1
|
Schnettler JD, Wang MS, Gantz M, Bunzel HA, Karas C, Hollfelder F, Hecht MH. Selection of a promiscuous minimalist cAMP phosphodiesterase from a library of de novo designed proteins. Nat Chem 2024; 16:1200-1208. [PMID: 38702405 PMCID: PMC11230910 DOI: 10.1038/s41557-024-01490-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 02/27/2024] [Indexed: 05/06/2024]
Abstract
The ability of unevolved amino acid sequences to become biological catalysts was key to the emergence of life on Earth. However, billions of years of evolution separate complex modern enzymes from their simpler early ancestors. To probe how unevolved sequences can develop new functions, we use ultrahigh-throughput droplet microfluidics to screen for phosphoesterase activity amidst a library of more than one million sequences based on a de novo designed 4-helix bundle. Characterization of hits revealed that acquisition of function involved a large jump in sequence space enriching for truncations that removed >40% of the protein chain. Biophysical characterization of a catalytically active truncated protein revealed that it dimerizes into an α-helical structure, with the gain of function accompanied by increased structural dynamics. The identified phosphodiesterase is a manganese-dependent metalloenzyme that hydrolyses a range of phosphodiesters. It is most active towards cyclic AMP, with a rate acceleration of ~109 and a catalytic proficiency of >1014 M-1, comparable to larger enzymes shaped by billions of years of evolution.
Collapse
Affiliation(s)
| | - Michael S Wang
- Department of Chemistry, Princeton University, Princeton, USA
| | - Maximilian Gantz
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - H Adrian Bunzel
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Christina Karas
- Department of Molecular Biology, Princeton University, Princeton, USA
| | | | - Michael H Hecht
- Department of Chemistry, Princeton University, Princeton, USA.
| |
Collapse
|
2
|
Cruse C, Moural TW, Zhu F. Dynamic Roles of Insect Carboxyl/Cholinesterases in Chemical Adaptation. INSECTS 2023; 14:194. [PMID: 36835763 PMCID: PMC9958613 DOI: 10.3390/insects14020194] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Insects have evolved several intricate defense mechanisms to adapt to their chemical environment. Due to their versatile capabilities in hydrolytic biotransformation, insect carboxyl/cholinesterases (CCEs) play vital roles in the development of pesticide resistance, facilitating the adaptation of insects to their host plants, and manipulating insect behaviors through the olfaction system. CCEs confer insecticide resistance through the mechanisms of qualitative or quantitative changes of CCE-mediated enhanced metabolism or target-site insensitivity, and may contribute to the host plant adaptation. CCEs represent the first odorant-degrading enzymes (ODEs) discovered to degrade insect pheromones and plant odors and remain the most promising ODE candidates. Here, we summarize insect CCE classification, currently characterized insect CCE protein structure characteristics, and the dynamic roles of insect CCEs in chemical adaptation.
Collapse
Affiliation(s)
- Casey Cruse
- Department of Entomology, Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Timothy Walter Moural
- Department of Entomology, Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Fang Zhu
- Department of Entomology, Pennsylvania State University, University Park, State College, PA 16802, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, State College, PA 16802, USA
| |
Collapse
|
3
|
Schnettler JD, Klein OJ, Kaminski TS, Colin PY, Hollfelder F. Ultrahigh-Throughput Directed Evolution of a Metal-Free α/β-Hydrolase with a Cys-His-Asp Triad into an Efficient Phosphotriesterase. J Am Chem Soc 2023; 145:1083-1096. [PMID: 36583539 PMCID: PMC9853848 DOI: 10.1021/jacs.2c10673] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Finding new mechanistic solutions for biocatalytic challenges is key in the evolutionary adaptation of enzymes, as well as in devising new catalysts. The recent release of man-made substances into the environment provides a dynamic testing ground for observing biocatalytic innovation at play. Phosphate triesters, used as pesticides, have only recently been introduced into the environment, where they have no natural counterpart. Enzymes have rapidly evolved to hydrolyze phosphate triesters in response to this challenge, converging onto the same mechanistic solution, which requires bivalent cations as a cofactor for catalysis. In contrast, the previously identified metagenomic promiscuous hydrolase P91, a homologue of acetylcholinesterase, achieves slow phosphotriester hydrolysis mediated by a metal-independent Cys-His-Asp triad. Here, we probe the evolvability of this new catalytic motif by subjecting P91 to directed evolution. By combining a focused library approach with the ultrahigh throughput of droplet microfluidics, we increase P91's activity by a factor of ≈360 (to a kcat/KM of ≈7 × 105 M-1 s-1) in only two rounds of evolution, rivaling the catalytic efficiencies of naturally evolved, metal-dependent phosphotriesterases. Unlike its homologue acetylcholinesterase, P91 does not suffer suicide inhibition; instead, fast dephosphorylation rates make the formation of the covalent adduct rather than its hydrolysis rate-limiting. This step is improved by directed evolution, with intermediate formation accelerated by 2 orders of magnitude. Combining focused, combinatorial libraries with the ultrahigh throughput of droplet microfluidics can be leveraged to identify and enhance mechanistic strategies that have not reached high efficiency in nature, resulting in alternative reagents with novel catalytic machineries.
Collapse
Affiliation(s)
- J David Schnettler
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | - Oskar James Klein
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | - Tomasz S Kaminski
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | - Pierre-Yves Colin
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| |
Collapse
|
4
|
Patel CN, Goswami D, Jaiswal DG, Jani SP, Parmar RM, Rawal RM, Pandya HA. Excavating phytochemicals from plants possessing antiviral activities for identifying SARS-CoV hemagglutinin-esterase inhibitors by diligent computational workflow. J Biomol Struct Dyn 2022; 41:2382-2397. [PMID: 35098887 DOI: 10.1080/07391102.2022.2033642] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Coronaviruses (CoVs) belong to a group of RNA viruses that cause diseases in vertebrates including. Newer and deadlier than SARS CoV-2 are sought to appear in future for which the scientific community must be prepared with the strategies for their control. Spike protein (S-protein) of all the CoVs require angiotensin-converting enzyme2 (ACE2), while CoVs also require hemagglutinin-acetylesterase (HE) glycoprotein receptor to simultaneously interact with O-acetylated sialic acids on host cells, both these interactions enable viral particle to enter host cell leading to its infection. Target inhibition of viral S-protein and HE glycoprotein receptor can lead to a development of therapy against the SARS CoV-2. The proposition is to recognize molecules from the bundle of phytochemicals of medicinal plants known to possess antiviral potentials as a lead that could interact and mask the active site of, HE glycoprotein which would ideally bind to O-acetylated sialic acids on human host cells. Such molecules can be addressed as 'HE glycoprotein blockers'. A library of 110 phytochemicals from Withania somnifera, Asparagus racemosus, Zinziber officinalis, Allium sativum, Curcuma longa and Adhatoda vasica was constructed and was used under present study. In silico analysis was employed with plant-derived phytochemicals. The molecular docking, molecular dynamics simulations over the scale of 1000 ns (1 μs) and ADMET prediction revealed that the Withania somnifera (ashwagandha) and Asparagus racemosus (shatavari) plants possessed various steroidal saponins and alkaloids which could potentially inhibit the COVID-19 virus and even other CoVs targeted HE glycoprotein receptor.
Collapse
Affiliation(s)
- Chirag N Patel
- Department of Botany, Bioinformatics, and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Dweipayan Goswami
- Department of Microbiology & Biotechnology, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Dharmesh G Jaiswal
- Department of Zoology, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Siddhi P Jani
- Department of Botany, Bioinformatics, and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Robin M Parmar
- Department of Zoology, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Rakesh M Rawal
- Department of Life Science, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| | - Himanshu A Pandya
- Department of Botany, Bioinformatics, and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, Gujarat, India
| |
Collapse
|
5
|
Singh A, Saini S, Mayank, Kaur N, Singh A, Singh N, Jang DO. Paraoxonase Mimic by a Nanoreactor Aggregate Containing Benzimidazolium Calix and l-Histidine: Demonstration of the Acetylcholine Esterase Activity. Chemistry 2021; 27:5737-5744. [PMID: 33350530 DOI: 10.1002/chem.202004944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Indexed: 11/09/2022]
Abstract
An anion-mediated preorganization approach was used to design and synthesize the benzimidazolium-based calix compound R1⋅2 ClO4 - . X-ray crystallography analysis revealed that the hydrogen-bonding interactions between the benzimidazolium cations and N,N-dimethylformamide (DMF) helped R1⋅2 ClO4 - encapsulate DMF molecule(s). A nanoreactor, with R1⋅2 ClO4 - and l-histidine (l-His) as the components, was fabricated by using a neutralization method. The nanoreactor could detoxify paraoxon in 30 min. l-His played a vital role in this process. Paraoxonase is a well-known enzyme used for pesticide degradation. The Ellman's reagent was used to determine the percentage inhibition of the acetylcholinesterase (AChE) activity in the presence of the nanoreactor. The results indicated that the nanoreactor inhibited AChE inhibition.
Collapse
Affiliation(s)
- Amanpreet Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Roopnagar, Punjab, 140001, India
| | - Sanjeev Saini
- Department of Chemistry, Indian Institute of Technology Ropar, Roopnagar, Punjab, 140001, India
| | - Mayank
- Department of Chemistry, Indian Institute of Technology Ropar, Roopnagar, Punjab, 140001, India
| | - Navneet Kaur
- Department of Chemistry, Panjab University, Chandigarh, 160014, India
| | - Ajnesh Singh
- Department of Applied Sciences & Humanities, Jawaharlal Nehru Govt. Eng. College, Sundernagar, 175018, India
| | - Narinder Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Roopnagar, Punjab, 140001, India
| | - Doo Ok Jang
- Department of Chemistry, Yonsei University, Wonju, 26493, Republic of Korea
| |
Collapse
|
6
|
Damry AM, Jackson CJ. The evolution and engineering of enzyme activity through tuning conformational landscapes. Protein Eng Des Sel 2021; 34:6254467. [PMID: 33903911 DOI: 10.1093/protein/gzab009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 11/12/2022] Open
Abstract
Proteins are dynamic molecules whose structures consist of an ensemble of conformational states. Dynamics contribute to protein function and a link to protein evolution has begun to emerge. This increased appreciation for the evolutionary impact of conformational sampling has grown from our developing structural biology capabilities and the exploration of directed evolution approaches, which have allowed evolutionary trajectories to be mapped. Recent studies have provided empirical examples of how proteins can evolve via conformational landscape alterations. Moreover, minor conformational substates have been shown to be involved in the emergence of new enzyme functions as they can become enriched through evolution. The role of remote mutations in stabilizing new active site geometries has also granted insight into the molecular basis underpinning poorly understood epistatic effects that guide protein evolution. Finally, we discuss how the growth of our understanding of remote mutations is beginning to refine our approach to engineering enzymes.
Collapse
Affiliation(s)
- Adam M Damry
- Research School of Chemistry, The Australian National University, Canberra, 2601, Australia
| | - Colin J Jackson
- Research School of Chemistry, The Australian National University, Canberra, 2601, Australia.,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Research School of Chemistry, Australian National University, Canberra, 2601, ACT, Australia.,Australian Research Council Centre of Excellence in Synthetic Biology, Research School of Chemistry, Australian National University, Canberra, 2601, ACT, Australia
| |
Collapse
|
7
|
Overcoming insecticide resistance through computational inhibitor design. Proc Natl Acad Sci U S A 2019; 116:21012-21021. [PMID: 31575743 DOI: 10.1073/pnas.1909130116] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Insecticides allow control of agricultural pests and disease vectors and are vital for global food security and health. The evolution of resistance to insecticides, such as organophosphates (OPs), is a serious and growing concern. OP resistance often involves sequestration or hydrolysis of OPs by carboxylesterases. Inhibiting carboxylesterases could, therefore, restore the effectiveness of OPs for which resistance has evolved. Here, we use covalent virtual screening to produce nano-/picomolar boronic acid inhibitors of the carboxylesterase αE7 from the agricultural pest Lucilia cuprina as well as a common Gly137Asp αE7 mutant that confers OP resistance. These inhibitors, with high selectivity against human acetylcholinesterase and low to no toxicity in human cells and in mice, act synergistically with the OPs diazinon and malathion to reduce the amount of OP required to kill L. cuprina by up to 16-fold and abolish resistance. The compounds exhibit broad utility in significantly potentiating another OP, chlorpyrifos, against the common pest, the peach-potato aphid (Myzus persicae). These compounds represent a solution to OP resistance as well as to environmental concerns regarding overuse of OPs, allowing significant reduction of use without compromising efficacy.
Collapse
|
8
|
Protein engineering: the potential of remote mutations. Biochem Soc Trans 2019; 47:701-711. [PMID: 30902926 DOI: 10.1042/bst20180614] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 01/18/2019] [Accepted: 02/18/2019] [Indexed: 12/19/2022]
Abstract
Engineered proteins, especially enzymes, are now commonly used in many industries owing to their catalytic power, specific binding of ligands, and properties as materials and food additives. As the number of potential uses for engineered proteins has increased, the interest in engineering or designing proteins to have greater stability, activity and specificity has increased in turn. With any rational engineering or design pursuit, the success of these endeavours relies on our fundamental understanding of the systems themselves; in the case of proteins, their structure-dynamics-function relationships. Proteins are most commonly rationally engineered by targeting the residues that we understand to be functionally important, such as enzyme active sites or ligand-binding sites. This means that the majority of the protein, i.e. regions remote from the active- or ligand-binding site, is often ignored. However, there is a growing body of literature that reports on, and rationalises, the successful engineering of proteins at remote sites. This minireview will discuss the current state of the art in protein engineering, with a particular focus on engineering regions that are remote from active- or ligand-binding sites. As the use of protein technologies expands, exploiting the potential improvements made possible through modifying remote regions will become vital if we are to realise the full potential of protein engineering and design.
Collapse
|
9
|
Hong NS, Petrović D, Lee R, Gryn'ova G, Purg M, Saunders J, Bauer P, Carr PD, Lin CY, Mabbitt PD, Zhang W, Altamore T, Easton C, Coote ML, Kamerlin SCL, Jackson CJ. The evolution of multiple active site configurations in a designed enzyme. Nat Commun 2018; 9:3900. [PMID: 30254369 PMCID: PMC6156567 DOI: 10.1038/s41467-018-06305-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 08/21/2018] [Indexed: 12/11/2022] Open
Abstract
Developments in computational chemistry, bioinformatics, and laboratory evolution have facilitated the de novo design and catalytic optimization of enzymes. Besides creating useful catalysts, the generation and iterative improvement of designed enzymes can provide valuable insight into the interplay between the many phenomena that have been suggested to contribute to catalysis. In this work, we follow changes in conformational sampling, electrostatic preorganization, and quantum tunneling along the evolutionary trajectory of a designed Kemp eliminase. We observe that in the Kemp Eliminase KE07, instability of the designed active site leads to the emergence of two additional active site configurations. Evolutionary conformational selection then gradually stabilizes the most efficient configuration, leading to an improved enzyme. This work exemplifies the link between conformational plasticity and evolvability and demonstrates that residues remote from the active sites of enzymes play crucial roles in controlling and shaping the active site for efficient catalysis.
Collapse
Affiliation(s)
- Nan-Sook Hong
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Dušan Petrović
- Department of Chemistry, BMC, Uppsala University, Box 576, 751 23, Uppsala, Sweden
| | - Richmond Lee
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Ganna Gryn'ova
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia.,Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Miha Purg
- Department of Chemistry, BMC, Uppsala University, Box 576, 751 23, Uppsala, Sweden
| | - Jake Saunders
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Paul Bauer
- Department of Chemistry, BMC, Uppsala University, Box 576, 751 23, Uppsala, Sweden
| | - Paul D Carr
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Ching-Yeh Lin
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Peter D Mabbitt
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - William Zhang
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Timothy Altamore
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Chris Easton
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Michelle L Coote
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Shina C L Kamerlin
- Department of Chemistry, BMC, Uppsala University, Box 576, 751 23, Uppsala, Sweden.
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia.
| |
Collapse
|
10
|
Catalytic bioscavengers as countermeasures against organophosphate nerve agents. Chem Biol Interact 2018; 292:50-64. [DOI: 10.1016/j.cbi.2018.07.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/04/2018] [Accepted: 07/06/2018] [Indexed: 12/30/2022]
|
11
|
Evolutionary repurposing of a sulfatase: A new Michaelis complex leads to efficient transition state charge offset. Proc Natl Acad Sci U S A 2018; 115:E7293-E7302. [PMID: 30012610 DOI: 10.1073/pnas.1607817115] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The recruitment and evolutionary optimization of promiscuous enzymes is key to the rapid adaptation of organisms to changing environments. Our understanding of the precise mechanisms underlying enzyme repurposing is, however, limited: What are the active-site features that enable the molecular recognition of multiple substrates with contrasting catalytic requirements? To gain insights into the molecular determinants of adaptation in promiscuous enzymes, we performed the laboratory evolution of an arylsulfatase to improve its initially weak phenylphosphonate hydrolase activity. The evolutionary trajectory led to a 100,000-fold enhancement of phenylphosphonate hydrolysis, while the native sulfate and promiscuous phosphate mono- and diester hydrolyses were only marginally affected (≤50-fold). Structural, kinetic, and in silico characterizations of the evolutionary intermediates revealed that two key mutations, T50A and M72V, locally reshaped the active site, improving access to the catalytic machinery for the phosphonate. Measured transition state (TS) charge changes along the trajectory suggest the creation of a new Michaelis complex (E•S, enzyme-substrate), with enhanced leaving group stabilization in the TS for the promiscuous phosphonate (βleavinggroup from -1.08 to -0.42). Rather than altering the catalytic machinery, evolutionary repurposing was achieved by fine-tuning the molecular recognition of the phosphonate in the Michaelis complex, and by extension, also in the TS. This molecular scenario constitutes a mechanistic alternative to adaptation solely based on enzyme flexibility and conformational selection. Instead, rapid functional transitions between distinct chemical reactions rely on the high reactivity of permissive active-site architectures that allow multiple substrate binding modes.
Collapse
|
12
|
Lushchekina SV, Schopfer LM, Grigorenko BL, Nemukhin AV, Varfolomeev SD, Lockridge O, Masson P. Optimization of Cholinesterase-Based Catalytic Bioscavengers Against Organophosphorus Agents. Front Pharmacol 2018; 9:211. [PMID: 29593539 PMCID: PMC5859046 DOI: 10.3389/fphar.2018.00211] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 02/26/2018] [Indexed: 11/13/2022] Open
Abstract
Organophosphorus agents (OPs) are irreversible inhibitors of acetylcholinesterase (AChE). OP poisoning causes major cholinergic syndrome. Current medical counter-measures mitigate the acute effects but have limited action against OP-induced brain damage. Bioscavengers are appealing alternative therapeutic approach because they neutralize OPs in bloodstream before they reach physiological targets. First generation bioscavengers are stoichiometric bioscavengers. However, stoichiometric neutralization requires administration of huge doses of enzyme. Second generation bioscavengers are catalytic bioscavengers capable of detoxifying OPs with a turnover. High bimolecular rate constants (kcat/Km > 106 M−1min−1) are required, so that low enzyme doses can be administered. Cholinesterases (ChE) are attractive candidates because OPs are hemi-substrates. Moderate OP hydrolase (OPase) activity has been observed for certain natural ChEs and for G117H-based human BChE mutants made by site-directed mutagenesis. However, before mutated ChEs can become operational catalytic bioscavengers their dephosphylation rate constant must be increased by several orders of magnitude. New strategies for converting ChEs into fast OPase are based either on combinational approaches or on computer redesign of enzyme. The keystone for rational conversion of ChEs into OPases is to understand the reaction mechanisms with OPs. In the present work we propose that efficient OP hydrolysis can be achieved by re-designing the configuration of enzyme active center residues and by creating specific routes for attack of water molecules and proton transfer. Four directions for nucleophilic attack of water on phosphorus atom were defined. Changes must lead to a novel enzyme, wherein OP hydrolysis wins over competing aging reactions. Kinetic, crystallographic, and computational data have been accumulated that describe mechanisms of reactions involving ChEs. From these studies, it appears that introducing new groups that create a stable H-bonded network susceptible to activate and orient water molecule, stabilize transition states (TS), and intermediates may determine whether dephosphylation is favored over aging. Mutations on key residues (L286, F329, F398) were considered. QM/MM calculations suggest that mutation L286H combined to other mutations favors water attack from apical position. However, the aging reaction is competing. Axial direction of water attack is not favorable to aging. QM/MM calculation shows that F329H+F398H-based multiple mutants display favorable energy barrier for fast reactivation without aging.
Collapse
Affiliation(s)
- Sofya V Lushchekina
- Laboratory of Computer Modeling of Bimolecular Systems and Nanomaterials, N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, Russia
| | - Lawrence M Schopfer
- Department of Biochemistry and Molecular Biology, Eppley Institute, University of Nebraska Medical Center, Omaha, NE, United States
| | - Bella L Grigorenko
- Laboratory of Computer Modeling of Bimolecular Systems and Nanomaterials, N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, Russia.,Chemistry Department, Lomonosov State University, Moscow, Russia
| | - Alexander V Nemukhin
- Laboratory of Computer Modeling of Bimolecular Systems and Nanomaterials, N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, Russia.,Chemistry Department, Lomonosov State University, Moscow, Russia
| | - Sergei D Varfolomeev
- Laboratory of Computer Modeling of Bimolecular Systems and Nanomaterials, N. M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, Russia.,Chemistry Department, Lomonosov State University, Moscow, Russia
| | - Oksana Lockridge
- Department of Biochemistry and Molecular Biology, Eppley Institute, University of Nebraska Medical Center, Omaha, NE, United States
| | - Patrick Masson
- Neuropharmacology Laboratory, Kazan Federal University, Kazan, Russia
| |
Collapse
|
13
|
Patel CN, Georrge JJ, Modi KM, Narechania MB, Patel DP, Gonzalez FJ, Pandya HA. Pharmacophore-based virtual screening of catechol-o-methyltransferase (COMT) inhibitors to combat Alzheimer's disease. J Biomol Struct Dyn 2017; 36:3938-3957. [PMID: 29281938 DOI: 10.1080/07391102.2017.1404931] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Alzheimer's disease (AD) is one of the most significant neurodegenerative disorders and its symptoms mostly appear in aged people. Catechol-o-methyltransferase (COMT) is one of the known target enzymes responsible for AD. With the use of 23 known inhibitors of COMT, a query has been generated and validated by screening against the database of 1500 decoys to obtain the GH score and enrichment value. The crucial features of the known inhibitors were evaluated by the online ZINC Pharmer to identify new leads from a ZINC database. Five hundred hits were retrieved from ZINC Pharmer and by ADMET (absorption, distribution, metabolism, excretion, and toxicity) filtering by using FAF-Drug-3 and 36 molecules were considered for molecular docking. From the COMT inhibitors, opicapone, fenoldopam, and quercetin were selected, while ZINC63625100_413 ZINC39411941_412, ZINC63234426_254, ZINC63637968_451, and ZINC64019452_303 were chosen for the molecular dynamics simulation analysis having high binding affinity and structural recognition. This study identified the potential COMT inhibitors through pharmacophore-based inhibitor screening leading to a more complete understanding of molecular-level interactions.
Collapse
Affiliation(s)
- Chirag N Patel
- a Department of Botany, Bioinformatics and Climate Change Impacts Management , University School of Sciences, Gujarat University , Ahmedabad 380 009 , Gujarat , India
| | - John J Georrge
- b Department of Bioinformatics , Christ College , Rajkot 360 005 , Gujarat , India
| | - Krunal M Modi
- c J. Heyrovský Institute of Physical Chemistry , Academy of Sciences of the Czech Republic , Dolejškova 2155/3, 182 23, Prague 8 , Czech Republic
| | - Moksha B Narechania
- d Human Genetics Division, Department of Zoology, BMTC and HG , University School of Sciences (USSC), Gujarat University , Ahmedabad 380009 , Gujarat , India
| | - Daxesh P Patel
- e Laboratory of Metabolism, Center for Cancer Research , National Cancer Institute, National Institutes of Health , Rockville , MD , USA
| | - Frank J Gonzalez
- e Laboratory of Metabolism, Center for Cancer Research , National Cancer Institute, National Institutes of Health , Rockville , MD , USA
| | - Himanshu A Pandya
- a Department of Botany, Bioinformatics and Climate Change Impacts Management , University School of Sciences, Gujarat University , Ahmedabad 380 009 , Gujarat , India
| |
Collapse
|
14
|
Hopkins DH, Fraser NJ, Mabbitt PD, Carr PD, Oakeshott JG, Jackson CJ. Structure of an Insecticide Sequestering Carboxylesterase from the Disease Vector Culex quinquefasciatus: What Makes an Enzyme a Good Insecticide Sponge? Biochemistry 2017; 56:5512-5525. [DOI: 10.1021/acs.biochem.7b00774] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Davis H. Hopkins
- Research
School of Chemistry, Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - Nicholas J. Fraser
- Research
School of Chemistry, Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - Peter D. Mabbitt
- Research
School of Chemistry, Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - Paul D. Carr
- Research
School of Chemistry, Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - John G. Oakeshott
- CSIRO, GPO
Box 1700, Canberra, Australian Capital Territory 2601, Australia
| | - Colin J. Jackson
- Research
School of Chemistry, Australian National University, Canberra, Australian Capital Territory 0200, Australia
| |
Collapse
|
15
|
Petrović D, Frank D, Kamerlin SCL, Hoffmann K, Strodel B. Shuffling Active Site Substate Populations Affects Catalytic Activity: The Case of Glucose Oxidase. ACS Catal 2017; 7:6188-6197. [PMID: 29291138 PMCID: PMC5745072 DOI: 10.1021/acscatal.7b01575] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 07/25/2017] [Indexed: 12/17/2022]
Abstract
![]()
Glucose oxidase has
wide applications in the pharmaceutical, chemical,
and food industries. Many recent studies have enhanced key properties
of this enzyme using directed evolution, yet without being able to
reveal why these mutations are actually beneficial. This work presents
a synergistic combination of experimental and computational methods,
indicating how mutations, even when distant from the active site,
positively affect glucose oxidase catalysis. We have determined the
crystal structures of glucose oxidase mutants containing molecular
oxygen in the active site. The catalytically important His516 residue
has been previously shown to be flexible in the wild-type enzyme.
The molecular dynamics simulations performed in this work allow us
to quantify this floppiness, revealing that His516 exists in two states:
catalytic and noncatalytic. The relative populations of these two
substates are almost identical in the wild-type enzyme, with His516
readily shuffling between them. In the glucose oxidase mutants, on
the other hand, the mutations enrich the catalytic His516 conformation
and reduce the flexibility of this residue, leading to an enhancement
in their catalytic efficiency. This study stresses the benefit of
active site preorganization with respect to enzyme conversion rates
by reducing molecular reorientation needs. We further suggest that
the computational approach based on Hamiltonian replica exchange molecular
dynamics, used in this study, may be a general approach to screening
in silico for improved enzyme variants involving flexible catalytic
residues.
Collapse
Affiliation(s)
- Dušan Petrović
- Institute
of Complex Systems: Structural Biochemistry, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - David Frank
- Institute
of Molecular Biotechnology, RWTH Aachen University, Worringerweg
1, 52074 Aachen, Germany
| | | | - Kurt Hoffmann
- Institute
of Molecular Biotechnology, RWTH Aachen University, Worringerweg
1, 52074 Aachen, Germany
| | - Birgit Strodel
- Institute
of Complex Systems: Structural Biochemistry, Forschungszentrum Jülich, 52425 Jülich, Germany
- Institute
of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
16
|
Zhang Y, Xie P, He X, Han K. High-Efficiency Microiterative Optimization in QM/MM Simulations of Large Flexible Systems. J Chem Theory Comput 2016; 12:4632-43. [DOI: 10.1021/acs.jctc.6b00547] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Yan Zhang
- State Key Laboratory
of Molecular
Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Zhongshan Road 457, Dalian 116023, China
| | - Peng Xie
- State Key Laboratory
of Molecular
Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Zhongshan Road 457, Dalian 116023, China
| | - Xiaohu He
- State Key Laboratory
of Molecular
Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Zhongshan Road 457, Dalian 116023, China
| | - Keli Han
- State Key Laboratory
of Molecular
Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Zhongshan Road 457, Dalian 116023, China
| |
Collapse
|
17
|
Correy GJ, Carr PD, Meirelles T, Mabbitt PD, Fraser NJ, Weik M, Jackson CJ. Mapping the Accessible Conformational Landscape of an Insect Carboxylesterase Using Conformational Ensemble Analysis and Kinetic Crystallography. Structure 2016; 24:977-87. [PMID: 27210287 DOI: 10.1016/j.str.2016.04.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 04/04/2016] [Accepted: 04/08/2016] [Indexed: 11/26/2022]
Abstract
The proper function of enzymes often depends upon their efficient interconversion between particular conformational sub-states on a free-energy landscape. Experimentally characterizing these sub-states is challenging, which has limited our understanding of the role of protein dynamics in many enzymes. Here, we have used a combination of kinetic crystallography and detailed analysis of crystallographic protein ensembles to map the accessible conformational landscape of an insect carboxylesterase (LcαE7) as it traverses all steps in its catalytic cycle. LcαE7 is of special interest because of its evolving role in organophosphate insecticide resistance. Our results reveal that a dynamically coupled network of residues extends from the substrate-binding site to a surface loop. Interestingly, the coupling of this network that is apparent in the apoenzyme appears to be reduced in the phosphorylated enzyme intermediate. Altogether, the results of this work highlight the importance of protein dynamics to enzyme function and the evolution of new activity.
Collapse
Affiliation(s)
- Galen J Correy
- Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | - Paul D Carr
- Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | - Tamara Meirelles
- Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | - Peter D Mabbitt
- Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | - Nicholas J Fraser
- Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia
| | - Martin Weik
- Institut de Biologie Structurale Jean Pierre Ebel, Commisariat a l'Energie Atomique, Centre de National de la Recherche Scientifique, University Josef Fourier, 41 rue Jules Horowitz, 38027 Grenoble, France
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia.
| |
Collapse
|