homocysteine Biosynthesis in Methanosarcina acetivorans. Biochemistry 2017; 56:1051-1061. [PMID: 28165724 DOI: 10.1021/acs.biochem.6b00931] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The mechanisms of sulfur uptake and trafficking in methanogens inhabiting sulfidic environments are highly distinctive. In aerobes, sulfur transfers between proteins occur via persulfide relay, but direct evidence for persulfides in methanogens has been lacking. Here, we use mass spectrometry to analyze tryptic peptides of the Methanosarcina acetivorans SepCysS and MA1821 proteins purified anaerobically from methanogen cells. These enzymes insert sulfide into phosphoseryl(Sep)-tRNACys and aspartate semialdehyde, respectively, to form Cys-tRNACys and homocysteine. A high frequency of persulfidation at conserved cysteines of each protein was identified, while the substantial presence of persulfides in peptides from other cellular proteins suggests that this modification plays a general physiological role in the organism. Purified native SepCysS containing persulfide at conserved Cys260 generates Cys-tRNACys in anaerobic single-turnover reactions without exogenously added sulfur, directly linking active-site persulfide formation in vivo with catalytic activity.
Collapse
Affiliation(s)
- Benjamin J Rauch
- Department of Chemistry, Portland State University , P.O. Box 751, Portland, Oregon 97207, United States.,Department of Biochemistry and Molecular Biology, Oregon Health and Sciences University , 3181 Southwest Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - John Klimek
- Department of Biochemistry and Molecular Biology, Oregon Health and Sciences University , 3181 Southwest Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Larry David
- Department of Biochemistry and Molecular Biology, Oregon Health and Sciences University , 3181 Southwest Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - John J Perona
- Department of Chemistry, Portland State University , P.O. Box 751, Portland, Oregon 97207, United States.,Department of Biochemistry and Molecular Biology, Oregon Health and Sciences University , 3181 Southwest Sam Jackson Park Road, Portland, Oregon 97239, United States
| |
Collapse
|