1
|
Mukherjee D, Sen S, Jana A, Ghosh S, Jash M, Singh M, Ghosh S, Mukherjee N, Roy R, Dey T, Manoharan S, Ghosh S, Sarkar J. Emergence of an unconventional Enterobacter cloacae-derived Iturin A C-15 as a potential therapeutic agent against methicillin-resistant Staphylococcus aureus. Arch Microbiol 2024; 207:20. [PMID: 39738879 DOI: 10.1007/s00203-024-04226-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/02/2025]
Abstract
Antimicrobial resistance poses a significant global health threat by reducing the effectiveness of conventional antibiotics, particularly against pathogens like Methicillin-resistant Staphylococcus aureus (MRSA). This study investigates the antimicrobial potential of rhizospheric soil bacteria from Prosopis cineraria (Sangri) in the Thar Desert. Bacterial strains isolated from these samples were observed to produce secondary metabolites, notably, Iturin A C-15 cyclic lipopeptide (SS1-3-P) which was extracted from strain Enterobacter cloacae SS1-3 and was purified and characterized using reverse-phase HPLC, ESI-LC/MS, Nile-Red Assay, and FT-IR analysis. The presence of the Iturin A biosynthetic gene cluster was confirmed using gene-specific polymerase chain reaction and the biocompatibility of the purified product was assessed on HEK-293, WI38, and human RBCs. The potential of SS1-3-P to bind to and destroy MRSA membranes was validated using molecular dynamics simulation along with membranolysis and membrane depolarization assays. Antimicrobial assays like growth curve analysis, field emission scanning electron microscopy, and ROS generation confirmed the efficacy of SS1-3-P against clinical MRSA. Furthermore, the antibiofilm and anti-virulence properties of SS1-3-P were studied meticulously. Studies on NIH/3T3 cell lines and a murine excisional wound model showed significant wound-healing attributes of the lipopeptide. These results highlight the potential of desert ecosystems in developing effective antimicrobial therapies against recalcitrant nosocomial pathogens like MRSA.
Collapse
Affiliation(s)
- Dipro Mukherjee
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan, 342030, India
| | - Samya Sen
- iHUB Drishti Foundation, Indian Institute of Technology, Jodhpur, Rajasthan, India
| | - Aniket Jana
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan, India
| | - Surojit Ghosh
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan, India
| | - Moumita Jash
- iHUB Drishti Foundation, Indian Institute of Technology, Jodhpur, Rajasthan, India
| | - Monika Singh
- Centre for Research and Development of Scientific Instruments (CRDSI), Indian Institute of Technology, Jodhpur, Rajasthan, 342030, India
| | - Satyajit Ghosh
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan, 342030, India
| | - Nabanita Mukherjee
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan, India
| | - Rajsekhar Roy
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan, 342030, India
| | - Tamal Dey
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan, 342030, India
| | - Shankar Manoharan
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan, 342030, India
| | - Surajit Ghosh
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan, 342030, India.
- iHUB Drishti Foundation, Indian Institute of Technology, Jodhpur, Rajasthan, India.
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan, India.
| | - Jayita Sarkar
- Centre for Research and Development of Scientific Instruments (CRDSI), Indian Institute of Technology, Jodhpur, Rajasthan, 342030, India.
| |
Collapse
|
2
|
Sheridan MS, Pandey P, Hansmann UHE. In Bacterial Membranes Lipid II Changes the Stability of Pores Formed by the Antimicrobial Peptide Nisin. J Phys Chem B 2024; 128:4741-4750. [PMID: 38696215 PMCID: PMC11104519 DOI: 10.1021/acs.jpcb.4c01249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Resistance to available antibiotics poses a growing challenge to modern medicine, as this often disallows infections to be controlled. This problem can only be alleviated by the development of new drugs. Nisin, a natural lantibiotic with broad antimicrobial activity, has shown promise as a potential candidate for combating antibiotic-resistant bacteria. However, nisin is poorly soluble and barely stable at physiological pH, which despite attempts to address these issues through mutant design has restricted its use as an antibacterial drug. Therefore, gaining a deeper understanding of the antimicrobial effectiveness, which relies in part on its ability to form pores, is crucial for finding innovative ways to manage infections caused by resistant bacteria. Using large-scale molecular dynamics simulations, we find that the bacterial membrane-specific lipid II increases the stability of pores formed by nisin and that the interplay of nisin and lipid II reduces the overall integrity of bacterial membranes by changing the local thickness and viscosity.
Collapse
Affiliation(s)
- Miranda S. Sheridan
- Department of Chemistry & Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| | - Preeti Pandey
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Ulrich H. E. Hansmann
- Department of Chemistry & Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| |
Collapse
|
3
|
Sharma P, Vaiwala R, Gopinath AK, Chockalingam R, Ayappa KG. Structure of the Bacterial Cell Envelope and Interactions with Antimicrobials: Insights from Molecular Dynamics Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7791-7811. [PMID: 38451026 DOI: 10.1021/acs.langmuir.3c03474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Bacteria have evolved over 3 billion years, shaping our intrinsic and symbiotic coexistence with these single-celled organisms. With rising populations of drug-resistant strains, the search for novel antimicrobials is an ongoing area of research. Advances in high-performance computing platforms have led to a variety of molecular dynamics simulation strategies to study the interactions of antimicrobial molecules with different compartments of the bacterial cell envelope of both Gram-positive and Gram-negative species. In this review, we begin with a detailed description of the structural aspects of the bacterial cell envelope. Simulations concerned with the transport and associated free energy of small molecules and ions through the outer membrane, peptidoglycan, inner membrane and outer membrane porins are discussed. Since surfactants are widely used as antimicrobials, a section is devoted to the interactions of surfactants with the cell wall and inner membranes. The review ends with a discussion on antimicrobial peptides and the insights gained from the molecular simulations on the free energy of translocation. Challenges involved in developing accurate molecular models and coarse-grained strategies that provide a trade-off between atomic details with a gain in sampling time are highlighted. The need for efficient sampling strategies to obtain accurate free energies of translocation is also discussed. Molecular dynamics simulations have evolved as a powerful tool that can potentially be used to design and develop novel antimicrobials and strategies to effectively treat bacterial infections.
Collapse
Affiliation(s)
- Pradyumn Sharma
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India, 560012
| | - Rakesh Vaiwala
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India, 560012
| | - Amar Krishna Gopinath
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India, 560012
| | - Rajalakshmi Chockalingam
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India, 560012
| | - K Ganapathy Ayappa
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, Karnataka, India, 560012
| |
Collapse
|
4
|
Princiotto S, Casciaro B, G Temprano A, Musso L, Sacchi F, Loffredo MR, Cappiello F, Sacco F, Raponi G, Fernandez VP, Iucci T, Mangoni ML, Mori M, Dallavalle S, Pisano C. The antimicrobial potential of adarotene derivatives against Staphylococcus aureus strains. Bioorg Chem 2024; 145:107227. [PMID: 38387400 DOI: 10.1016/j.bioorg.2024.107227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024]
Abstract
Multidrug-resistant (MDR) pathogens are severely impacting our ability to successfully treat common infections. Here we report the synthesis of a panel of adarotene-related retinoids showing potent antimicrobial activity on Staphylococcus aureus strains (including multidrug-resistant ones). Fluorescence and molecular dynamic studies confirmed that the adarotene analogues were able to induce conformational changes and disfunctions to the cell membrane, perturbing the permeability of the phospholipid bilayer. Since the major obstacle for developing retinoids is their potential cytotoxicity, a selected candidate was further investigated to evaluate its activity on a panel of human cell lines. The compound was found to be well tolerated, with IC50 5-15-fold higher than the MIC on S. aureus strains. Furthermore, the adarotene analogue had a good pharmacokinetic profile, reaching a plasma concentration of about 6 μM after 0.5 h after administration (150 mg/kg), at least twice the MIC observed against various bacterial strains. Moreover, it was demonstrated that the compound potentiated the growth-inhibitory effect of the poorly bioavailable rifaximin, when used in combination. Overall, the collected data pave the way for the development of synthetic retinoids as potential therapeutics for hard-to-treat infectious diseases caused by antibiotic-resistant Gram-positive pathogens.
Collapse
Affiliation(s)
- Salvatore Princiotto
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy
| | - Bruno Casciaro
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Alvaro G Temprano
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, Biomedical Research Institute of Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain
| | - Loana Musso
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy
| | - Francesca Sacchi
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy
| | - Maria Rosa Loffredo
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Floriana Cappiello
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Federica Sacco
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | - Giammarco Raponi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | | | | | - Maria Luisa Mangoni
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Mattia Mori
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Sabrina Dallavalle
- Department of Food, Environmental and Nutritional Sciences, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy.
| | | |
Collapse
|
5
|
Madsen JJ, Yu W. Dynamic Nature of Staphylococcus aureus Type I Signal Peptidases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576923. [PMID: 38328037 PMCID: PMC10849702 DOI: 10.1101/2024.01.23.576923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Molecular dynamics simulations are used to interrogate the dynamic nature of Staphylococcus aureus Type I signal peptidases, SpsA and SpsB, including the impact of the P29S mutation of SpsB. Fluctuations and plasticity- rigidity characteristics vary among the proteins, particularly in the extracellular domain. Intriguingly, the P29S mutation, which influences susceptibility to arylomycin antibiotics, affect the mechanically coupled motions in SpsB. The integrity of the active site is crucial for catalytic competency, and variations in sampled structural conformations among the proteins are consistent with diverse peptidase capabilities. We also explored the intricate interactions between the proteins and the model S. aureus membrane. It was observed that certain membrane-inserted residues in the loop around residue 50 (50s) and C-terminal loops, beyond the transmembrane domain, give rise to direct interactions with lipids in the bilayer membrane. Our findings are discussed in the context of functional knowledge about these signal peptidases, offering additional understanding of dynamic aspects relevant to some cellular processes with potential implications for drug targeting strategies.
Collapse
Affiliation(s)
- Jesper J. Madsen
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, United States of America
- Center for Global Health and Infectious Diseases Research, Global and Planetary Health, College of Public Health, University of South Florida, Tampa, Florida 33612, United States of America
| | - Wenqi Yu
- Department of Molecular Biosciences, College of Arts and Sciences, University of South Florida, Tampa, Florida 33612, United States of America
| |
Collapse
|
6
|
Luyet C, Elvati P, Vinh J, Violi A. Low-THz Vibrations of Biological Membranes. MEMBRANES 2023; 13:membranes13020139. [PMID: 36837641 PMCID: PMC9965665 DOI: 10.3390/membranes13020139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/04/2023] [Accepted: 01/17/2023] [Indexed: 05/12/2023]
Abstract
A growing body of work has linked key biological activities to the mechanical properties of cellular membranes, and as a means of identification. Here, we present a computational approach to simulate and compare the vibrational spectra in the low-THz region for mammalian and bacterial membranes, investigating the effect of membrane asymmetry and composition, as well as the conserved frequencies of a specific cell. We find that asymmetry does not impact the vibrational spectra, and the impact of sterols depends on the mobility of the components of the membrane. We demonstrate that vibrational spectra can be used to distinguish between membranes and, therefore, could be used in identification of different organisms. The method presented, here, can be immediately extended to other biological structures (e.g., amyloid fibers, polysaccharides, and protein-ligand structures) in order to fingerprint and understand vibrations of numerous biologically-relevant nanoscale structures.
Collapse
Affiliation(s)
- Chloe Luyet
- Chemical Engineering, University of Michigan, Ann Arbor, MI 48109-2125, USA
| | - Paolo Elvati
- Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109-2125, USA
| | - Jordan Vinh
- Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109-2125, USA
| | - Angela Violi
- Chemical Engineering, University of Michigan, Ann Arbor, MI 48109-2125, USA
- Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109-2125, USA
- Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109-2125, USA
- Correspondence:
| |
Collapse
|
7
|
Greenfield ML, Martin LM, Joodaki F. Computing Individual Area per Head Group Reveals Lipid Bilayer Dynamics. J Phys Chem B 2022; 126:10697-10711. [PMID: 36475708 DOI: 10.1021/acs.jpcb.2c04633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lipid bilayers express a range of phases from solid-like to gel-like to liquid-like as a function of temperature and lipid surface concentration. The area occupied per lipid head group serves as one useful indicator of the bilayer phase, in conjunction with the two-dimensional radial distribution function (i.e., structure factor) within the bilayer. Typically, the area per head group is determined by dividing the bilayer area equally among all head groups. Such an approach is less satisfactory for a multicomponent set of diverse lipids. In this work, area determination is performed on a lipid-by-lipid basis by attributing to a lipid the volume that surrounds each atom. Voronoi tessellation provides this division of the interfacial region on a per-atom basis. The method is applied to a multicomponent system of water, NaCl, and 19 phospholipid types that was devised recently [Langmuir2022, 38, 9481-9499] as a computational representation of the Gram-positive Staphylococcus aureus phospholipid bilayer. Results demonstrate that lipids and water molecules occupy similar extents of area within the interfacial region; ascribing area only to head groups implicitly incorporates assumptions about head group hydration. Results further show that lipid tails provide non-negligible contributions to area on the membrane side of the bilayer-water interface. Results for minimum and maximum area of individual lipids reveal that spontaneous fluctuations displace head groups more than 10 Å from the interfacial region during an NPT simulation at 310 K, leading to a zero contribution to total area at some times. Total area fluctuations and fluctuations per individual lipid relax with a correlation time of ∼10 ns. The method complements density profile as an approach to quantify the structure and dynamics of computational lipid bilayers.
Collapse
Affiliation(s)
- Michael L Greenfield
- Department of Chemical Engineering, 360 Fascitelli Center for Advanced Engineering, University of Rhode Island, Kingston, Rhode Island02881, United States
| | - Lenore M Martin
- Department of Cell and Molecular Biology, University of Rhode Island, 120 Flagg Road, Kingston, Rhode Island02881, United States
| | - Faramarz Joodaki
- Department of Chemical Engineering, 360 Fascitelli Center for Advanced Engineering, University of Rhode Island, Kingston, Rhode Island02881, United States
| |
Collapse
|
8
|
Joodaki F, Martin LM, Greenfield ML. Generation and Computational Characterization of a Complex Staphylococcus aureus Lipid Bilayer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9481-9499. [PMID: 35901279 DOI: 10.1021/acs.langmuir.2c00483] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Studies indicate a crucial cell membrane role in the antibiotic resistance of Staphylococcus aureus. To simulate its membrane structure and dynamics, a complex molecular-scale computational representation of the S. aureus lipid bilayer was developed. Phospholipid types and their amounts were optimized by reverse Monte Carlo to represent characterization data from the literature, leading to 19 different phospholipid types that combine three headgroups [phosphatidylglycerol, lysyl-phosphatidylglycerol (LPG), and cardiolipin] and 10 tails, including iso- and anteiso-branched saturated chains. The averaged lipid bilayer thickness was 36.7 Å, and area per headgroup was 67.8 Å2. Phosphorus and nitrogen density profiles showed that LPG headgroups tended to be bent and oriented more parallel to the bilayer plane. The water density profile showed that small amounts reached the membrane center. Carbon density profiles indicated hydrophobic interactions for all lipids in the middle of the bilayer. Bond vector order parameters along each tail demonstrated different C-H ordering even within distinct lipids of the same type; however, all tails followed similar trends in average order parameter. These complex simulations further revealed bilayer insights beyond those attainable with monodisperse, unbranched lipids. Longer tails often extended into the opposite leaflet. Carbon at and beyond a branch showed significantly decreased ordering compared to carbon in unbranched tails; this feature arose in every branched lipid. Diverse tail lengths distributed these disordered methyl groups throughout the middle third of the bilayer. Distributions in mobility and ordering reveal diverse properties that cannot be obtained with monodisperse lipids.
Collapse
Affiliation(s)
- Faramarz Joodaki
- Department of Chemical Engineering, University of Rhode Island, 360 Fascitelli Center for Advanced Engineering, Kingston, Rhode Island 02881, United States
| | - Lenore M Martin
- Department of Cell and Molecular Biology, University of Rhode Island, 120 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Michael L Greenfield
- Department of Chemical Engineering, University of Rhode Island, 360 Fascitelli Center for Advanced Engineering, Kingston, Rhode Island 02881, United States
| |
Collapse
|
9
|
Zhang P, Jiao F, Wu L, Kong Z, Hu W, Liang L, Zhang Y. Molecular Dynamics Simulation of Transport Mechanism of Graphene Quantum Dots Through Different Cell Membranes. MEMBRANES 2022; 12:membranes12080753. [PMID: 36005668 PMCID: PMC9414618 DOI: 10.3390/membranes12080753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022]
Abstract
Exploring the mechanisms underlying the permeation of graphene quantum dots (GQDs) through different cell membranes is key for the practical application of GQDs in medicine. Here, the permeation process of GQDs through different lipid membranes was evaluated using molecular dynamics (MD) simulations. Our results showed that GQDs can easily permeate into 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) lipid membranes with low phospholipid molecule densities but cannot permeate into 1-palmitoyl-2-oleoyl phosphatidylethanolamine (POPE) lipid membranes with high phospholipid densities. Free energy calculation showed that a high-energy barrier exists on the surface of the POPE lipid membrane, which prevents GQDs from entering the cell membrane interior. Further analysis of the POPE membrane structure showed that sparsely arranged phospholipid molecules of the low-density lipid membrane facilitated the entry of GQDs into the interior of the membrane, compared to compactly arranged molecules in the high-density lipid membrane. Our simulation study provides new insights into the transmembrane transport of GQDs.
Collapse
Affiliation(s)
- Pengzhen Zhang
- Center of Advanced Optoelectronic Materials and Devices, Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; (P.Z.); (L.W.); (Y.Z.)
| | - Fangfang Jiao
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China;
| | - Lingxiao Wu
- Center of Advanced Optoelectronic Materials and Devices, Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; (P.Z.); (L.W.); (Y.Z.)
| | - Zhe Kong
- Center of Advanced Optoelectronic Materials and Devices, Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; (P.Z.); (L.W.); (Y.Z.)
- Correspondence: (Z.K.); (W.H.)
| | - Wei Hu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China;
- Correspondence: (Z.K.); (W.H.)
| | - Lijun Liang
- College of Automation, Hangzhou Dianzi University, Hangzhou 310018, China;
| | - Yongjun Zhang
- Center of Advanced Optoelectronic Materials and Devices, Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; (P.Z.); (L.W.); (Y.Z.)
| |
Collapse
|
10
|
Bacterial Membranes Are More Perturbed by the Asymmetric Versus Symmetric Loading of Amphiphilic Molecules. MEMBRANES 2022; 12:membranes12040350. [PMID: 35448320 PMCID: PMC9032087 DOI: 10.3390/membranes12040350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 02/01/2023]
Abstract
Characterizing the biophysical properties of bacterial membranes is critical for understanding the protective nature of the microbial envelope, interaction of biological membranes with exogenous materials, and designing new antibacterial agents. Presented here are molecular dynamics simulations for two cationic quaternary ammonium compounds, and the anionic and nonionic form of a fatty acid molecule interacting with a Staphylococcus aureus bacterial inner membrane. The effect of the tested materials on the properties of the model membranes are evaluated with respect to various structural properties such as the lateral pressure profile, lipid tail order parameter, and the bilayer’s electrostatic potential. Conducting asymmetric loading of molecules in only one leaflet, it was observed that anionic and cationic amphiphiles have a large impact on the Staphylococcus aureus membrane’s electrostatic potential and lateral pressure profile as compared to a symmetric distribution. Nonintuitively, we find that the cationic and anionic molecules induce a similar change in the electrostatic potential, which points to the complexity of membrane interfaces, and how asymmetry can induce biophysical consequences. Finally, we link changes in membrane structure to the rate of electroporation for the membranes, and again find a crucial impact of introducing asymmetry to the system. Understanding these physical mechanisms provides critical insights and viable pathways for the rational design of membrane-active molecules, where controlling the localization is key.
Collapse
|
11
|
Kumar S, Mollo A, Kahne D, Ruiz N. The Bacterial Cell Wall: From Lipid II Flipping to Polymerization. Chem Rev 2022; 122:8884-8910. [PMID: 35274942 PMCID: PMC9098691 DOI: 10.1021/acs.chemrev.1c00773] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The peptidoglycan (PG) cell wall is an extra-cytoplasmic glycopeptide polymeric structure that protects bacteria from osmotic lysis and determines cellular shape. Since the cell wall surrounds the cytoplasmic membrane, bacteria must add new material to the PG matrix during cell elongation and division. The lipid-linked precursor for PG biogenesis, Lipid II, is synthesized in the inner leaflet of the cytoplasmic membrane and is subsequently translocated across the bilayer so that the PG building block can be polymerized and cross-linked by complex multiprotein machines. This review focuses on major discoveries that have significantly changed our understanding of PG biogenesis in the past decade. In particular, we highlight progress made toward understanding the translocation of Lipid II across the cytoplasmic membrane by the MurJ flippase, as well as the recent discovery of a novel class of PG polymerases, the SEDS (shape, elongation, division, and sporulation) glycosyltransferases RodA and FtsW. Since PG biogenesis is an effective target of antibiotics, these recent developments may lead to the discovery of much-needed new classes of antibiotics to fight bacterial resistance.
Collapse
Affiliation(s)
- Sujeet Kumar
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Aurelio Mollo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Daniel Kahne
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, United States.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Natividad Ruiz
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
12
|
Zhu S, Gao B, Umetsu Y, Peigneur S, Li P, Ohki S, Tytgat J. Adaptively evolved human oral actinomyces-sourced defensins show therapeutic potential. EMBO Mol Med 2021; 14:e14499. [PMID: 34927385 PMCID: PMC8819291 DOI: 10.15252/emmm.202114499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
The development of eukaryote‐derived antimicrobial peptides as systemically administered drugs has proven a challenging task. Here, we report the first human oral actinomyces‐sourced defensin—actinomycesin—that shows promise for systemic therapy. Actinomycesin and its homologs are only present in actinobacteria and myxobacteria, and share similarity with a group of ancient invertebrate‐type defensins reported in fungi and invertebrates. Signatures of natural selection were detected in defensins from the actinomyces colonized in human oral cavity and ruminant rumen and dental plaque, highlighting their role in adaptation to complex multispecies bacterial communities. Consistently, actinomycesin exhibited potent antibacterial activity against oral bacteria and clinical isolates of Staphylococcus and synergized with two classes of human salivary antibacterial factors. Actinomycesin specifically inhibited bacterial peptidoglycan synthesis and displayed weak immunomodulatory activity and low toxicity on human and mammalian cells and ion channels in the heart and central nervous system. Actinomycesin was highly efficient in mice infected with Streptococcus pneumoniae and mice with MRSA‐induced experimental peritoneal infection. This work identifies human oral bacteria as a new source of systemic anti‐infective drugs.
Collapse
Affiliation(s)
- Shunyi Zhu
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Bin Gao
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yoshitaka Umetsu
- Center for Nano Materials and Technology (CNMT), Japan Advanced Institute of Science and Technology (JAIST), Nomi, Japan
| | - Steve Peigneur
- Toxicology and Pharmacology, University of Leuven, Leuven, Belgium
| | - Ping Li
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety (Chinese Academy of Sciences), National Center for Nanoscience and Technology, Beijing, China
| | - Shinya Ohki
- Center for Nano Materials and Technology (CNMT), Japan Advanced Institute of Science and Technology (JAIST), Nomi, Japan
| | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven, Leuven, Belgium
| |
Collapse
|
13
|
York A, Lloyd AJ, Del Genio CI, Shearer J, Hinxman KJ, Fritz K, Fulop V, Dowson CG, Khalid S, Roper DI. Structure-based modeling and dynamics of MurM, a Streptococcus pneumoniae penicillin resistance determinant present at the cytoplasmic membrane. Structure 2021; 29:731-742.e6. [PMID: 33740396 PMCID: PMC8280954 DOI: 10.1016/j.str.2021.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 01/13/2021] [Accepted: 03/01/2021] [Indexed: 11/28/2022]
Abstract
Branched Lipid II, required for the formation of indirectly crosslinked peptidoglycan, is generated by MurM, a protein essential for high-level penicillin resistance in the human pathogen Streptococcus pneumoniae. We have solved the X-ray crystal structure of Staphylococcus aureus FemX, an isofunctional homolog, and have used this as a template to generate a MurM homology model. Using this model, we perform molecular docking and molecular dynamics to examine the interaction of MurM with the phospholipid bilayer and the membrane-embedded Lipid II substrate. Our model suggests that MurM is associated with the major membrane phospholipid cardiolipin, and experimental evidence confirms that the activity of MurM is enhanced by this phospholipid and inhibited by its direct precursor phosphatidylglycerol. The spatial association of pneumococcal membrane phospholipids and their impact on MurM activity may therefore be critical to the final architecture of peptidoglycan and the expression of clinically relevant penicillin resistance in this pathogen.
Collapse
Affiliation(s)
- Anna York
- School of Life Science, University of Warwick, Coventry, West Midlands CV4 7AL, UK
| | - Adrian J Lloyd
- School of Life Science, University of Warwick, Coventry, West Midlands CV4 7AL, UK
| | - Charo I Del Genio
- Centre for Fluid and Complex Systems, School of Computing, Electronics and Mathematics, University of Coventry, West Midlands CV1 5FB, UK
| | - Jonathan Shearer
- School of Chemistry, University of Southampton, Southampton, Hampshire SO17 1BJ, UK
| | - Karen J Hinxman
- School of Life Science, University of Warwick, Coventry, West Midlands CV4 7AL, UK
| | - Konstantin Fritz
- School of Life Science, University of Warwick, Coventry, West Midlands CV4 7AL, UK
| | - Vilmos Fulop
- School of Life Science, University of Warwick, Coventry, West Midlands CV4 7AL, UK
| | - Christopher G Dowson
- School of Life Science, University of Warwick, Coventry, West Midlands CV4 7AL, UK
| | - Syma Khalid
- School of Chemistry, University of Southampton, Southampton, Hampshire SO17 1BJ, UK.
| | - David I Roper
- School of Life Science, University of Warwick, Coventry, West Midlands CV4 7AL, UK; Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
14
|
Zielińska A, Savietto A, de Sousa Borges A, Martinez D, Berbon M, Roelofsen JR, Hartman AM, de Boer R, Van der Klei IJ, Hirsch AKH, Habenstein B, Bramkamp M, Scheffers DJ. Flotillin-mediated membrane fluidity controls peptidoglycan synthesis and MreB movement. eLife 2020; 9:e57179. [PMID: 32662773 PMCID: PMC7360373 DOI: 10.7554/elife.57179] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/12/2020] [Indexed: 01/07/2023] Open
Abstract
The bacterial plasma membrane is an important cellular compartment. In recent years it has become obvious that protein complexes and lipids are not uniformly distributed within membranes. Current hypotheses suggest that flotillin proteins are required for the formation of complexes of membrane proteins including cell-wall synthetic proteins. We show here that bacterial flotillins are important factors for membrane fluidity homeostasis. Loss of flotillins leads to a decrease in membrane fluidity that in turn leads to alterations in MreB dynamics and, as a consequence, in peptidoglycan synthesis. These alterations are reverted when membrane fluidity is restored by a chemical fluidizer. In vitro, the addition of a flotillin increases membrane fluidity of liposomes. Our data support a model in which flotillins are required for direct control of membrane fluidity rather than for the formation of protein complexes via direct protein-protein interactions.
Collapse
Affiliation(s)
- Aleksandra Zielińska
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenGroningenNetherlands
| | - Abigail Savietto
- Biozentrum, Ludwig-Maximilians-Universität MünchenMünchenGermany
- Institute for General Microbiology, Christian-Albrechts-UniversityKielGermany
| | - Anabela de Sousa Borges
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenGroningenNetherlands
| | - Denis Martinez
- Institute of Chemistry & Biology of Membranes & Nanoobjects (UMR5248 CBMN), IECB, CNRS, Université Bordeaux, Institut Polytechnique BordeauxPessacFrance
| | - Melanie Berbon
- Institute of Chemistry & Biology of Membranes & Nanoobjects (UMR5248 CBMN), IECB, CNRS, Université Bordeaux, Institut Polytechnique BordeauxPessacFrance
| | - Joël R Roelofsen
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenGroningenNetherlands
| | - Alwin M Hartman
- Department of Drug Design and Optimization (DDOP), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI)SaarbrückenGermany
- Department of Pharmacy, Saarland UniversitySaarbrückenGermany
- Stratingh Institute for Chemistry, University of GroningenGroningenNetherlands
| | - Rinse de Boer
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenGroningenNetherlands
| | - Ida J Van der Klei
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenGroningenNetherlands
| | - Anna KH Hirsch
- Department of Drug Design and Optimization (DDOP), Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI)SaarbrückenGermany
- Department of Pharmacy, Saarland UniversitySaarbrückenGermany
- Stratingh Institute for Chemistry, University of GroningenGroningenNetherlands
| | - Birgit Habenstein
- Institute of Chemistry & Biology of Membranes & Nanoobjects (UMR5248 CBMN), IECB, CNRS, Université Bordeaux, Institut Polytechnique BordeauxPessacFrance
| | - Marc Bramkamp
- Biozentrum, Ludwig-Maximilians-Universität MünchenMünchenGermany
- Institute for General Microbiology, Christian-Albrechts-UniversityKielGermany
| | - Dirk-Jan Scheffers
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of GroningenGroningenNetherlands
| |
Collapse
|
15
|
Panina I, Krylov N, Nolde D, Efremov R, Chugunov A. Environmental and dynamic effects explain how nisin captures membrane-bound lipid II. Sci Rep 2020; 10:8821. [PMID: 32483218 PMCID: PMC7264305 DOI: 10.1038/s41598-020-65522-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/01/2020] [Indexed: 11/09/2022] Open
Abstract
Antibiotics (AB) resistance is a major threat to global health, thus the development of novel AB classes is urgently needed. Lantibiotics (i.e. nisin) are natural compounds that effectively control bacterial populations, yet their clinical potential is very limited. Nisin targets membrane-embedded cell wall precursor - lipid II - via capturing its pyrophosphate group (PPi), which is unlikely to evolve, and thus represents a promising pharmaceutical target. Understanding of exact molecular mechanism of initial stages of membrane-bound lipid II recognition by water-soluble nisin is indispensable. Here, using molecular simulations, we demonstrate that the structure of lipid II is determined to a large extent by the surrounding water-lipid milieu. In contrast to the bulk solvent, in the bilayer only two conformational states remain capable of nisin binding. In these states PPi manifests a unique arrangement of hydrogen bond acceptors on the bilayer surface. Such a "pyrophosphate pharmacophore" cannot be formed by phospholipids, which explains high selectivity of nisin/lipid II recognition. Similarly, the "recognition module" of nisin, being rather flexible in water, adopts the only stable conformation in the presence of PPi analogue (which mimics the lipid II molecule). We establish the "energy of the pyrophosphate pharmacophore" approach, which effectively distinguishes nisin conformations that can form a complex with PPi. Finally, we propose a molecular model of nisin recognition module/lipid II complex in the bacterial membrane. These results will be employed for further study of lipid II targeting by antimicrobial (poly)cyclic peptides and for design of novel AB prototypes.
Collapse
Affiliation(s)
- Irina Panina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., Moscow, 117997, Russia.,National Research University Higher School of Economics, Moscow, 101000, Russia
| | - Nikolay Krylov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., Moscow, 117997, Russia.,National Research University Higher School of Economics, Moscow, 101000, Russia
| | - Dmitry Nolde
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., Moscow, 117997, Russia.,National Research University Higher School of Economics, Moscow, 101000, Russia
| | - Roman Efremov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., Moscow, 117997, Russia. .,National Research University Higher School of Economics, Moscow, 101000, Russia. .,Moscow Institute of Physics and Technology (State University), Dolgoprudny, 141701, Moscow, Oblast, Russia.
| | - Anton Chugunov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., Moscow, 117997, Russia.,National Research University Higher School of Economics, Moscow, 101000, Russia.,Moscow Institute of Physics and Technology (State University), Dolgoprudny, 141701, Moscow, Oblast, Russia
| |
Collapse
|
16
|
Panina IS, Chugunov AO, Efremov RG. Lipid II as a Target for Novel Antibiotics: Structural and Molecular Dynamics Studies. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1068162019010126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Punekar AS, Samsudin F, Lloyd AJ, Dowson CG, Scott DJ, Khalid S, Roper DI. The role of the jaw subdomain of peptidoglycan glycosyltransferases for lipid II polymerization. Cell Surf 2018; 2:54-66. [PMID: 30046666 PMCID: PMC6053601 DOI: 10.1016/j.tcsw.2018.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/12/2018] [Accepted: 06/12/2018] [Indexed: 12/27/2022] Open
Abstract
Bacterial peptidoglycan glycosyltransferases (PGT) catalyse the essential polymerization of lipid II into linear glycan chains required for peptidoglycan biosynthesis. The PGT domain is composed of a large head subdomain and a smaller jaw subdomain and can be potently inhibited by the antibiotic moenomycin A (MoeA). We present an X-ray structure of the MoeA-bound Staphylococcus aureus monofunctional PGT enzyme, revealing electron density for a second MoeA bound to the jaw subdomain as well as the PGT donor site. Isothermal titration calorimetry confirms two drug-binding sites with markedly different affinities and positive cooperativity. Hydrophobic cluster analysis suggests that the membrane-interacting surface of the jaw subdomain has structural and physicochemical properties similar to amphipathic cationic α -helical antimicrobial peptides for lipid II recognition and binding. Furthermore, molecular dynamics simulations of the drug-free and -bound forms of the enzyme demonstrate the importance of the jaw subdomain movement for lipid II selection and polymerization process and provide molecular-level insights into the mechanism of peptidoglycan biosynthesis by PGTs.
Collapse
Affiliation(s)
- Avinash S. Punekar
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Firdaus Samsudin
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Adrian J. Lloyd
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | | | - David J. Scott
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, United Kingdom
- ISIS Neutron and Muon Spallation Source and Research Complex at Harwell, Rutherford Appleton Laboratory, Oxfordshire, United Kingdom
| | - Syma Khalid
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - David I. Roper
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
18
|
|