1
|
Cao C, Li L, Zhang Q, Li H, Wang Z, Wang A, Liu J. Nkx2.5: a crucial regulator of cardiac development, regeneration and diseases. Front Cardiovasc Med 2023; 10:1270951. [PMID: 38124890 PMCID: PMC10732152 DOI: 10.3389/fcvm.2023.1270951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Cardiomyocytes fail to regenerate after birth and respond to mitotic signals through cellular hypertrophy rather than cellular proliferation. Necrotic cardiomyocytes in the infarcted ventricular tissue are eventually replaced by fibroblasts, generating scar tissue. Cardiomyocyte loss causes localized systolic dysfunction. Therefore, achieving the regeneration of cardiomyocytes is of great significance for cardiac function and development. Heart development is a complex biological process. An integral cardiac developmental network plays a decisive role in the regeneration of cardiomyocytes. During this process, genetic epigenetic factors, transcription factors, signaling pathways and small RNAs are involved in regulating the developmental process of the heart. Cardiomyocyte-specific genes largely promote myocardial regeneration, among which the Nkx2.5 transcription factor is one of the earliest markers of cardiac progenitor cells, and the loss or overexpression of Nkx2.5 affects cardiac development and is a promising candidate factor. Nkx2.5 affects the development and function of the heart through its multiple functional domains. However, until now, the specific mechanism of Nkx2.5 in cardiac development and regeneration is not been fully understood. Therefore, this article will review the molecular structure, function and interaction regulation of Nkx2.5 to provide a new direction for cardiac development and the treatment of heart regeneration.
Collapse
Affiliation(s)
- Ce Cao
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Chinese Materia Pharmacology, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, China
- Institute of Chinese Medicine Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lei Li
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Chinese Materia Pharmacology, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, China
| | - Qian Zhang
- Institute of Chinese Medicine Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Haoran Li
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Chinese Materia Pharmacology, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, China
- Institute of Chinese Medicine Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ziyan Wang
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Chinese Materia Pharmacology, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, China
| | - Aoao Wang
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Chinese Materia Pharmacology, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, China
| | - Jianxun Liu
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Chinese Materia Pharmacology, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, China
- Institute of Chinese Medicine Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
2
|
Lovato TL, Blotz B, Bileckyj C, Johnston CA, Cripps RM. Modeling a variant of unknown significance in the Drosophila ortholog of the human cardiogenic gene NKX2.5. Dis Model Mech 2023; 16:dmm050059. [PMID: 37691628 PMCID: PMC10548113 DOI: 10.1242/dmm.050059] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 09/05/2023] [Indexed: 09/12/2023] Open
Abstract
Sequencing of human genome samples has unearthed genetic variants for which functional testing is necessary to validate their clinical significance. We used the Drosophila system to analyze a variant of unknown significance in the human congenital heart disease gene NKX2.5 (also known as NKX2-5). We generated an R321N allele of the NKX2.5 ortholog tinman (tin) to model a human K158N variant and tested its function in vitro and in vivo. The R321N Tin isoform bound poorly to DNA in vitro and was deficient in activating a Tin-dependent enhancer in tissue culture. Mutant Tin also showed a significantly reduced interaction with a Drosophila T-box cardiac factor named Dorsocross1. We generated a tinR321N allele using CRISPR/Cas9, for which homozygotes were viable and had normal heart specification, but showed defects in the differentiation of the adult heart that were exacerbated by further loss of tin function. We propose that the human K158N variant is pathogenic through causing a deficiency in DNA binding and a reduced ability to interact with a cardiac co-factor, and that cardiac defects might arise later in development or adult life.
Collapse
Affiliation(s)
- TyAnna L. Lovato
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Brenna Blotz
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Cayleen Bileckyj
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | | | - Richard M. Cripps
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| |
Collapse
|
3
|
Lovato TL, Blotz B, Bileckyj C, Johnston CA, Cripps RM. Using Drosophila to model a variant of unknown significance in the human cardiogenic gene Nkx2.5. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.28.546937. [PMID: 37425758 PMCID: PMC10327092 DOI: 10.1101/2023.06.28.546937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Sequencing of human genome samples has unearthed genetic variants for which functional testing is necessary to validate their clinical significance. We used the Drosophila system to analyze a variant of unknown significance in the human congenital heart disease gene, Nkx2 . 5 . We generated an R321N allele of the Nkx2 . 5 ortholog tinman ( tin ) to model a human K158N variant and tested its function in vitro and in vivo. The R321N Tin isoform bound poorly to DNA in vitro and was deficient in activating a Tin-dependent enhancer in tissue culture. Mutant Tin also showed a significantly reduced interaction with a Drosophila Tbox cardiac factor named Dorsocross1. We generated a tin R321N allele using CRISPR/Cas9, for which homozygotes were viable and had normal heart specification, but showed defects in the differentiation of the adult heart that were exacerbated by further loss of tin function. We conclude that the human K158N mutation is likely pathogenic through causing both a deficiency in DNA binding and a reduced ability to interact with a cardiac cofactor, and that cardiac defects might arise later in development or adult life.
Collapse
|
4
|
Shafique S, Ali SR, Rajput SN, Salim A, Khan I. Cardiac Transcription Regulators Differentiate Human Umbilical Cord Mesenchymal Stem Cells into Cardiac Cells. Altern Lab Anim 2023; 51:12-29. [PMID: 36484201 DOI: 10.1177/02611929221143774] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Stem cell-based therapy presents an attractive alternative to conventional therapies for degenerative diseases. Numerous studies have investigated the capability of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) to contribute to the regeneration of cardiomyocytes, and the results have encouraged further basic and clinical studies on the MSC-based treatment of cardiomyopathies. This study aimed to determine the potential of cardiomyogenic transcription factors in differentiating hUC-MSCs into cardiac-like cells in vitro. MSCs were isolated from umbilical cord tissue and were transduced with the transcription factor genes, GATA-4 and Nkx 2.5, via infection with lentiviruses, to promote differentiation into the cardiomyogenic lineage. Gene and protein expression were analysed with qPCR and immunocytochemical staining. After transduction, differentiated cardiac-like cells showed significant expression of cardiac genes and proteins, namely GATA-4, Nkx-2.5, cardiac troponin I (cTnI) and myosin heavy chain (MHC). The cardiomyogenic-induced group significantly overexpressed cardiac-specific genes (GATA-4, Nkx-2.5, cTnI, MHC, α-actinin and Wnt2). Expression of the calcium channel gene was also significantly increased, while the sodium channel gene was downregulated in the transduced hUC-MSCs, as compared to non-transduced cells. The results suggest that GATA-4 and Nkx-2.5 interact synergistically in the activation of downstream cardiac transcription factors, demonstrating the functional convergence of hUC-MSC differentiation into cardiac-like cells. These findings could potentially be utilised in the efficient production of cardiac-like cells from stem cells; these cardiac-like cells could then be used in various applications, such as for in vivo implantation in infarcted myocardium, and for drug screening in toxicity testing.
Collapse
Affiliation(s)
- Shumaila Shafique
- 208246Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Syeda Roohina Ali
- 208246Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Shafiqa Naeem Rajput
- 208246Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Asmat Salim
- 208246Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Irfan Khan
- 208246Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
5
|
Dixit R, Narasimhan C, Balekundri VI, Agrawal D, Kumar A, Mohapatra B. Functional analysis of novel genetic variants of NKX2-5 associated with nonsyndromic congenital heart disease. Am J Med Genet A 2021; 185:3644-3663. [PMID: 34214246 DOI: 10.1002/ajmg.a.62413] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/04/2021] [Accepted: 06/11/2021] [Indexed: 01/26/2023]
Abstract
NKX2-5, a master cardiac regulatory transcription factor was the first known genetic cause of congenital heart diseases (CHDs). To further investigate its role in CHD pathogenesis, we performed mutational screening of 285 CHD probands and 200 healthy controls. Five coding sequence variants were identified in six CHD cases (2.1%), including three in the N-terminal region (p.A61G, p.R95L, and p.E131K) and one each in homeodomain (HD) (p.A148E) and tyrosine-rich domain (p.P247A). Variant-p.A148E showed tertiary structure changes and differential DNA binding affinity of mutant compared to wild type. Two N-terminal variants-p.A61G and p.E131K along with HD variant p.A148E demonstrated significantly reduced transcriptional activity of Nppa and Actc1 promoters in dual luciferase promoter assay supported by their reduced expression in qRT-PCR. Nonetheless, variant p.R95L affected the synergy of NKX2-5 with serum response factor and TBX5 leading to significantly decreased Actc1 promoter activity depicting a distinctive role of this region. The aberrant expression of other target genes-Irx4, Mef2c, Bmp10, Myh6, Myh7, and Myocd is also observed in response to NKX2-5 variants, possibly due to the defective gene regulatory network. Severely impaired downstream promoter activities and abnormal expression of target genes due to N-terminal variants supports the emerging role of this region during cardiac-developmental pathways.
Collapse
Affiliation(s)
- Ritu Dixit
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Chitra Narasimhan
- Department of Pediatric Cardiology, Sri Jayadeva Institute of Cardiovascular Sciences and Research, Bengaluru, Karnataka, India
| | - Vijayalakshmi I Balekundri
- Super Speciality Hospital, Pradhan Mantri Swasthya Suraksha Yojana (PMSSY), Medical College and Research Institute, Bengaluru, Karnataka, India
| | - Damyanti Agrawal
- Department of Cardiothoracic and Vascular Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ashok Kumar
- Department of Pediatrics, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Bhagyalaxmi Mohapatra
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
6
|
Abstract
Cardiac development is a complex developmental process that is initiated soon after gastrulation, as two sets of precardiac mesodermal precursors are symmetrically located and subsequently fused at the embryonic midline forming the cardiac straight tube. Thereafter, the cardiac straight tube invariably bends to the right, configuring the first sign of morphological left–right asymmetry and soon thereafter the atrial and ventricular chambers are formed, expanded and progressively septated. As a consequence of all these morphogenetic processes, the fetal heart acquired a four-chambered structure having distinct inlet and outlet connections and a specialized conduction system capable of directing the electrical impulse within the fully formed heart. Over the last decades, our understanding of the morphogenetic, cellular, and molecular pathways involved in cardiac development has exponentially grown. Multiples aspects of the initial discoveries during heart formation has served as guiding tools to understand the etiology of cardiac congenital anomalies and adult cardiac pathology, as well as to enlighten novels approaches to heal the damaged heart. In this review we provide an overview of the complex cellular and molecular pathways driving heart morphogenesis and how those discoveries have provided new roads into the genetic, clinical and therapeutic management of the diseased hearts.
Collapse
|
7
|
Abstract
The purpose of this study was to investigate the relationship between glioma-associated oncogene homolog 1 (GLI1) rs2228226 and rs10783826 polymorphisms and congenital heart disease (CHD) risk in a Chinese Han population.Genotyping for our interested polymorphisms was performed using polymerase chain reaction-restriction fragment length polymorphism in 106 CHD patients and 112 healthy controls. Hardy-Weinberg equilibrium status in the control group was also checked via χ test. Differences in genotype and allele frequencies between the case and control groups were analyzed adopting Chi-Squared test as well, and the relative risk of CHD resulting from GLI1 genetic variants was checked via calculating odds ratio (OR) and 95% confidence interval (95%CI).CC genotype of rs2228226 showed significantly higher frequency in CHD patients than in controls (P = .011), indicating that it increased the disease risk (OR = 3.257, 95%CI = 1.280-8.287). Similarly, C allele of the polymorphism elevated CHD incidence by 1.609 folds, compared with G allele (OR = 1.609, 95%CI = 1.089-2.376). However, rs10783826 was not correlated with the occurrence of CHD.GLI1 rs2228226 polymorphism may be a risk factor for CHD in Chinese Han population, but not rs10783826.
Collapse
|
8
|
Laforest B, Dai W, Tyan L, Lazarevic S, Shen KM, Gadek M, Broman MT, Weber CR, Moskowitz IP. Atrial fibrillation risk loci interact to modulate Ca2+-dependent atrial rhythm homeostasis. J Clin Invest 2020; 129:4937-4950. [PMID: 31609246 DOI: 10.1172/jci124231] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 08/16/2019] [Indexed: 12/30/2022] Open
Abstract
Atrial fibrillation (AF), defined by disorganized atrial cardiac rhythm, is the most prevalent cardiac arrhythmia worldwide. Recent genetic studies have highlighted a major heritable component and identified numerous loci associated with AF risk, including the cardiogenic transcription factor genes TBX5, GATA4, and NKX2-5. We report that Tbx5 and Gata4 interact with opposite signs for atrial rhythm controls compared with cardiac development. Using mouse genetics, we found that AF pathophysiology caused by Tbx5 haploinsufficiency, including atrial arrhythmia susceptibility, prolonged action potential duration, and ectopic cardiomyocyte depolarizations, were all rescued by Gata4 haploinsufficiency. In contrast, Nkx2-5 haploinsufficiency showed no combinatorial effect. The molecular basis of the TBX5/GATA4 interaction included normalization of intra-cardiomyocyte calcium flux and expression of calcium channel genes Atp2a2 and Ryr2. Furthermore, GATA4 and TBX5 showed antagonistic interactions on an Ryr2 enhancer. Atrial rhythm instability caused by Tbx5 haploinsufficiency was rescued by a decreased dose of phospholamban, a sarco/endoplasmic reticulum Ca2+-ATPase inhibitor, consistent with a role for decreased sarcoplasmic reticulum calcium flux in Tbx5-dependent AF susceptibility. This work defines a link between Tbx5 dose, sarcoplasmic reticulum calcium flux, and AF propensity. The unexpected interactions between Tbx5 and Gata4 in atrial rhythm control suggest that evaluating specific interactions between genetic risk loci will be necessary for ascertaining personalized risk from genetic association data.
Collapse
Affiliation(s)
| | | | - Leonid Tyan
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | | | | | | | - Michael T Broman
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | | | - Ivan P Moskowitz
- Department of Pediatrics, Pathology, and Human Genetics.,Department of Pathology, and
| |
Collapse
|
9
|
Kolomenski JE, Delea M, Simonetti L, Fabbro MC, Espeche LD, Taboas M, Nadra AD, Bruque CD, Dain L. An update on genetic variants of the NKX2-5. Hum Mutat 2020; 41:1187-1208. [PMID: 32369864 DOI: 10.1002/humu.24030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 04/03/2020] [Accepted: 04/26/2020] [Indexed: 12/13/2022]
Abstract
NKX2-5 is a homeodomain transcription factor that plays a crucial role in heart development. It is the first gene where a single genetic variant (GV) was found to be associated with congenital heart diseases in humans. In this study, we carried out a comprehensive survey of NKX2-5 GVs to build a unified, curated, and updated compilation of all available GVs. We retrieved a total of 1,380 unique GVs. From these, 970 had information on their frequency in the general population and 143 have been linked to pathogenic phenotypes in humans. In vitro effect was ascertained for 38 GVs. The homeodomain had the biggest cluster of pathogenic variants in the protein: 49 GVs in 60 residues, 23 in its third α-helix, where 11 missense variants may affect protein-DNA interaction or the hydrophobic core. We also pinpointed the likely location of pathogenic GVs in four linear motifs. These analyses allowed us to assign a putative explanation for the effect of 90 GVs. This study pointed to reliable pathogenicity for GVs in helix 3 of the homeodomain and may broaden the scope of functional and structural studies that can be done to better understand the effect of GVs in NKX2-5 function.
Collapse
Affiliation(s)
- Jorge E Kolomenski
- Departamento de Química Biológica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN-CONICET, Buenos Aires, Argentina.,Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Instituto de Biociencias, Biotecnología y Biología Traslacional, iB3, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marisol Delea
- Centro Nacional de Genética Médica, ANLIS, Buenos Aires, Argentina
| | - Leandro Simonetti
- Department of Chemistry-Biomedical Centre, Uppsala University, Uppsala, Sweden
| | | | - Lucía D Espeche
- Centro Nacional de Genética Médica, ANLIS, Buenos Aires, Argentina
| | - Melisa Taboas
- Centro Nacional de Genética Médica, ANLIS, Buenos Aires, Argentina
| | - Alejandro D Nadra
- Departamento de Química Biológica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN-CONICET, Buenos Aires, Argentina.,Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Instituto de Biociencias, Biotecnología y Biología Traslacional, iB3, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carlos D Bruque
- Centro Nacional de Genética Médica, ANLIS, Buenos Aires, Argentina.,Instituto de Biología y Medicina Experimental, (IBYME-CONICET), Buenos Aires, Argentina
| | - Liliana Dain
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Instituto de Biociencias, Biotecnología y Biología Traslacional, iB3, Universidad de Buenos Aires, Buenos Aires, Argentina.,Centro Nacional de Genética Médica, ANLIS, Buenos Aires, Argentina.,Instituto de Biología y Medicina Experimental, (IBYME-CONICET), Buenos Aires, Argentina
| |
Collapse
|
10
|
|
11
|
Abstract
Various strategies have been applied to replace the loss of cardiomyocytes in order to restore reduced cardiac function and prevent the progression of heart disease. Intensive research efforts in the field of cellular reprogramming and cell transplantation may eventually lead to efficient in vivo applications for the treatment of cardiac injuries, representing a novel treatment strategy for regenerative medicine. Modulation of cardiac transcription factor (TF) networks by chemical entities represents another viable option for therapeutic interventions. Comprehensive screening projects have revealed a number of molecular entities acting on molecular pathways highly critical for cellular lineage commitment and differentiation, including compounds targeting Wnt- and transforming growth factor beta (TGFβ)-signaling. Furthermore, previous studies have demonstrated that GATA4 and NKX2-5 are essential TFs in gene regulation of cardiac development and hypertrophy. For example, both of these TFs are required to fully activate mechanical stretch-responsive genes such as atrial natriuretic peptide and brain natriuretic peptide (BNP). We have previously reported that the compound 3i-1000 efficiently inhibited the synergy of the GATA4-NKX2-5 interaction. Cellular effects of 3i-1000 have been further characterized in a number of confirmatory in vitro bioassays, including rat cardiac myocytes and animal models of ischemic injury and angiotensin II-induced pressure overload, suggesting the potential for small molecule-induced cardioprotection.
Collapse
Affiliation(s)
- Mika J. Välimäki
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of PharmacyUniversity of HelsinkiHelsinki, Finland
| | - Heikki J. Ruskoaho
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of PharmacyUniversity of HelsinkiHelsinki, Finland
| |
Collapse
|
12
|
Li S, Pradhan L, Ashur S, Joshi A, Nam HJ. Crystal Structure of FOXC2 in Complex with DNA Target. ACS OMEGA 2019; 4:10906-10914. [PMID: 31460188 PMCID: PMC6648891 DOI: 10.1021/acsomega.9b00756] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/22/2019] [Indexed: 06/10/2023]
Abstract
Forkhead transcription factor C2 (FOXC2) is a transcription factor regulating vascular and lymphatic development, and its mutations are linked to lymphedema-distichiasis syndrome. FOXC2 is also a crucial regulator of the epithelial-mesenchymal transition processes essential for tumor metastasis. Here, we report the crystal structure of the FOXC2-DNA-binding domain in complex with its cognate DNA. The crystal structure provides the basis of DNA sequence recognition by FOXC2 for the T/CAAAC motif. Helix 3 makes the majority of the DNA-protein interactions and confers the DNA sequence specificity. The computational energy calculation results also validate the structural observations. The FOXC2 and DNA complex structure provides a detailed picture of protein and DNA interactions, which allows us to predict its DNA recognition specificity and impaired functions in mutants identified in human patients.
Collapse
|
13
|
Sun G, Li Y. Exposure to DBP induces the toxicity in early development and adverse effects on cardiac development in zebrafish (Danio rerio). CHEMOSPHERE 2019; 218:76-82. [PMID: 30469006 DOI: 10.1016/j.chemosphere.2018.11.095] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/12/2018] [Accepted: 11/14/2018] [Indexed: 06/09/2023]
Abstract
Dibutyl phthalate (DBP) is one of the most ubiquitous plasticizers used worldwide and has been frequently detected in soil, water, atmosphere, and other environmental media. DBP has become a ubiquitous environment contaminant and causes serious pollution. However, much attention has been paid to the toxicity of DBP, with only limited attention paid to its detrimental effects on the heart. In the present study, we investigated the toxicity of DBP in zebrafish embryo development, especially adverse effects on cardiac development. Embryos at 4-h post-fertilization (hpf) were exposed to different concentrations of DBP (0, 0.36, 1.8 and 3.6 μM) until 72 hpf. Exposure to DBP resulted in morphological abnormalities in zebrafish embryos. Exposure to 1.8 μM DBP significantly affected the growth, malformation rate, cardiac malformation rate and cardiac looping. Exposure to 3.6 μM DBP significantly affected all endpoints. To preliminarily understand the underlying mechanisms of toxic effects of DBP on the embryo heart, we examined the expression of master cardiac transcription factors such as NKX2.5 and TBX5. The expression of this two transcription factors was significantly reduced with DBP treatment in a dose-dependent manner. Our results demonstrate that exposure to DBP resulted in zebrafish developmental toxicity, pericardial edema, cardiac structure deformities and function alteration, and changed the expression of master cardiac transcription factors such as NKX2.5 and TBX5.
Collapse
Affiliation(s)
- Guijin Sun
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Yingqiu Li
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
14
|
Miksiunas R, Mobasheri A, Bironaite D. Homeobox Genes and Homeodomain Proteins: New Insights into Cardiac Development, Degeneration and Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1212:155-178. [PMID: 30945165 DOI: 10.1007/5584_2019_349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cardiovascular diseases are the most common cause of human death in the developing world. Extensive evidence indicates that various toxic environmental factors and unhealthy lifestyle choices contribute to the risk, incidence and severity of cardiovascular diseases. Alterations in the genetic level of myocardium affects normal heart development and initiates pathological processes leading to various types of cardiac diseases. Homeobox genes are a large and highly specialized family of closely related genes that direct the formation of body structure, including cardiac development. Homeobox genes encode homeodomain proteins that function as transcription factors with characteristic structures that allow them to bind to DNA, regulate gene expression and subsequently control the proper physiological function of cells, tissues and organs. Mutations in homeobox genes are rare and usually lethal with evident alterations in cardiac function at or soon after the birth. Our understanding of homeobox gene family expression and function has expanded significantly during the recent years. However, the involvement of homeobox genes in the development of human and animal cardiac tissue requires further investigation. The phenotype of human congenital heart defects unveils only some aspects of human heart development. Therefore, mouse models are often used to gain a better understanding of human heart function, pathology and regeneration. In this review, we have focused on the role of homeobox genes in the development and pathology of human heart as potential tools for the future development of targeted regenerative strategies for various heart malfunctions.
Collapse
Affiliation(s)
- Rokas Miksiunas
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Ali Mobasheri
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Daiva Bironaite
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.
| |
Collapse
|
15
|
Yamamoto M, Obara M, Ochi K, Yamamoto A, Takenaka K, Tanaka T, Sato K. Probing the Entropic Effect in Molecular Noncovalent Interactions between Resin-Bound Polybrominated Arenes and Small Substrates. Chempluschem 2018; 83:820-824. [PMID: 31950680 DOI: 10.1002/cplu.201800304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Indexed: 11/09/2022]
Abstract
The associative interaction between resin-bound polybrominated arenes and small molecules was analyzed by using various spectroscopic techniques as well as a synthetic molecular model to establish the thermodynamics. The binding in acetonitrile was three orders of magnitude stronger than that in methanol, partly owing to the tertiary conformational gating of the resin that controls the entropic terms. By using the entropic superiority, the associative binding of up to 3×104 m-1 is achieved with the non-biological system. A modified Hill plot for the quantitative analysis of bindings was also devised, which enabled the interactions at the molecular level to be elucidated.
Collapse
Affiliation(s)
- Masanori Yamamoto
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, 980-8577, Japan.,Department of Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata, 940-2188, Japan.,Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo, Kyoto, 615-8510, Japan
| | - Miyuki Obara
- College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto, Kasugai, Aichi, 487-8501, Japan
| | - Keisuke Ochi
- Department of Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata, 940-2188, Japan
| | - Atsushi Yamamoto
- College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto, Kasugai, Aichi, 487-8501, Japan
| | - Katsuhiko Takenaka
- Department of Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata, 940-2188, Japan
| | - Tsunehiro Tanaka
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo, Kyoto, 615-8510, Japan
| | - Kazunori Sato
- Department of Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata, 940-2188, Japan
| |
Collapse
|
16
|
Grajevskaja V, Camerota D, Bellipanni G, Balciuniene J, Balciunas D. Analysis of a conditional gene trap reveals that tbx5a is required for heart regeneration in zebrafish. PLoS One 2018; 13:e0197293. [PMID: 29933372 PMCID: PMC6014646 DOI: 10.1371/journal.pone.0197293] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 04/30/2018] [Indexed: 01/27/2023] Open
Abstract
The ability to conditionally inactivate genes is instrumental for fine genetic analysis of all biological processes, but is especially important for studies of biological events, such as regeneration, which occur late in ontogenesis or in adult life. We have constructed and tested a fully conditional gene trap vector, and used it to inactivate tbx5a in the cardiomyocytes of larval and adult zebrafish. We observe that loss of tbx5a function significantly impairs the ability of zebrafish hearts to regenerate after ventricular resection, indicating that Tbx5a plays an essential role in the transcriptional program of heart regeneration.
Collapse
Affiliation(s)
- Viktorija Grajevskaja
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States of America
- Department of Zoology, Faculty of Natural Sciences, Vilnius University, Vilnius, Lithuania
| | - Diana Camerota
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States of America
| | - Gianfranco Bellipanni
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States of America
| | - Jorune Balciuniene
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States of America
| | - Darius Balciunas
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States of America
| |
Collapse
|
17
|
Khatami M, Heidari MM, Kazeminasab F, Zare Bidaki R. Identification of a novel non-sense mutation in TBX5 gene in pediatric patients with congenital heart defects. J Cardiovasc Thorac Res 2018; 10:41-45. [PMID: 29707177 PMCID: PMC5913692 DOI: 10.15171/jcvtr.2018.07] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 03/04/2018] [Indexed: 12/19/2022] Open
Abstract
Introduction: Congenital heart diseases (CHDs) are structural cardiovascular malformations that arise from abnormal development of the heart during the prenatal life. Mutations in the TBX5 gene, encoding T-box transcription factor, are a major cause of CHD. To evaluate the TBX5 mutations in hotspot exons in sporadic pediatric patients with CHD phenotypes, analytical case/control study performed in an Iranian cohort of unrelated patients with clinical diagnosis of congenital heart malformations. Methods: We investigated TBX5 coding exons 4, 5, 6 and 7 in 95 sporadic patients with CHD phenotypes and compared to 82 healthy controls using PCR-SSCP and DNA sequencing approaches. Results: We report here on a novel and heterozygote Non-sense mutation in exon 5 of TBX5, E128X (G14742T), in two Iranian children. This mutation locates inside the T-box and both of pediatric patients carrying this novel mutation suffer from severe heart malformations. The G14742T mutation leads to the substitution of glutamic acid (E) by stop codon (X) at residue 128, an evolutionarily conserved position in T-box as well as in other species. The non-sense mutation of E128X was predicted to be pathogenic by Mutation Taster and Polyphen software programs. Conclusion: TBX5 E128X mutation results in a translational premature stop. This type of mutation results in a shortened protein that may function improperly and which cannot bind to other transcription factors; therefore, haploinsufficiency of TBX5 protein is presumably causing the severe cardiac malformations in these patients.
Collapse
Affiliation(s)
- Mehri Khatami
- Department of Biology, Faculty of Science, Yazd University, Yazd, Iran
| | | | | | | |
Collapse
|
18
|
Mattapally S, Singh M, Murthy KS, Asthana S, Banerjee SK. Computational modeling suggests impaired interactions between NKX2.5 and GATA4 in individuals carrying a novel pathogenic D16N NKX2.5 mutation. Oncotarget 2018; 9:13713-13732. [PMID: 29568389 PMCID: PMC5862610 DOI: 10.18632/oncotarget.24459] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/24/2018] [Indexed: 12/31/2022] Open
Abstract
NKX2.5, a homeobox containing gene, plays an important role in embryonic heart development and associated mutations are linked with various cardiac abnormalities. We sequenced the NKX2.5 gene in 100 congenital heart disease (CHD) patients and 200 controls. Our analysis revealed a total of 7 mutations, 3 in intronic region, 3 in coding region and 1 in 3’ UTR. Of the above mutations, one mutation was found to be associated with tetralogy of fallot (TOF) and two (rs2277923 and a novel mutation, D16N) were strongly associated with VSD. A novel missense mutation, D16N (p-value =0.009744), located in the tinman (TN) region and associated with ventricular septal defect (VSD), is the most significant findings of this study. Computational analysis revealed that D16N mutation is pathogenic in nature. Through the molecular modeling, docking and molecular dynamics simulation studies, we have identified the location of mutant D16N in NKX2.5 and its interaction map with other partners at the atomic level. We found NKX2.5-GATA4 complex is stable, however, in case of mutant we observed significant conformational changes and loss of key polar interactions, which might be a cause of the pathogenic behavior. This study underscores the structural basis of D16N pathogenic mutation in the regulation of NKX2.5 and how this mutation renders the structural-functional divergence that possibly leading towards the diseased state.
Collapse
Affiliation(s)
- Saidulu Mattapally
- Division of Medicinal Chemistry and Pharmacology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Mrityunjay Singh
- Drug Discovery Research Center (DDRC), Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana 121001, India
| | | | - Shailendra Asthana
- Drug Discovery Research Center (DDRC), Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana 121001, India
| | - Sanjay K Banerjee
- Division of Medicinal Chemistry and Pharmacology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.,Drug Discovery Research Center (DDRC), Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana 121001, India
| |
Collapse
|
19
|
Sun G, Liu K. Developmental toxicity and cardiac effects of butyl benzyl phthalate in zebrafish embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 192:165-170. [PMID: 28961509 DOI: 10.1016/j.aquatox.2017.09.020] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 06/07/2023]
Abstract
Phthalic acid esters (PAEs), commonly called phthalates, have become ubiquitous environment pollutants. Studies have focused on reproductive toxicity, neurotoxicity, teratogenicity, tumourigenesis, and mutagenesis of phthalates. However, relatively little is known about the phthalates effects on the heart. Butyl benzyl phthalate (BBP), a member of PAEs, is classified by the US Environmental Protection Agency as a priority environmental pollutant. We studied the developmental toxicity of BBP, especially its effects on the heart development, in zebrafish (Danio rerio) embryos. Embryos at 4hr post-fertilization (hpf) were exposed to 0, 0.1, 0.6 and 1.2mg/L BBP until 72hpf. BBP caused abnormalities in embryo morphology, including yolk-sac edema, spinal curvature, tail deformity, uninflated swim bladder and cardiac defects. Exposure to 0.6mg/L BBP significantly increased the malformation rate, caused growth inhibition, increased the cardiac malformation rate as well as the distance between the sinus venosus (SV) and bulbus arteriosus (BA), and reduced the heart rate of embryos. Exposure to 1.2mg/L BBP significantly affected all endpoints, except survival rate at 24hpf. To preliminarily elucidate the potential mechanism of heart developmental toxicity caused by BBP, we examined the expression of two genes related to heart development, Nkx2.5 and T-box transcription factor 5, by real-time quantitative PCR. The expression of the two genes was dose-dependently downregulated with BBP. BBP could induce developmental toxicity, with adverse effects on the heart development in zebrafish embryos, and alter the expression of genes related to heart development.
Collapse
Affiliation(s)
- Guijin Sun
- School of Food Science and Engineering, Qilu University of Technology, Jinan 250014, China.
| | - Kechun Liu
- Biology Institute, Shandong Academy of Sciences, Jinan 250014, China
| |
Collapse
|
20
|
Gao LR, Li S, Zhang J, Liang C, Chen EN, Zhang SY, Chuai M, Bao YP, Wang G, Yang X. Excess Imidacloprid Exposure Causes the Heart Tube Malformation of Chick Embryos. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:9078-9088. [PMID: 27792329 DOI: 10.1021/acs.jafc.6b03381] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
As a neonicotinoid pesticide, imidacloprid is widely used to control sucking insects on agricultural planting and fleas on domestic animals. However, the extent to which imidacloprid exposure has an influence on cardiogensis in early embryogenesis is still poorly understood. In vertebrates, the heart is the first organ to be formed. In this study, to address whether imidacloprid exposure affects early heart development, the early chick embryo has been used as an experimental model because of its accessibility at its early developmental stage. The results demonstrate that exposure of the early chick embryo to imidacloprid caused malformation of heart tube. Furthermore, the data reveal that down-regulation of GATA4, NKX2.5, and BMP4 and up-regulation of Wnt3a led to aberrant cardiomyocyte differentiation. In addition, imidacloprid exposure interfered with basement membrane breakdown, E-cadherin/laminin expression, and mesoderm formation during the epithelial-mesenchymal transition (EMT) in gastrula chick embryos. Finally, the DiI-labeled cell migration trajectory indicated that imidacloprid restricted the cell migration of cardiac progenitors to primary heart field in gastrula chick embryos. A similar observation was also obtained from the cell migration assay of scratch wounds in vitro. Additionally, imidacloprid exposure negatively affected the cytoskeleton structure and expression of corresponding adhesion molecules. Taken together, these results reveal that the improper EMT, cardiac progenitor migration, and differentiation are responsible for imidacloprid exposure-induced malformation of heart tube during chick embryo development.
Collapse
Affiliation(s)
- Lin-Rui Gao
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University , Guangzhou 510632, China
| | - Shuai Li
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University , Guangzhou 510632, China
| | - Jing Zhang
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University , Guangzhou 510632, China
| | - Chang Liang
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University , Guangzhou 510632, China
| | - En-Ni Chen
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University , Guangzhou 510632, China
| | - Shi-Yao Zhang
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University , Guangzhou 510632, China
| | - Manli Chuai
- Division of Cell and Developmental Biology, University of Dundee , Dundee DD1 5EH, U.K
| | - Yong-Ping Bao
- Norwich Medical School, University of East Anglia , Norwich, Norfolk NR4 7UQ, U.K
| | - Guang Wang
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University , Guangzhou 510632, China
| | - Xuesong Yang
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University , Guangzhou 510632, China
| |
Collapse
|