1
|
Kara H, Axer A, Muskett FW, Bueno-Alejo CJ, Paschalis V, Taladriz-Sender A, Tubasum S, Vega MS, Zhao Z, Clark AW, Hudson AJ, Eperon IC, Burley GA, Dominguez C. 2'- 19F labelling of ribose in RNAs: a tool to analyse RNA/protein interactions by NMR in physiological conditions. Front Mol Biosci 2024; 11:1325041. [PMID: 38419689 PMCID: PMC10899400 DOI: 10.3389/fmolb.2024.1325041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024] Open
Abstract
Protein-RNA interactions are central to numerous cellular processes. In this work, we present an easy and straightforward NMR-based approach to determine the RNA binding site of RNA binding proteins and to evaluate the binding of pairs of proteins to a single-stranded RNA (ssRNA) under physiological conditions, in this case in nuclear extracts. By incorporation of a 19F atom on the ribose of different nucleotides along the ssRNA sequence, we show that, upon addition of an RNA binding protein, the intensity of the 19F NMR signal changes when the 19F atom is located near the protein binding site. Furthermore, we show that the addition of pairs of proteins to a ssRNA containing two 19F atoms at two different locations informs on their concurrent binding or competition. We demonstrate that such studies can be done in a nuclear extract that mimics the physiological environment in which these protein-ssRNA interactions occur. Finally, we demonstrate that a trifluoromethoxy group (-OCF3) incorporated in the 2'ribose position of ssRNA sequences increases the sensitivity of the NMR signal, leading to decreased measurement times, and reduces the issue of RNA degradation in cellular extracts.
Collapse
Affiliation(s)
- Hesna Kara
- Department of Molecular and Cellular Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
- Leicester Institute of Structural and Chemical Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
| | - Alexander Axer
- WestCHEM and Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom
| | - Frederick W Muskett
- Department of Molecular and Cellular Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
- Leicester Institute of Structural and Chemical Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
| | - Carlos J Bueno-Alejo
- Leicester Institute of Structural and Chemical Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
- School of Chemistry, University of Leicester, Leicester, United Kingdom
| | - Vasileios Paschalis
- Department of Molecular and Cellular Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
- Leicester Institute of Structural and Chemical Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
| | - Andrea Taladriz-Sender
- WestCHEM and Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom
| | - Sumera Tubasum
- Department of Molecular and Cellular Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
- Leicester Institute of Structural and Chemical Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
| | - Marina Santana Vega
- Biomedical Engineering Research Division, School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Zhengyun Zhao
- WestCHEM and Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom
| | - Alasdair W Clark
- Biomedical Engineering Research Division, School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Andrew J Hudson
- Leicester Institute of Structural and Chemical Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
- School of Chemistry, University of Leicester, Leicester, United Kingdom
| | - Ian C Eperon
- Department of Molecular and Cellular Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
- Leicester Institute of Structural and Chemical Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
| | - Glenn A Burley
- WestCHEM and Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom
| | - Cyril Dominguez
- Department of Molecular and Cellular Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
- Leicester Institute of Structural and Chemical Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
2
|
Rattanabunyong S, Choengpanya K, Suwattanasophon C, Kiriwan D, Wolschann P, Lamtha T, Shaikh AR, Rattanasrisomporn J, Choowongkomon K. Biochemical and structural comparisons of non-nucleoside reverse transcriptase inhibitors against feline and human immunodeficiency viruses. J Vet Sci 2023; 24:e67. [PMID: 38031646 PMCID: PMC10556290 DOI: 10.4142/jvs.22326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Feline immunodeficiency virus (FIV) causes an acquired immunodeficiency-like syndrome in cats. FIV is latent. No effective treatment has been developed for treatment the infected cats. The first and second generations non-nucleoside reverse transcriptase inhibitors (NNRTIs) for HIV treatment, nevirapine (NVP) and efavirenz (EFV), and rilpivirine (RPV), were used to investigate the potential of NNRTIs for treatment of FIV infection. OBJECTIVE This study aims to use experimental and in silico approaches to investigate the potential of NNRTIs, NVP, EFV, and RPV, for inhibition of FIV reverse transcriptase (FIV-RT). METHODS The FIV-RT and human immunodeficiency virus reverse transcriptase (HIV-RT) were expressed and purified using chromatography approaches. The purified proteins were used to determine the IC50 values with NVP, EFV, and RPV. Surface plasmon resonance (SPR) analysis was used to calculate the binding affinities of NNRTIs to HIV-RT and FIV-RT. The molecular docking and molecular dynamic simulations were used to demonstrate the mechanism of FIV-RT and HIV-RT with first and second generation NNRTI complexes. RESULTS The IC50 values of NNRTIs NVP, EFV, and RPV against FIV-RT were in comparable ranges to HIV-RT. The SPR analysis showed that NVP, EFV, and RPV could bind to both enzymes. Computational calculation also supports that these NNRTIs can bind with both FIV-RT and HIV-RT. CONCLUSIONS Our results suggest the first and second generation NNRTIs (NVP, EFV, and RPV) could inhibit both FIV-RT and HIV-RT.
Collapse
Affiliation(s)
- Siriluk Rattanabunyong
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | | | - Chonticha Suwattanasophon
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - Duangnapa Kiriwan
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University, Kasetsart University, Bangkok 10900, Thailand
| | - Peter Wolschann
- Institute for Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Vienna 1090, Austria
| | - Thomanai Lamtha
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- National Electronics and Computer Technology, National Science and Technology Development Agency, Pathumthani 12120, Thailand
| | - Abdul Rajjak Shaikh
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Department of Research and Innovation, STEMskills Research and Education Lab Private Limited, Faridabad 121002, India
| | - Jatuporn Rattanasrisomporn
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University, Kasetsart University, Bangkok 10900, Thailand.
| |
Collapse
|
3
|
Kim MJ, Yu KL, Han R, Lee Y, Oh K, You JC. Identification of a Non-Nucleoside Reverse Transcriptase Inhibitor against Human Immunodeficiency Virus-1. ACS Infect Dis 2023; 9:1582-1592. [PMID: 37415514 DOI: 10.1021/acsinfecdis.3c00166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
The HIV-1 infection epidemic remains a global health problem. Current antiretroviral treatments are effective in controlling the progression of a severe infection. However, the emergence of drug resistance requires an urgent identification of new treatment regimes. HIV-1 reverse transcriptase (RTs) has been a successful therapeutic target owing to its high specificity and potent antiviral properties; therefore, it has become an essential component of current HIV-1 standard treatments. This study identified a new HIV-1 RTs inhibitor (Compound #8) that is structurally unique and greatly effective against HIV-1 through chemical library screening and a medicinal chemistry program by analyzing the structure-activity relationship (SAR). Further analysis of molecular docking and mechanisms of action demonstrated that Compound #8 is a novel type of HIV-1 non-nucleoside reverse transcriptase inhibitor (NNRTI) with a flexible binding mode. Therefore, it exhibits great therapeutic potential when combined with other existing HIV-1 drugs. Our current studies suggest that Compound #8 is a promising novel scaffold for the development of new HIV-1 treatments.
Collapse
Affiliation(s)
- Min-Jung Kim
- Avixgen Inc., 2477 Nambusunhwan-ro, Seocho, Seoul 06725, Republic of Korea
| | - Kyung Lee Yu
- National Research Laboratory of Molecular Virology, Department of Pathology, School of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho, Seoul 06591, Republic of Korea
| | - Ri Han
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Yoonji Lee
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Kyungsoo Oh
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Ji Chang You
- Avixgen Inc., 2477 Nambusunhwan-ro, Seocho, Seoul 06725, Republic of Korea
- National Research Laboratory of Molecular Virology, Department of Pathology, School of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho, Seoul 06591, Republic of Korea
| |
Collapse
|
4
|
Structure-guided design of novel HEPT analogs with enhanced potency and safety: From Isopropyl-HEPTs to Cyclopropyl-HEPTs. Eur J Med Chem 2023; 246:114939. [PMID: 36442370 DOI: 10.1016/j.ejmech.2022.114939] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/03/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022]
Abstract
Members of the HEPT class are potential non-nucleoside inhibitors of HIV-1 reverse transcriptase. Our previously disclosed one representative HEPT analog 2 produced potent inhibitory activity against wild-type HIV-1 (EC50 = 63.0 nM), but its high cytotoxicity and low selectivity index still needs to be improved (CC50 = 34.0 μM, SI = 565). In this work, a series of novel cyclopropyl-substituted HEPT analogs were developed by substituting a cyclopropyl ring for the isopropyl group at the C-5 position of 2 with the purpose of improving its potency and safety. Of this series, the most potent compound 9h featuring a 2,5-fluoro substitution on the C-6 benzene ring exerted significantly increased inhibitory activity toward wild-type HIV-1 (EC50 = 0.017 μM), which was 4-fold more active than the lead compound 2. The cytotoxicity of 9h was also reduced with much higher selectivity index (SI > 2328). This compound possessed good pharmacokinetics profiles and potential safety: (1) No obvious in vitro inhibition effect toward CYP enzyme and hERG was observed in 9h; (2) The single-dose acute toxicity test did not induce mice death and obvious pathological damage; (3) Excellent oral bioavailability of 9h (F= 86%) in rats was unveiled. These results provide valuable guidance for further development of HEPT anti-HIV-1 drugs.
Collapse
|
5
|
Costa B, Vale N. Efavirenz: History, Development and Future. Biomolecules 2022; 13:biom13010088. [PMID: 36671473 PMCID: PMC9855767 DOI: 10.3390/biom13010088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
Efavirenz (Sustiva®) is a first-generation non-nucleoside reverse transcriptase inhibitor (NNRTI) used to treat human immunodeficiency virus (HIV) type 1 infection or to prevent the spread of HIV. In 1998, the FDA authorized efavirenz for the treatment of HIV-1 infection. Patients formerly required three 200 mg efavirenz capsules daily, which was rapidly updated to a 600 mg tablet that only required one tablet per day. However, when given 600 mg once daily, plasma efavirenz concentrations were linked not only to poor HIV suppression but also to toxicity. Clinical data suggested that the standard dose of efavirenz could be reduced without compromising its effectiveness, resulting in a reduction in side effects and making the drug more affordable. Therefore, ENCORE1 was performed to compare the efficiency and safeness of a reduced dose of efavirenz (400 mg) with the standard dose (600 mg) plus two NRTI in antiretroviral-naïve HIV-infected individuals. Nowadays, due to the emergence of integrase strand transfer inhibitors (INSTIs), some consider that it is time to stop using efavirenz as a first-line treatment on a global scale, in the parts of the world where that is possible. Efavirenz has been a primary first-line antiviral drug for more than 15 years. However, at this moment, the best use for efavirenz could be for pre-exposure prophylaxis (PrEP) and repurposing in medicine.
Collapse
Affiliation(s)
- Bárbara Costa
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
- Correspondence: ; Tel.: +351-220426537
| |
Collapse
|
6
|
Xi Z, Ilina TV, Guerrero M, Fan L, Sluis‐Cremer N, Wang Y, Ishima R. Relative domain orientation of the L289K HIV-1 reverse transcriptase monomer. Protein Sci 2022; 31:e4307. [PMID: 35481647 PMCID: PMC8996465 DOI: 10.1002/pro.4307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 11/08/2022]
Abstract
HIV-1 reverse transcriptase (RT) is a heterodimer comprised p66 and p51 subunits (p66/p51). Several single amino acid substitutions in RT, including L289K, decrease p66/p51 dimer affinity, and reduce enzymatic functioning. Here, small-angle X-ray scattering (SAXS) with proton paramagnetic relaxation enhancement (PRE), 19 F site-specific NMR, and size exclusion chromatography (SEC) were performed for the p66 monomer with the L289K mutation, p66L289K . NMR and SAXS experiments clearly elucidated that the thumb and RNH domains in the monomer do not rigidly interact with each other but are spatially close to the RNH domain. Based on this structural model of the monomer, p66L289K and p51 were predicted to form a heterodimer while p66 and p51L289K not. We tested this hypothesis by SEC analysis of p66 and p51 containing L289K in different combinations and clearly demonstrated that L289K substitution in the p51 subunit, but not in the p66 subunit, reduces p66/p51 formation. Based on the derived monomer model and the importance of the inter-subunit RNH-thumb domain interaction in p66/p51, validated by SEC, the mechanism of p66 homodimer formation was discussed.
Collapse
Affiliation(s)
- Zhaoyong Xi
- Department of Structural BiologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Tatiana V. Ilina
- Department of Structural BiologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Michel Guerrero
- Department of Structural BiologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Lixin Fan
- Basic Science Program, Frederick National Laboratory for Cancer ResearchSAXS Core Facility of the National Cancer InstituteFrederickMarylandUSA
| | - Nicolas Sluis‐Cremer
- Department of Medicine, Division of Infectious DiseasesUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Yun‐Xing Wang
- Protein‐Nucleic Acid Interaction Section, Structural Biophysics Laboratory, National Cancer InstituteNational Institutes of HealthFrederickMarylandUSA
| | - Rieko Ishima
- Department of Structural BiologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| |
Collapse
|
7
|
Yang D, Gronenborn AM, Chong LT. Development and Validation of Fluorinated, Aromatic Amino Acid Parameters for Use with the AMBER ff15ipq Protein Force Field. J Phys Chem A 2022; 126:2286-2297. [PMID: 35352936 PMCID: PMC9014858 DOI: 10.1021/acs.jpca.2c00255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/15/2022] [Indexed: 12/27/2022]
Abstract
We developed force field parameters for fluorinated, aromatic amino acids enabling molecular dynamics (MD) simulations of fluorinated proteins. These parameters are tailored to the AMBER ff15ipq protein force field and enable the modeling of 4, 5, 6, and 7F-tryptophan, 3F- and 3,5F-tyrosine, and 4F- or 4-CF3-phenylalanine. The parameters include 181 unique atomic charges derived using the implicitly polarized charge (IPolQ) scheme in the presence of SPC/Eb explicit water molecules and 9 unique bond, angle, or torsion terms. Our simulations of benchmark peptides and proteins maintain expected conformational propensities on the μs time scale. In addition, we have developed an open-source Python program to calculate fluorine relaxation rates from MD simulations. The extracted relaxation rates from protein simulations are in good agreement with experimental values determined by 19F NMR. Collectively, our results illustrate the power and robustness of the IPolQ lineage of force fields for modeling the structure and dynamics of fluorine-containing proteins at the atomic level.
Collapse
Affiliation(s)
- Darian
T. Yang
- Molecular
Biophysics and Structural Biology Graduate Program, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, Pennsylvania 15260, United States
- Department
of Structural Biology, University of Pittsburgh
School of Medicine, Pittsburgh, Pennsylvania 15260, United States
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Angela M. Gronenborn
- Department
of Structural Biology, University of Pittsburgh
School of Medicine, Pittsburgh, Pennsylvania 15260, United States
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Lillian T. Chong
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
8
|
Gronenborn AM. Small, but powerful and attractive: 19F in biomolecular NMR. Structure 2022; 30:6-14. [PMID: 34995480 PMCID: PMC8797020 DOI: 10.1016/j.str.2021.09.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/03/2021] [Accepted: 09/20/2021] [Indexed: 01/09/2023]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a versatile tool for probing structure, dynamics, folding, and interactions at atomic resolution. While naturally occurring magnetically active isotopes, such as 1H, 13C, or 15N, are most commonly used in biomolecular NMR, with 15N and 13C isotopic labeling routinely employed at the present time, 19F is a very attractive and sensitive alternative nucleus, which offers rich information on biomolecules in solution and in the solid state. This perspective summarizes the unique benefits of solution and solid-state 19F NMR spectroscopy for the study of biological systems. Particular focus is on the most recent studies and on future unique and important potential applications of fluorine NMR methodology.
Collapse
|
9
|
Gronenborn AM. Meet the IUPAB councilor - Angela M. Gronenborn. Biophys Rev 2021; 13:835-838. [PMID: 35059003 PMCID: PMC8724357 DOI: 10.1007/s12551-021-00886-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 01/23/2023] Open
Abstract
As an incoming IUPAB Councilor, I have been asked to write a short commentary describing myself and my career in science. Throughout my scientific life, my interests have evolved from initially trying to understand the physical and chemical properties of small molecules toward unraveling biological systems. To that end, I now apply biophysical, biochemical and chemistry tools. Along my journey, I developed and applied nuclear magnetic resonance (NMR) spectroscopy methods to figure out how proteins work at the atomic level and this voyage took me from Germany, where I earned degrees in Physics and Chemistry, to the UK and back to Germany, finally dropping anchor in the USA, where I have led research programs at both the National Institutes of Health and the University of Pittsburgh. I am now the UPMC Rosalind Franklin Professor and Chair of the Department of Structural Biology, University of Pittsburgh School of Medicine, a Professor of Bioengineering, Swanson School of Engineering, and a Professor of Chemistry, Dietrich School of Arts and Sciences, University of Pittsburgh.
Collapse
Affiliation(s)
- Angela M. Gronenborn
- Department of Structural Biology, School of Medicine, and Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Biomedical Science Tower 3, Room 1051, 3501 Fifth Avenue, Pittsburgh, PA 15260 USA
| |
Collapse
|
10
|
Quinn CM, Zadorozhnyi R, Struppe J, Sergeyev IV, Gronenborn AM, Polenova T. Fast 19F Magic-Angle Spinning Nuclear Magnetic Resonance for the Structural Characterization of Active Pharmaceutical Ingredients in Blockbuster Drugs. Anal Chem 2021; 93:13029-13037. [PMID: 34517697 DOI: 10.1021/acs.analchem.1c02917] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fluorinated drugs occupy a large and growing share of the pharmaceutical market. Here, we explore high-frequency, 60 to 111 kHz, 19F magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy for the structural characterization of fluorinated active pharmaceutical ingredients in commercial formulations of seven blockbuster drugs: Celebrex, Cipro, Crestor, Levaquin, Lipitor, Prozac, and Zyvox. 19F signals can be observed in a single scan, and spectra with high signal-to-noise ratios can be acquired in minutes. 19F spectral parameters, such as chemical shifts and line widths, are sensitive to both the nature of the fluorine moiety and the formulation. We anticipate that the fast 19F MAS NMR-based approach presented here will be valuable for the rapid analysis of fluorine-containing drugs in a wide variety of formulations.
Collapse
Affiliation(s)
- Caitlin M Quinn
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Roman Zadorozhnyi
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States.,Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15261, United States
| | - Jochem Struppe
- Bruker Biospin Corporation, 15 Fortune Drive, Billerica, Massachusetts 01821, United States
| | - Ivan V Sergeyev
- Bruker Biospin Corporation, 15 Fortune Drive, Billerica, Massachusetts 01821, United States
| | - Angela M Gronenborn
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15261, United States.,Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, Pennsylvania 15261, United States
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States.,Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
11
|
Large Multidomain Protein NMR: HIV-1 Reverse Transcriptase Precursor in Solution. Int J Mol Sci 2020; 21:ijms21249545. [PMID: 33333923 PMCID: PMC7765405 DOI: 10.3390/ijms21249545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/10/2020] [Accepted: 12/12/2020] [Indexed: 11/17/2022] Open
Abstract
NMR studies of large proteins, over 100 kDa, in solution are technically challenging and, therefore, of considerable interest in the biophysics field. The challenge arises because the molecular tumbling of a protein in solution considerably slows as molecular mass increases, reducing the ability to detect resonances. In fact, the typical 1H-13C or 1H-15N correlation spectrum of a large protein, using a 13C- or 15N-uniformly labeled protein, shows severe line-broadening and signal overlap. Selective isotope labeling of methyl groups is a useful strategy to reduce these issues, however, the reduction in the number of signals that goes hand-in-hand with such a strategy is, in turn, disadvantageous for characterizing the overall features of the protein. When domain motion exists in large proteins, the domain motion differently affects backbone amide signals and methyl groups. Thus, the use of multiple NMR probes, such as 1H, 19F, 13C, and 15N, is ideal to gain overall structural or dynamical information for large proteins. We discuss the utility of observing different NMR nuclei when characterizing a large protein, namely, the 66 kDa multi-domain HIV-1 reverse transcriptase that forms a homodimer in solution. Importantly, we present a biophysical approach, complemented by biochemical assays, to understand not only the homodimer, p66/p66, but also the conformational changes that contribute to its maturation to a heterodimer, p66/p51, upon HIV-1 protease cleavage.
Collapse
|
12
|
Jourdain de Muizon C, Ramanoudjame SM, Esteoulle L, Ling C, Brou G, Anton N, Vandamme T, Delsuc MA, Bonnet D, Kieffer B. Self-organization Properties of a GPCR-Binding Peptide with a Fluorinated Tail Studied by Fluorine NMR Spectroscopy. Chembiochem 2020; 22:657-661. [PMID: 32986915 DOI: 10.1002/cbic.202000601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/25/2020] [Indexed: 12/31/2022]
Abstract
Conjugation of the bioactive apelin-17 peptide with a fluorocarbon chain results in self-organization of the peptide into micelles. Fluorine NMR spectroscopy studies show that the fluoropeptide's micelles are monodisperse, while proton NMR indicates that the peptide moiety remains largely disordered despite micellization. A very fast exchange rate is measured between the free and micellar states of the peptide which enables the number of molecules present in the micelle to be estimated as 200, in agreement with values found by dynamic light scattering measurements.
Collapse
Affiliation(s)
| | - Sridévi M Ramanoudjame
- Laboratoire d'Innovation Thérapeutique, LabEx MEDALIS, Université de Strasbourg, CNRS UMR, 7200 Faculté de Pharmacie, 74 route du Rhin, 67401, Illkirch-Graffenstaden, France
| | - Lucie Esteoulle
- Laboratoire d'Innovation Thérapeutique, LabEx MEDALIS, Université de Strasbourg, CNRS UMR, 7200 Faculté de Pharmacie, 74 route du Rhin, 67401, Illkirch-Graffenstaden, France
| | - Claude Ling
- Departement of Integrative Structural Biology, IGBMC, Université de Strasbourg, INSERM U596, CNRS UMR, 7104 1, rue Laurent Fries, 67404, Illkirch, France
| | - Germain Brou
- Conception et Applications de Molécules Bioactives, Université de Strasbourg, CNRS UMR 7199, Faculté de Pharmacie, 74 route du Rhin, 67401, Illkirch-Graffenstaden, France
| | - Nicolas Anton
- Conception et Applications de Molécules Bioactives, Université de Strasbourg, CNRS UMR 7199, Faculté de Pharmacie, 74 route du Rhin, 67401, Illkirch-Graffenstaden, France
| | - Thierry Vandamme
- Conception et Applications de Molécules Bioactives, Université de Strasbourg, CNRS UMR 7199, Faculté de Pharmacie, 74 route du Rhin, 67401, Illkirch-Graffenstaden, France
| | - Marc-André Delsuc
- Departement of Integrative Structural Biology, IGBMC, Université de Strasbourg, INSERM U596, CNRS UMR, 7104 1, rue Laurent Fries, 67404, Illkirch, France.,CASC4DE Le Lodge 20, Avenue du Neuhof, 67100, Strasbourg, France
| | - Dominique Bonnet
- Laboratoire d'Innovation Thérapeutique, LabEx MEDALIS, Université de Strasbourg, CNRS UMR, 7200 Faculté de Pharmacie, 74 route du Rhin, 67401, Illkirch-Graffenstaden, France
| | - Bruno Kieffer
- Departement of Integrative Structural Biology, IGBMC, Université de Strasbourg, INSERM U596, CNRS UMR, 7104 1, rue Laurent Fries, 67404, Illkirch, France
| |
Collapse
|
13
|
Nguyen PDM, Zheng J, Gremminger TJ, Qiu L, Zhang D, Tuske S, Lange MJ, Griffin PR, Arnold E, Chen SJ, Zou X, Heng X, Burke DH. Binding interface and impact on protease cleavage for an RNA aptamer to HIV-1 reverse transcriptase. Nucleic Acids Res 2020; 48:2709-2722. [PMID: 31943114 PMCID: PMC7049723 DOI: 10.1093/nar/gkz1224] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/17/2019] [Accepted: 01/03/2020] [Indexed: 12/31/2022] Open
Abstract
RNA aptamers that bind HIV-1 reverse transcriptase (RT) inhibit RT in enzymatic and viral replication assays. Some aptamers inhibit RT from only a few viral clades, while others show broad-spectrum inhibition. Biophysical determinants of recognition specificity are poorly understood. We investigated the interface between HIV-1 RT and a broad–spectrum UCAA-family aptamer. SAR and hydroxyl radical probing identified aptamer structural elements critical for inhibition and established the role of signature UCAA bulge motif in RT-aptamer interaction. HDX footprinting on RT ± aptamer shows strong contacts with both subunits, especially near the C-terminus of p51. Alanine scanning revealed decreased inhibition by the aptamer for mutants P420A, L422A and K424A. 2D proton nuclear magnetic resonance and SAXS data provided constraints on the solution structure of the aptamer and enable computational modeling of the docked complex with RT. Surprisingly, the aptamer enhanced proteolytic cleavage of precursor p66/p66 by HIV-1 protease, suggesting that it stabilizes the productive conformation to allow maturation. These results illuminate features at the RT-aptamer interface that govern recognition specificity by a broad-spectrum antiviral aptamer, and they open new possibilities for accelerating RT maturation and interfering with viral replication.
Collapse
Affiliation(s)
- Phuong D M Nguyen
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA.,Bond Life Sciences Center, University Missouri, Columbia, MO 65211, USA
| | - Jie Zheng
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA
| | | | - Liming Qiu
- Dalton Cardiovascular Research Center, University Missouri, Columbia, MO 65211, USA
| | - Dong Zhang
- Department of Physics and Astronomy, University Missouri, Columbia, MO 65211, USA
| | - Steve Tuske
- Center for Advanced Biotechnology & Medicine, and Department of Chemistry & Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Margaret J Lange
- Department of Molecular Microbiology & Immunology, University Missouri, Columbia, MO 65211, USA
| | - Patrick R Griffin
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Eddy Arnold
- Center for Advanced Biotechnology & Medicine, and Department of Chemistry & Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Shi-Jie Chen
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA.,Department of Physics and Astronomy, University Missouri, Columbia, MO 65211, USA.,MU Institute for Data Science and Informatics, University Missouri, Columbia, MO 65211, USA
| | - Xiaoqin Zou
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA.,Dalton Cardiovascular Research Center, University Missouri, Columbia, MO 65211, USA.,Department of Physics and Astronomy, University Missouri, Columbia, MO 65211, USA.,MU Institute for Data Science and Informatics, University Missouri, Columbia, MO 65211, USA
| | - Xiao Heng
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Donald H Burke
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA.,Bond Life Sciences Center, University Missouri, Columbia, MO 65211, USA.,Department of Molecular Microbiology & Immunology, University Missouri, Columbia, MO 65211, USA
| |
Collapse
|
14
|
Small Conformational Changes Underlie Evolution of Resistance to NNRTI in HIV Reverse Transcriptase. Biophys J 2020; 118:2489-2501. [PMID: 32348721 DOI: 10.1016/j.bpj.2020.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/12/2020] [Accepted: 04/06/2020] [Indexed: 11/23/2022] Open
Abstract
Despite achieving considerable success in reducing the number of fatalities due to acquired immunodeficiency syndrome, emergence of resistance against the reverse transcriptase (RT) inhibitor drugs remains one of the biggest challenges of the human immunodeficiency virus antiretroviral therapy (ART). Non-nucleoside reverse transcriptase inhibitors (NNRTIs) form a large class of drugs and a crucial component of ART. In NNRTIs, even a single resistance mutation is known to make the drugs completely ineffective. Additionally, several inhibitor-bound RTs with single resistance mutations do not exhibit any significant variations in their three-dimensional structures compared with the inhibitor-bound RT but completely nullify their inhibitory functions. This makes understanding the structural mechanism of these resistance mutations crucial for drug development. Here, we study several single resistance mutations in the allosteric inhibitor (nevirapine)-bound RT to analyze the mechanism of small structural changes leading to these large functional effects. In this study, we have shown that in absence of significant conformational variations in the inhibitor-bound wild-type RT and RT with single resistance mutations, the protein contact network analysis of their static structures, along with molecular dynamics simulations, can be a useful approach to understand the functional effect of small local conformational variations. The simple network analysis exposes the localized contact changes that lead to global rearrangement in the communication pattern within RT. Furthermore, these conformational changes have implications on the overall dynamics of RT. Using various measures, we show that a single resistance mutation can change the network structure and dynamics of RT to behave more like unbound RT, even in the presence of the inhibitor. This combined coarse-grained contact network and molecular dynamics approach promises to be a useful tool to analyze structure-function studies of proteins that show large functional changes with negligible variations in their overall conformation.
Collapse
|
15
|
Sang Y, Pannecouque C, De Clercq E, Zhuang C, Chen F. Pharmacophore-fusing design of pyrimidine sulfonylacetanilides as potent non-nucleoside inhibitors of HIV-1 reverse transcriptase. Bioorg Chem 2020; 96:103595. [PMID: 32006797 DOI: 10.1016/j.bioorg.2020.103595] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/14/2020] [Accepted: 01/18/2020] [Indexed: 11/28/2022]
Abstract
Twenty-seven derivatives (40-66) were generated by pharmacophore fusing of sulfonylacetanilide-diarylpyrimidine (1) with rilpivirine or biphenyl-diarylpyrimidines. They displayed up to single-digit nanomolar activity against wild-type (WT) virus and various drug-resistant mutant strains in HIV-1-infected MT-4 cells, thereby targeting the reverse transcriptase (RT) enzyme. Compound 51 displayed exceptionally potent activity against WT virus (EC50 = 6 nM) and several mutant strains (L100I, EC50 = 8 nM, K103N, EC50 = 6 nM, Y181C, EC50 = 26 nM, Y188L, EC50 = 122 nM, E138K, EC50 = 26 nM). The structure-activity relationships of the newly obtained pyrimidine sulfonylacetanilides were also elucidated. Molecular docking analysis explained the activity and provided a structural insight for follow-up research.
Collapse
Affiliation(s)
- Yali Sang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, People's Republic of China; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, People's Republic of China
| | | | - Erik De Clercq
- Rega Institute for Medical Research, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Chunlin Zhuang
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, People's Republic of China; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, People's Republic of China.
| | - Fener Chen
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, People's Republic of China; Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, People's Republic of China; Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, 18 Chao Wang Road, 310014 Hangzhou, People's Republic of China.
| |
Collapse
|
16
|
|
17
|
Somlyay M, Ledolter K, Kitzler M, Sandford G, Cobb SL, Konrat R. 19 F NMR Spectroscopy Tagging and Paramagnetic Relaxation Enhancement-Based Conformation Analysis of Intrinsically Disordered Protein Complexes. Chembiochem 2019; 21:696-701. [PMID: 31529763 DOI: 10.1002/cbic.201900453] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Indexed: 11/06/2022]
Abstract
The combination of 19 F NMR spectroscopy tagging and paramagnetic relaxation enhancement (PRE) NMR spectroscopy experiments was evaluated as a versatile method to probe protein-protein interactions and conformational changes of intrinsically disordered proteins upon complex formation. The feasibility of the approach is illustrated with an application to the Myc-Max protein complex; this is an oncogenic transcription factor that binds enhancer box DNA fragments. The single cysteine residue of Myc was tagged with highly fluorinated [19 F]3,5-bis(trifluoromethyl)benzyl bromide. Structural dynamics of the protein complex were monitored through intermolecular PREs between 19 F-Myc and paramagnetic (1-oxyl-2,2,5,5-tetramethyl-Δ3-pyrroline-3-methyl)methanethiosulfonate (MTSL)-tagged) Max. The 19 F R2 relaxation rates obtained with three differently MTSL-tagged Max mutants revealed novel insights into the differential structural dynamics of Myc-Max bound to DNA and the tumour suppressor breast cancer antigen 1. Given its ease of implementation, fruitful applications of this strategy to structural biology and inhibitor screening can be envisaged.
Collapse
Affiliation(s)
- Máté Somlyay
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030, Vienna, Austria
| | - Karin Ledolter
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030, Vienna, Austria
| | - Manuel Kitzler
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030, Vienna, Austria
| | - Graham Sandford
- Department of Chemistry, Durham University, Stockton Road, DH1 3LE, Durham, UK
| | - Steven L Cobb
- Department of Chemistry, Durham University, Stockton Road, DH1 3LE, Durham, UK
| | - Robert Konrat
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, 1030, Vienna, Austria
| |
Collapse
|
18
|
Collier DA, Monit C, Gupta RK. The Impact of HIV-1 Drug Escape on the Global Treatment Landscape. Cell Host Microbe 2019; 26:48-60. [PMID: 31295424 DOI: 10.1016/j.chom.2019.06.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The rising prevalence of HIV drug resistance (HIVDR) could threaten gains made in combating the HIV epidemic and compromise the 90-90-90 target proposed by United Nations Programme on HIV/AIDS (UNAIDS) to have achieved virological suppression in 90% of all persons receiving antiretroviral therapy (ART) by the year 2020. HIVDR has implications for the persistence of HIV, the selection of current and future ART drug regimens, and strategies of vaccine and cure development. Focusing on drug classes that are in clinical use, this Review critically summarizes what is known about the mechanisms the virus utilizes to escape drug control. Armed with this knowledge, strategies to limit the expansion of HIVDR are proposed.
Collapse
Affiliation(s)
- D A Collier
- Division of Infection and Immunity, University College London, London, UK
| | - C Monit
- Division of Infection and Immunity, University College London, London, UK
| | - R K Gupta
- Department of Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
19
|
Slack RL, Ilina TV, Xi Z, Giacobbi NS, Kawai G, Parniak MA, Sarafianos SG, Sluis Cremer N, Ishima R. Conformational Changes in HIV-1 Reverse Transcriptase that Facilitate Its Maturation. Structure 2019; 27:1581-1593.e3. [PMID: 31471129 DOI: 10.1016/j.str.2019.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 07/10/2019] [Accepted: 08/09/2019] [Indexed: 01/18/2023]
Abstract
HIV-1 reverse transcriptase (RT) is translated as part of the Gag-Pol polyprotein that is proteolytically processed by HIV-1 protease (PR) to finally become a mature heterodimer, composed of a p66 and a p66-derived 51-kDa subunit, p51. Our previous work suggested that tRNALys3 binding to p66/p66 introduces conformational changes in the ribonuclease (RNH) domain of RT that facilitate efficient cleavage of p66 to p51 by PR. In this study, we characterized the conformational changes in the RNH domain of p66/p66 imparted by tRNALys3 using NMR. Moreover, the importance of tRNALys3 in RT maturation was confirmed in cellulo by modulating the levels of Lys-tRNA synthetase, which affects recruitment of tRNALys3 to the virus. We also employed nonnucleoside RT inhibitors, to modulate the p66 dimer-monomer equilibrium and monitor the resulting structural changes. Taken together, our data provide unique insights into the conformational changes in p66/p66 that drive PR cleavage.
Collapse
Affiliation(s)
- Ryan L Slack
- Department of Structural Biology, University of Pittsburgh School of Medicine, Room 1037, Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Tatiana V Ilina
- Department of Structural Biology, University of Pittsburgh School of Medicine, Room 1037, Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Zhaoyong Xi
- Department of Structural Biology, University of Pittsburgh School of Medicine, Room 1037, Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Nicholas S Giacobbi
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Gota Kawai
- Department of Life and Environmental Sciences, Chiba Institute of Technology, Chiba, Japan
| | - Michael A Parniak
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Stefan G Sarafianos
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nicolas Sluis Cremer
- Department of Medicine, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| | - Rieko Ishima
- Department of Structural Biology, University of Pittsburgh School of Medicine, Room 1037, Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA.
| |
Collapse
|
20
|
DeStefano JJ. Non-nucleoside Reverse Transcriptase Inhibitors Inhibit Reverse Transcriptase through a Mutually Exclusive Interaction with Divalent Cation-dNTP Complexes. Biochemistry 2019; 58:2176-2187. [PMID: 30900874 DOI: 10.1021/acs.biochem.9b00028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Non-nucleoside reverse transcriptase inhibitors (NNRTIs) are considered noncompetitive inhibitors that structurally alter reverse transcriptase (RT) and dramatically decrease catalysis. In this report, biochemical analysis with various divalent cations was used to demonstrate that NNRTIs and divalent cation-dNTP complexes are mutually exclusive, inhibiting each other's binding to RT/primer/template (RT-P/T) complexes. The binding of catalytically competent divalent cation-dNTP complexes to RT-P/T was measured with Mg2+, Mn2+, Zn2+, Co2+, and Ni2+ using Ca2+, a noncatalytic cation, for displacement. Binding strength order was Mn2+ ≈ Zn2+ ≫ Co2+ > Mg2+ ≈ Ni2+. Consistent with but not exclusive to mutually exclusive binding, primer extension assays showed that stronger divalent cation-dNTP complexes were more resistant to NNRTIs (efavirenz (EFV), rilpivirine (RPV), and nevirapine (NVP)). Filtration assays demonstrated that divalent cation-dNTP complexes inhibited the binding of 14C-labeled EFV to RT-P/T with stronger binding complexes formed with Mn2+ inhibiting more potently than those with Mg2+. Conversely, filter binding assays demonstrated that EFV inhibited 3H-labeled dNTP binding to RT-P/T complexes with displacement of Mn2+-dNTP complexes requiring much greater concentrations of EFV than the more weakly bound Mg2+-dNTP complexes. EFV bound relatively weakly to the NNRTI resistant K103N RT; but, binding was modestly enhanced in the presence of P/T, and EFV was easily displaced by divalent cation-dNTP complexes. This suggests that K103N overcomes EFV inhibition mostly by binding more weakly to the drug and is in contrast to other reports that indicate K103N has little to no effect on drug or dNTP binding. Overall, this biochemical analysis supports recent biophysical analyses of NNRTI-RT interactions that indicate mutually exclusive binding.
Collapse
Affiliation(s)
- Jeffrey J DeStefano
- Department of Cell Biology and Molecular Genetics and the Maryland Pathogen Research Institute , University of Maryland , College Park , Maryland 20742 , United States
| |
Collapse
|
21
|
Namasivayam V, Vanangamudi M, Kramer VG, Kurup S, Zhan P, Liu X, Kongsted J, Byrareddy SN. The Journey of HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs) from Lab to Clinic. J Med Chem 2018; 62:4851-4883. [PMID: 30516990 DOI: 10.1021/acs.jmedchem.8b00843] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human immunodeficiency virus (HIV) infection is now pandemic. Targeting HIV-1 reverse transcriptase (HIV-1 RT) has been considered as one of the most successful targets for the development of anti-HIV treatment. Among the HIV-1 RT inhibitors, non-nucleoside reverse transcriptase inhibitors (NNRTIs) have gained a definitive place due to their unique antiviral potency, high specificity, and low toxicity in antiretroviral combination therapies used to treat HIV. Until now, >50 structurally diverse classes of compounds have been reported as NNRTIs. Among them, six NNRTIs were approved for HIV-1 treatment, namely, nevirapine (NVP), delavirdine (DLV), efavirenz (EFV), etravirine (ETR), rilpivirine (RPV), and doravirine (DOR). In this perspective, we focus on the six NNRTIs and lessons learned from their journey through development to clinical studies. It demonstrates the obligatory need of understanding the physicochemical and biological principles (lead optimization), resistance mutations, synthesis, and clinical requirements for drugs.
Collapse
Affiliation(s)
- Vigneshwaran Namasivayam
- Pharmaceutical Institute, Pharmaceutical Chemistry II , University of Bonn , 53121 Bonn , Germany
| | - Murugesan Vanangamudi
- Department of Medicinal and Pharmaceutical Chemistry , Sree Vidyanikethan College of Pharmacy , Tirupathi , Andhra Pradesh 517102 , India
| | | | - Sonali Kurup
- College of Pharmacy , Roosevelt University , Schaumburg , Illinois 60173 , United States
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , Jinan 250012 , P.R. China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , Jinan 250012 , P.R. China
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy , University of Southern Denmark , DK-5230 , Odense M , Denmark
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience , University of Nebraska Medical Center , Omaha 68198-5880 , United States
| |
Collapse
|
22
|
Battini L, Bollini M. Challenges and approaches in the discovery of human immunodeficiency virus type‐1 non‐nucleoside reverse transcriptase inhibitors. Med Res Rev 2018; 39:1235-1273. [DOI: 10.1002/med.21544] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/04/2018] [Accepted: 10/04/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Leandro Battini
- Laboratorio de Química Medicinal, Centro de Investigaciones en Bionanociencias (CIBION), CONICETCiudad de Buenos Aires Argentina
| | - Mariela Bollini
- Laboratorio de Química Medicinal, Centro de Investigaciones en Bionanociencias (CIBION), CONICETCiudad de Buenos Aires Argentina
| |
Collapse
|
23
|
Lu M, Sarkar S, Wang M, Kraus J, Fritz M, Quinn CM, Bai S, Holmes ST, Dybowski C, Yap GPA, Struppe J, Sergeyev IV, Maas W, Gronenborn AM, Polenova T. 19F Magic Angle Spinning NMR Spectroscopy and Density Functional Theory Calculations of Fluorosubstituted Tryptophans: Integrating Experiment and Theory for Accurate Determination of Chemical Shift Tensors. J Phys Chem B 2018. [PMID: 29756776 DOI: 10.1021/acs.jpcb.1028b00377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
The 19F chemical shift is a sensitive NMR probe of structure and electronic environment in organic and biological molecules. In this report, we examine chemical shift parameters of 4F-, 5F-, 6F-, and 7F-substituted crystalline tryptophan by magic angle spinning (MAS) solid-state NMR spectroscopy and density functional theory. Significant narrowing of the 19F lines was observed under fast MAS conditions, at spinning frequencies above 50 kHz. The parameters characterizing the 19F chemical shift tensor are sensitive to the position of the fluorine in the aromatic ring and, to a lesser extent, the chirality of the molecule. Accurate calculations of 19F magnetic shielding tensors require the PBE0 functional with a 50% admixture of a Hartree-Fock exchange term, as well as taking account of the local crystal symmetry. The methodology developed will be beneficial for 19F-based MAS NMR structural analysis of proteins and protein assemblies.
Collapse
Affiliation(s)
- Manman Lu
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
- Pittsburgh Center for HIV Protein Interactions , University of Pittsburgh School of Medicine , 1051 Biomedical Science Tower 3, 3501 Fifth Avenue , Pittsburgh , Pennsylvania 15261 , United States
| | - Sucharita Sarkar
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
- Pittsburgh Center for HIV Protein Interactions , University of Pittsburgh School of Medicine , 1051 Biomedical Science Tower 3, 3501 Fifth Avenue , Pittsburgh , Pennsylvania 15261 , United States
| | - Mingzhang Wang
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
- Pittsburgh Center for HIV Protein Interactions , University of Pittsburgh School of Medicine , 1051 Biomedical Science Tower 3, 3501 Fifth Avenue , Pittsburgh , Pennsylvania 15261 , United States
| | - Jodi Kraus
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| | - Matthew Fritz
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| | - Caitlin M Quinn
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| | - Shi Bai
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| | - Sean T Holmes
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| | - Cecil Dybowski
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| | - Glenn P A Yap
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| | - Jochem Struppe
- Bruker Biospin Corporation , 15 Fortune Drive , Billerica , Massachusetts 01821 , United States
| | - Ivan V Sergeyev
- Bruker Biospin Corporation , 15 Fortune Drive , Billerica , Massachusetts 01821 , United States
| | - Werner Maas
- Bruker Biospin Corporation , 15 Fortune Drive , Billerica , Massachusetts 01821 , United States
| | - Angela M Gronenborn
- Pittsburgh Center for HIV Protein Interactions , University of Pittsburgh School of Medicine , 1051 Biomedical Science Tower 3, 3501 Fifth Avenue , Pittsburgh , Pennsylvania 15261 , United States
- Department of Structural Biology , University of Pittsburgh School of Medicine , 3501 Fifth Avenue , Pittsburgh , Pennsylvania 15261 , United States
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
- Pittsburgh Center for HIV Protein Interactions , University of Pittsburgh School of Medicine , 1051 Biomedical Science Tower 3, 3501 Fifth Avenue , Pittsburgh , Pennsylvania 15261 , United States
| |
Collapse
|
24
|
Lu M, Sarkar S, Wang M, Kraus J, Fritz M, Quinn CM, Bai S, Holmes ST, Dybowski C, Yap GPA, Struppe J, Sergeyev IV, Maas W, Gronenborn AM, Polenova T. 19F Magic Angle Spinning NMR Spectroscopy and Density Functional Theory Calculations of Fluorosubstituted Tryptophans: Integrating Experiment and Theory for Accurate Determination of Chemical Shift Tensors. J Phys Chem B 2018; 122:6148-6155. [PMID: 29756776 DOI: 10.1021/acs.jpcb.8b00377] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The 19F chemical shift is a sensitive NMR probe of structure and electronic environment in organic and biological molecules. In this report, we examine chemical shift parameters of 4F-, 5F-, 6F-, and 7F-substituted crystalline tryptophan by magic angle spinning (MAS) solid-state NMR spectroscopy and density functional theory. Significant narrowing of the 19F lines was observed under fast MAS conditions, at spinning frequencies above 50 kHz. The parameters characterizing the 19F chemical shift tensor are sensitive to the position of the fluorine in the aromatic ring and, to a lesser extent, the chirality of the molecule. Accurate calculations of 19F magnetic shielding tensors require the PBE0 functional with a 50% admixture of a Hartree-Fock exchange term, as well as taking account of the local crystal symmetry. The methodology developed will be beneficial for 19F-based MAS NMR structural analysis of proteins and protein assemblies.
Collapse
Affiliation(s)
- Manman Lu
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States.,Pittsburgh Center for HIV Protein Interactions , University of Pittsburgh School of Medicine , 1051 Biomedical Science Tower 3, 3501 Fifth Avenue , Pittsburgh , Pennsylvania 15261 , United States
| | - Sucharita Sarkar
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States.,Pittsburgh Center for HIV Protein Interactions , University of Pittsburgh School of Medicine , 1051 Biomedical Science Tower 3, 3501 Fifth Avenue , Pittsburgh , Pennsylvania 15261 , United States
| | - Mingzhang Wang
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States.,Pittsburgh Center for HIV Protein Interactions , University of Pittsburgh School of Medicine , 1051 Biomedical Science Tower 3, 3501 Fifth Avenue , Pittsburgh , Pennsylvania 15261 , United States
| | - Jodi Kraus
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| | - Matthew Fritz
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| | - Caitlin M Quinn
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| | - Shi Bai
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| | - Sean T Holmes
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| | - Cecil Dybowski
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| | - Glenn P A Yap
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| | - Jochem Struppe
- Bruker Biospin Corporation , 15 Fortune Drive , Billerica , Massachusetts 01821 , United States
| | - Ivan V Sergeyev
- Bruker Biospin Corporation , 15 Fortune Drive , Billerica , Massachusetts 01821 , United States
| | - Werner Maas
- Bruker Biospin Corporation , 15 Fortune Drive , Billerica , Massachusetts 01821 , United States
| | - Angela M Gronenborn
- Pittsburgh Center for HIV Protein Interactions , University of Pittsburgh School of Medicine , 1051 Biomedical Science Tower 3, 3501 Fifth Avenue , Pittsburgh , Pennsylvania 15261 , United States.,Department of Structural Biology , University of Pittsburgh School of Medicine , 3501 Fifth Avenue , Pittsburgh , Pennsylvania 15261 , United States
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States.,Pittsburgh Center for HIV Protein Interactions , University of Pittsburgh School of Medicine , 1051 Biomedical Science Tower 3, 3501 Fifth Avenue , Pittsburgh , Pennsylvania 15261 , United States
| |
Collapse
|
25
|
Khan SN, Persons JD, Paulsen JL, Guerrero M, Schiffer CA, Kurt-Yilmaz N, Ishima R. Probing Structural Changes among Analogous Inhibitor-Bound Forms of HIV-1 Protease and a Drug-Resistant Mutant in Solution by Nuclear Magnetic Resonance. Biochemistry 2018; 57:1652-1662. [PMID: 29457713 PMCID: PMC5850901 DOI: 10.1021/acs.biochem.7b01238] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the era of state-of-the-art inhibitor design and high-resolution structural studies, detection of significant but small protein structural differences in the inhibitor-bound forms is critical to further developing the inhibitor. Here, we probed differences in HIV-1 protease (PR) conformation among darunavir and four analogous inhibitor-bound forms and compared them with a drug-resistant mutant using nuclear magnetic resonance chemical shifts. Changes in amide chemical shifts of wild-type (WT) PR among these inhibitor-bound forms, ΔCSP, were subtle but detectable and extended >10 Å from the inhibitor-binding site, asymmetrically between the two subunits of PR. Molecular dynamics simulations revealed differential local hydrogen bonding as the molecular basis of this remote asymmetric change. Inhibitor-bound forms of the drug-resistant mutant also showed a similar long-range ΔCSP pattern. Differences in ΔCSP values of the WT and the mutant (ΔΔCSPs) were observed at the inhibitor-binding site and in the surrounding region. Comparing chemical shift changes among highly analogous inhibitors and ΔΔCSPs effectively eliminated local environmental effects stemming from different chemical groups and enabled exploitation of these sensitive parameters to detect subtle protein conformational changes and to elucidate asymmetric and remote conformational effects upon inhibitor interaction.
Collapse
Affiliation(s)
- Shahid N Khan
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John D Persons
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Janet L. Paulsen
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Michel Guerrero
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Celia A. Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Nese Kurt-Yilmaz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Rieko Ishima
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
26
|
Galilee M, Alian A. The structure of FIV reverse transcriptase and its implications for non-nucleoside inhibitor resistance. PLoS Pathog 2018; 14:e1006849. [PMID: 29364950 PMCID: PMC5798851 DOI: 10.1371/journal.ppat.1006849] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 02/05/2018] [Accepted: 01/03/2018] [Indexed: 11/24/2022] Open
Abstract
Reverse transcriptase (RT) is the target for the majority of anti-HIV-1 drugs. As with all anti-AIDS treatments, continued success of RT inhibitors is persistently disrupted by the occurrence of resistance mutations. To explore latent resistance mechanisms potentially accessible to therapeutically challenged HIV-1 viruses, we examined RT from the related feline immunodeficiency virus (FIV). FIV closely parallels HIV-1 in its replication and pathogenicity, however, is resistant to all non-nucleoside inhibitors (NNRTI). The intrinsic resistance of FIV RT is particularly interesting since FIV harbors the Y181 and Y188 sensitivity residues absent in both HIV-2 and SIV. Unlike RT from HIV-2 or SIV, previous efforts have failed to make FIV RT susceptible to NNRTIs concluding that the structure or flexibility of the feline enzyme must be profoundly different. We report the first crystal structure of FIV RT and, being the first structure of an RT from a non-primate lentivirus, enrich the structural and species repertoires available for RT. The structure demonstrates that while the NNRTI binding pocket is conserved, minor subtleties at the entryway can render the FIV RT pocket more restricted and unfavorable for effective NNRTI binding. Measuring NNRTI binding affinity to FIV RT shows that the “closed” pocket configuration inhibits NNRTI binding. Mutating the loop residues rimming the entryway of FIV RT pocket allows for NNRTI binding, however, it does not confer sensitivity to these inhibitors. This reveals a further layer of resistance caused by inherent FIV RT variances that could have enhanced the dissociation of bound inhibitors, or, perhaps, modulated protein plasticity to overcome inhibitory effects of bound NNRTIs. The more “closed” conformation of FIV RT pocket can provide a template for the development of innovative drugs that could unlock the constrained pocket, and the resilient mutant version of the enzyme can offer a fresh model for the study of NNRTI-resistance mechanisms overlooked in HIV-1. The majority of anti-AIDS drugs target the reverse transcriptase (RT) enzyme of the HIV-1 virus. RT catalyzes the central step in the virus replication cycle converting the viral RNA genome into DNA for subsequent integration into the host genome. As with all anti-AIDS treatments, continued success of RT inhibitors is persistently disrupted by the occurrence of resistance mutations. To explore latent resistance mechanisms potentially accessible to therapeutically challenged HIV-1 viruses, we examined RT from the related feline immunodeficiency virus (FIV). FIV closely parallels HIV-1 in its replication and pathogenicity however is resistant to all non-nucleoside inhibitors of HIV-1 RT. We resolved the crystal structure of FIV RT, and using mutational and biochemical analyses, we show that specific differences in the FIV RT structure inhibit the binding of non-nucleoside inhibitors. We further show that mutating the protein to facilitate binding of the inhibitors does not confer sensitivity to these inhibitors, suggesting that other variances inherent in FIV RT modulate a second layer of resistance. These insights can help in the development of novel drugs against evolving HIV-1 RT resistance.
Collapse
Affiliation(s)
- Meytal Galilee
- Faculty of Biology, Technion–Israel Institute of Technology, Haifa, Israel
| | - Akram Alian
- Faculty of Biology, Technion–Israel Institute of Technology, Haifa, Israel
- * E-mail:
| |
Collapse
|
27
|
Sharaf NG, Xi Z, Ishima R, Gronenborn AM. The HIV-1 p66 homodimeric RT exhibits different conformations in the binding-competent and -incompetent NNRTI site. Proteins 2017; 85:2191-2197. [PMID: 28905420 DOI: 10.1002/prot.25383] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/02/2017] [Accepted: 09/10/2017] [Indexed: 01/10/2023]
Abstract
Non-nucleoside inhibitors of human immunodeficiency virus type 1 reverse transcriptase (RT), NNRTIs, which bind to the p66/p51 heterodimeric RT, also interact with the p66/p66 homodimer, whose structure is unknown. 19 F nuclear magnetic resonance of a single 4-trifluoromethylphenylalanine (tfmF) residue, incorporated into the NNRTI binding pocket of the p66/p66 homodimer at position 181, was used to investigate NNRTI binding. In the NNRTI-bound homodimer complex, two different 19 F signals are observed, with the resonance frequencies matching those of the NNRTI-bound p66/p51 heterodimer spectra, in which the individual p66-subunit or p51-subunit were labeled with tfmF at positions 181. These data suggest that the NNRTI-bound p66/p66 homodimer conformation, particularly around residue 181, is very similar to that in the p66/p51 heterodimer, explaining why NNRTI binding to p66/p66 enhances dimer formation.
Collapse
Affiliation(s)
- Naima G Sharaf
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15260
| | - Zhaoyong Xi
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15260
| | - Rieko Ishima
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15260
| | - Angela M Gronenborn
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15260
| |
Collapse
|
28
|
Liu X, Yuan Y, Bo S, Li Y, Yang Z, Zhou X, Chen S, Jiang ZX. Monitoring Fluorinated Dendrimer-Based Self-Assembled Drug-Delivery Systems with 19
F Magnetic Resonance. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700566] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Xin Liu
- Hubei Province Engineering and Technology Research Center for fluorinated Pharmaceuticals; School of Pharmaceutical Sciences; Wuhan University; 430071 Wuhan China
| | - Yaping Yuan
- State Key Laboratory for Magnetic Resonance and Atomic and Molecular Physics; Wuhan Institute of Physics and Mathematics; Chinese Academy of Sciences; 430071 Wuhan China
| | - Shaowei Bo
- Hubei Province Engineering and Technology Research Center for fluorinated Pharmaceuticals; School of Pharmaceutical Sciences; Wuhan University; 430071 Wuhan China
| | - Yu Li
- Hubei Province Engineering and Technology Research Center for fluorinated Pharmaceuticals; School of Pharmaceutical Sciences; Wuhan University; 430071 Wuhan China
| | - Zhigang Yang
- Hubei Province Engineering and Technology Research Center for fluorinated Pharmaceuticals; School of Pharmaceutical Sciences; Wuhan University; 430071 Wuhan China
| | - Xin Zhou
- State Key Laboratory for Magnetic Resonance and Atomic and Molecular Physics; Wuhan Institute of Physics and Mathematics; Chinese Academy of Sciences; 430071 Wuhan China
| | - Shizhen Chen
- State Key Laboratory for Magnetic Resonance and Atomic and Molecular Physics; Wuhan Institute of Physics and Mathematics; Chinese Academy of Sciences; 430071 Wuhan China
| | - Zhong-Xing Jiang
- Hubei Province Engineering and Technology Research Center for fluorinated Pharmaceuticals; School of Pharmaceutical Sciences; Wuhan University; 430071 Wuhan China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials; Dong Hua University; 201620 Shanghai China
| |
Collapse
|