1
|
InvL, an Invasin-Like Adhesin, Is a Type II Secretion System Substrate Required for Acinetobacter baumannii Uropathogenesis. mBio 2022; 13:e0025822. [PMID: 35638734 PMCID: PMC9245377 DOI: 10.1128/mbio.00258-22] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Acinetobacter baumannii is an opportunistic pathogen of growing concern, as isolates are commonly multidrug resistant. While A. baumannii is most frequently associated with pulmonary infections, a significant proportion of clinical isolates come from urinary sources, highlighting its uropathogenic potential. The type II secretion system (T2SS) of commonly used model Acinetobacter strains is important for virulence in various animal models, but the potential role of the T2SS in urinary tract infection (UTI) remains unknown. Here, we used a catheter-associated UTI (CAUTI) model to demonstrate that a modern urinary isolate, UPAB1, requires the T2SS for full virulence. A proteomic screen to identify putative UPAB1 T2SS effectors revealed an uncharacterized lipoprotein with structural similarity to the intimin-invasin family, which serve as type V secretion system (T5SS) adhesins required for the pathogenesis of several bacteria. This protein, designated InvL, lacked the β-barrel domain associated with T5SSs but was confirmed to require the T2SS for both surface localization and secretion. This makes InvL the first identified T2SS effector belonging to the intimin-invasin family. InvL was confirmed to be an adhesin, as the protein bound to extracellular matrix components and mediated adhesion to urinary tract cell lines in vitro. Additionally, the invL mutant was attenuated in the CAUTI model, indicating a role in Acinetobacter uropathogenesis. Finally, bioinformatic analyses revealed that InvL is present in nearly all clinical isolates belonging to international clone 2, a lineage of significant clinical importance. In all, we conclude that the T2SS substrate InvL is an adhesin required for A. baumannii uropathogenesis. IMPORTANCE While pathogenic Acinetobacter can cause various infections, we recently found that 20% of clinical isolates come from urinary sources. Despite the clinical relevance of Acinetobacter as a uropathogen, few virulence factors involved in urinary tract colonization have been defined. Here, we identify a novel type II secretion system effector, InvL, which is required for full uropathogenesis by a modern urinary isolate. Although InvL has predicted structural similarity to the intimin-invasin family of autotransporter adhesins, InvL is predicted to be anchored to the membrane as a lipoprotein. Similar to other invasin homologs, however, we demonstrate that InvL is a bona fide adhesin capable of binding extracellular matrix components and mediating adhesion to urinary tract cell lines. In all, this work establishes InvL as an adhesin important for Acinetobacter's urinary tract virulence and represents the first report of a type II secretion system effector belonging to the intimin-invasin family.
Collapse
|
2
|
Adolf A, Rohrbeck A, Münster-Wandowski A, Johansson M, Kuhn HG, Kopp MA, Brommer B, Schwab JM, Just I, Ahnert-Hilger G, Höltje M. Release of astroglial vimentin by extracellular vesicles: Modulation of binding and internalization of C3 transferase in astrocytes and neurons. Glia 2018; 67:703-717. [PMID: 30485542 DOI: 10.1002/glia.23566] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/15/2018] [Accepted: 10/19/2018] [Indexed: 12/24/2022]
Abstract
Clostridium botulinum C3 transferase (C3bot) ADP-ribosylates rho proteins to change cellular functions in a variety of cell types including astrocytes and neurons. The intermediate filament protein vimentin as well as transmembrane integrins are involved in internalization of C3bot into cells. The exact contribution, however, of these proteins to binding of C3bot to the cell surface and subsequent cellular uptake remains to be unraveled. By comparing primary astrocyte cultures derived from wild-type with Vim-/- mice, we demonstrate that astrocytes lacking vimentin exhibited a delayed ADP-ribosylation of rhoA concurrent with a blunted morphological response. This functional impairment was rescued by the extracellular excess of recombinant vimentin. Binding assays using C3bot harboring a mutated integrin-binding RGD motif (C3bot-G89I) revealed the involvement of integrins in astrocyte binding of C3bot. Axonotrophic effects of C3bot are vimentin dependent and postulate an underlying mechanism entertaining a molecular cross-talk between astrocytes and neurons. We present functional evidence for astrocytic release of vimentin by exosomes using an in vitro scratch wound model. Exosomal vimentin+ particles released from wild-type astrocytes promote the interaction of C3bot with neuronal membranes. This effect vanished when culturing Vim-/- astrocytes. Specificity of these findings was confirmed by recombinant vimentin propagating enhanced binding of C3bot to synaptosomes from rat spinal cord and mouse brain. We hypothesize that vimentin+ exosomes released by reactive astrocytes provide a novel molecular mechanism constituting axonotrophic (neuroprotective) and plasticity augmenting effects of C3bot after spinal cord injury.
Collapse
Affiliation(s)
- Andrej Adolf
- Institute of Integrative Neuroanatomy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Astrid Rohrbeck
- Institute of Toxicology, Hannover Medical School (MHH), Hanover, Germany
| | - Agnieszka Münster-Wandowski
- Institute of Integrative Neuroanatomy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Malin Johansson
- Department of Clinical Neuroscience at Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Hans-Georg Kuhn
- Department of Clinical Neuroscience at Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.,Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Marcel Alexander Kopp
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin Institute of Health, QUEST - Center for Transforming Biomedical Research, Berlin, Germany
| | - Benedikt Brommer
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jan Markus Schwab
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Paraplegiology (Spinal Cord Injury Division), Belford Spinal Cord Injury Center, Departments of Neurology, Neuroscience and Physical Medicine and Rehabilitation, The Neurological Institute, The Ohio State University, Wexner Medical Center, Columbus, Ohio
| | - Ingo Just
- Institute of Toxicology, Hannover Medical School (MHH), Hanover, Germany
| | - Gudrun Ahnert-Hilger
- Institute of Integrative Neuroanatomy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Markus Höltje
- Institute of Integrative Neuroanatomy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
3
|
Zhang K, Griffiths G, Repnik U, Hornef M. Seeing is understanding: Salmonella's way to penetrate the intestinal epithelium. Int J Med Microbiol 2017; 308:97-106. [PMID: 28939439 DOI: 10.1016/j.ijmm.2017.09.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/06/2017] [Accepted: 09/11/2017] [Indexed: 02/06/2023] Open
Abstract
The molecular processes that govern host-microbial interaction illustrate not only the sophisticated and multifaceted mechanisms that protect the host from infection, but also the elaborated features of microbial pathogens that have evolved to overcome or evade the host's immune system. Here we focus on Salmonella that like other enteric pathogens must overcome the intestinal mucosal immune system, a surface constantly on alert and evolved to restrict the enteric microbiota. We discuss the initial step of Salmonella infection, the penetration of the intestinal epithelial barrier and the models used to study this fascinating aspect of microbial pathogenesis.
Collapse
Affiliation(s)
- Kaiyi Zhang
- Institute of Medical Microbiology, RWTH University Hospital Aachen, Aachen, Germany
| | | | - Urska Repnik
- Department of Biosciences, University of Oslo, Oslo, Norway.
| | - Mathias Hornef
- Institute of Medical Microbiology, RWTH University Hospital Aachen, Aachen, Germany.
| |
Collapse
|
4
|
Rohrbeck A, Höltje M, Adolf A, Oms E, Hagemann S, Ahnert-Hilger G, Just I. The Rho ADP-ribosylating C3 exoenzyme binds cells via an Arg-Gly-Asp motif. J Biol Chem 2017; 292:17668-17680. [PMID: 28882889 PMCID: PMC5663871 DOI: 10.1074/jbc.m117.798231] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/28/2017] [Indexed: 12/11/2022] Open
Abstract
The Rho ADP-ribosylating C3 exoenzyme (C3bot) is a bacterial protein toxin devoid of a cell-binding or -translocation domain. Nevertheless, C3 can efficiently enter intact cells, including neurons, but the mechanism of C3 binding and uptake is not yet understood. Previously, we identified the intermediate filament vimentin as an extracellular membranous interaction partner of C3. However, uptake of C3 into cells still occurs (although reduced) in the absence of vimentin, indicating involvement of an additional host cell receptor. C3 harbors an Arg–Gly–Asp (RGD) motif, which is the major integrin-binding site, present in a variety of integrin ligands. To check whether the RGD motif of C3 is involved in binding to cells, we performed a competition assay with C3 and RGD peptide or with a monoclonal antibody binding to β1-integrin subunit and binding assays in different cell lines, primary neurons, and synaptosomes with C3-RGD mutants. Here, we report that preincubation of cells with the GRGDNP peptide strongly reduced C3 binding to cells. Moreover, mutation of the RGD motif reduced C3 binding to intact cells and also to recombinant vimentin. Anti-integrin antibodies also lowered the C3 binding to cells. Our results indicate that the RGD motif of C3 is at least one essential C3 motif for binding to host cells and that integrin is an additional receptor for C3 besides vimentin.
Collapse
Affiliation(s)
- Astrid Rohrbeck
- From the Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625 Hannover and
| | - Markus Höltje
- the Institute of Integrative Neuroanatomy, Charité-Universitätsmedizin, D-10115 Berlin, Germany
| | - Andrej Adolf
- the Institute of Integrative Neuroanatomy, Charité-Universitätsmedizin, D-10115 Berlin, Germany
| | - Elisabeth Oms
- From the Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625 Hannover and
| | - Sandra Hagemann
- From the Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625 Hannover and
| | - Gudrun Ahnert-Hilger
- the Institute of Integrative Neuroanatomy, Charité-Universitätsmedizin, D-10115 Berlin, Germany
| | - Ingo Just
- From the Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625 Hannover and
| |
Collapse
|
5
|
Sankaran S, Cavatorta E, Huskens J, Jonkheijm P. Cell Adhesion on RGD-Displaying Knottins with Varying Numbers of Tryptophan Amino Acids to Tune the Affinity for Assembly on Cucurbit[8]uril Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:8813-8820. [PMID: 28514856 PMCID: PMC5588093 DOI: 10.1021/acs.langmuir.7b00702] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/08/2017] [Indexed: 06/07/2023]
Abstract
Cell adhesion is studied on multivalent knottins, displaying RGD ligands with a high affinity for integrin receptors, that are assembled on CB[8]-methylviologen-modified surfaces. The multivalency in the knottins stems from the number of tryptophan amino acid moieties, between 0 and 4, that can form a heteroternary complex with cucurbit[8]uril (CB[8]) and surface-tethered methylviologen (MV2+). The binding affinity of the knottins with CB[8] and MV2+ surfaces was evaluated using surface plasmon resonance spectroscopy. Specific binding occurred, and the affinity increased with the valency of tryptophans on the knottin. Additionally, increased multilayer formation was observed, attributed to homoternary complex formation between tryptophan residues of different knottins and CB[8]. Thus, we were able to control the surface coverage of the knottins by valency and concentration. Cell experiments with mouse myoblast (C2C12) cells on the self-assembled knottin surfaces showed specific integrin recognition by the RGD-displaying knottins. Moreover, cells were observed to elongate more on the supramolecular knottin surfaces with a higher valency, and in addition, more pronounced focal adhesion formation was observed on the higher-valency knottin surfaces. We attribute this effect to the enhanced coverage and the enhanced affinity of the knottins in their interaction with the CB[8] surface. Collectively, these results are promising for the development of biomaterials including knottins via CB[8] ternary complexes for tunable interactions with cells.
Collapse
Affiliation(s)
- Shrikrishnan Sankaran
- Molecular
Nanofabrication Group, MESA+ Institute for Nanotechnology, Department
of Science and Technology and Bioinspired Molecular Engineering Laboratory, MIRA
Institute for Biomedical Technology and Technical Medicine and Molecular
Nanofabrication Group, MESA+ Institute for Nanotechnology, Department
of Science and Technology, University of
Twente, 7500 AE Enschede, The Netherlands
| | - Emanuela Cavatorta
- Molecular
Nanofabrication Group, MESA+ Institute for Nanotechnology, Department
of Science and Technology and Bioinspired Molecular Engineering Laboratory, MIRA
Institute for Biomedical Technology and Technical Medicine and Molecular
Nanofabrication Group, MESA+ Institute for Nanotechnology, Department
of Science and Technology, University of
Twente, 7500 AE Enschede, The Netherlands
| | - Jurriaan Huskens
- Molecular
Nanofabrication Group, MESA+ Institute for Nanotechnology, Department
of Science and Technology and Bioinspired Molecular Engineering Laboratory, MIRA
Institute for Biomedical Technology and Technical Medicine and Molecular
Nanofabrication Group, MESA+ Institute for Nanotechnology, Department
of Science and Technology, University of
Twente, 7500 AE Enschede, The Netherlands
| | - Pascal Jonkheijm
- Molecular
Nanofabrication Group, MESA+ Institute for Nanotechnology, Department
of Science and Technology and Bioinspired Molecular Engineering Laboratory, MIRA
Institute for Biomedical Technology and Technical Medicine and Molecular
Nanofabrication Group, MESA+ Institute for Nanotechnology, Department
of Science and Technology, University of
Twente, 7500 AE Enschede, The Netherlands
| |
Collapse
|
6
|
Sonntag MH, Schill J, Brunsveld L. Integrin-Targeting Fluorescent Proteins: Exploration of RGD Insertion Sites. Chembiochem 2017; 18:441-443. [PMID: 28004511 PMCID: PMC5347895 DOI: 10.1002/cbic.201600514] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Indexed: 11/07/2022]
Abstract
The potential of the fluorescent protein scaffold to control peptide sequence functionality is illustrated by an exploration of fluorescent proteins as novel probes for targeting integrins. A library of fluorescent mCitrine proteins with RGD motifs incorporated at several positions in loops within the protein main chain was generated and characterized. Amino acid mutations to RGD as well as RGD insertions were evaluated: both led to constructs with typical mCitrine fluorescent properties. Screening experiments against four human integrin receptors revealed two strong‐binding constructs and two selective integrin binders. The effect of the site of RGD incorporation illustrates the importance of the protein scaffold on RGD sequence functionality, leading to fluorescent protein constructs with the potential for selective integrin targeting.
Collapse
Affiliation(s)
- Michael H. Sonntag
- Laboratory of Chemical BiologyInstitute of Complex Molecular SystemsDepartment of Biomedical EngineeringEindhoven University of TechnologyDen Dolech 25612 AZEindhovenThe Netherlands
| | - Jurgen Schill
- Laboratory of Chemical BiologyInstitute of Complex Molecular SystemsDepartment of Biomedical EngineeringEindhoven University of TechnologyDen Dolech 25612 AZEindhovenThe Netherlands
| | - Luc Brunsveld
- Laboratory of Chemical BiologyInstitute of Complex Molecular SystemsDepartment of Biomedical EngineeringEindhoven University of TechnologyDen Dolech 25612 AZEindhovenThe Netherlands
| |
Collapse
|