1
|
Izzi G, Paladino A, Oliva R, Barra G, Ruggiero A, Del Vecchio P, Vitagliano L, Graziano G. Destabilization of the D2 domain of Thermotoga maritima arginine binding protein induced by guanidinium thiocyanate and its counteraction by stabilizing agents. Protein Sci 2024; 33:e5146. [PMID: 39150147 PMCID: PMC11328109 DOI: 10.1002/pro.5146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/17/2024]
Abstract
D2 is a structural and cooperative domain of Thermotoga maritima Arginine Binding Protein, that possesses a remarkable conformational stability, with a denaturation temperature of 102.6°C, at pH 7.4. The addition of potassium thiocyanate causes a significant decrease in the D2 denaturation temperature. The interactions of thiocyanate ions with D2 have been studied by means of isothermal titration calorimetry measurements and molecular dynamics simulations. It emerged that: (a) 20-30 thiocyanate ions interact with the D2 surface and are present in its first solvation shell; (b) each of them makes several contacts with protein groups, both polar and nonpolar ones. The addition of guanidinium thiocyanate causes a marked destabilization of the D2 native state, because both the ions are denaturing agents. However, on adding to the solution containing D2 and guanidinium thiocyanate a stabilizing agent, such as TMAO, sucrose or sodium sulfate, a significant increase in denaturation temperature occurs. The present results confirm that counteraction is a general phenomenon for globular proteins.
Collapse
Affiliation(s)
- Guido Izzi
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | | | - Rosario Oliva
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Giovanni Barra
- Institute of Biostructures and Bioimaging, CNR, Naples, Italy
| | | | - Pompea Del Vecchio
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | | | - Giuseppe Graziano
- Department of Science and Technology, University of Sannio, via Francesco de Sanctis snc, Benevento, Italy
| |
Collapse
|
2
|
Izzi G, Campanile M, Del Vecchio P, Graziano G. On the Stabilizing Effect of Aspartate and Glutamate and Its Counteraction by Common Denaturants. Int J Mol Sci 2024; 25:9360. [PMID: 39273310 PMCID: PMC11395698 DOI: 10.3390/ijms25179360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
By performing differential scanning calorimetry(DSC) measurements on RNase A, we studied the stabilization provided by the addition of potassium aspartate(KAsp) or potassium glutamate (KGlu) and found that it leads to a significant increase in the denaturation temperature of the protein. The stabilization proves to be mainly entropic in origin. A counteraction of the stabilization provided by KAsp or KGlu is obtained by adding common denaturants such as urea, guanidinium chloride, or guanidinium thiocyanate. A rationalization of the experimental data is devised on the basis of a theoretical approach developed by one of the authors. The main contribution to the conformational stability of globular proteins comes from the gain in translational entropy of water and co-solute ions and/or molecules for the decrease in solvent-excluded volume associated with polypeptide folding (i.e., there is a large decrease in solvent-accessible surface area). The magnitude of this entropic contribution increases with the number density and volume packing density of the solution. The two destabilizing contributions come from the conformational entropy of the chain, which should not depend significantly on the presence of co-solutes, and from the direct energetic interactions between co-solutes and the protein surface in both the native and denatured states. It is the magnitude of the latter that discriminates between stabilizing and destabilizing agents.
Collapse
Affiliation(s)
- Guido Izzi
- Institute of Biostructure and Bioimaging, National Research Council, Via P. Castellino, 80131 Naples, Italy
| | - Marco Campanile
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126 Naples, Italy
| | - Pompea Del Vecchio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 80126 Naples, Italy
| | - Giuseppe Graziano
- Department of Science and Technology, University of Sannio, Via F. De Sanctis, 82100 Benevento, Italy
| |
Collapse
|
3
|
Kar M, Vogel LT, Chauhan G, Felekyan S, Ausserwöger H, Welsh TJ, Dar F, Kamath AR, Knowles TPJ, Hyman AA, Seidel CAM, Pappu RV. Solutes unmask differences in clustering versus phase separation of FET proteins. Nat Commun 2024; 15:4408. [PMID: 38782886 PMCID: PMC11116469 DOI: 10.1038/s41467-024-48775-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Phase separation and percolation contribute to phase transitions of multivalent macromolecules. Contributions of percolation are evident through the viscoelasticity of condensates and through the formation of heterogeneous distributions of nano- and mesoscale pre-percolation clusters in sub-saturated solutions. Here, we show that clusters formed in sub-saturated solutions of FET (FUS-EWSR1-TAF15) proteins are affected differently by glutamate versus chloride. These differences on the nanoscale, gleaned using a suite of methods deployed across a wide range of protein concentrations, are prevalent and can be unmasked even though the driving forces for phase separation remain unchanged in glutamate versus chloride. Strikingly, differences in anion-mediated interactions that drive clustering saturate on the micron-scale. Beyond this length scale the system separates into coexisting phases. Overall, we find that sequence-encoded interactions, mediated by solution components, make synergistic and distinct contributions to the formation of pre-percolation clusters in sub-saturated solutions, and to the driving forces for phase separation.
Collapse
Affiliation(s)
- Mrityunjoy Kar
- Max Planck Institute of Cell Biology and Genetics, 01307, Dresden, Germany
| | - Laura T Vogel
- Department of Molecular Physical Chemistry, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Gaurav Chauhan
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Suren Felekyan
- Department of Molecular Physical Chemistry, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Hannes Ausserwöger
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EW, Cambridge, UK
| | - Timothy J Welsh
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EW, Cambridge, UK
| | - Furqan Dar
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Anjana R Kamath
- Max Planck Institute of Cell Biology and Genetics, 01307, Dresden, Germany
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EW, Cambridge, UK
| | - Anthony A Hyman
- Max Planck Institute of Cell Biology and Genetics, 01307, Dresden, Germany.
| | - Claus A M Seidel
- Department of Molecular Physical Chemistry, Heinrich Heine University, 40225, Düsseldorf, Germany.
| | - Rohit V Pappu
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| |
Collapse
|
4
|
Monterroso B, Margolin W, Boersma AJ, Rivas G, Poolman B, Zorrilla S. Macromolecular Crowding, Phase Separation, and Homeostasis in the Orchestration of Bacterial Cellular Functions. Chem Rev 2024; 124:1899-1949. [PMID: 38331392 PMCID: PMC10906006 DOI: 10.1021/acs.chemrev.3c00622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/01/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024]
Abstract
Macromolecular crowding affects the activity of proteins and functional macromolecular complexes in all cells, including bacteria. Crowding, together with physicochemical parameters such as pH, ionic strength, and the energy status, influences the structure of the cytoplasm and thereby indirectly macromolecular function. Notably, crowding also promotes the formation of biomolecular condensates by phase separation, initially identified in eukaryotic cells but more recently discovered to play key functions in bacteria. Bacterial cells require a variety of mechanisms to maintain physicochemical homeostasis, in particular in environments with fluctuating conditions, and the formation of biomolecular condensates is emerging as one such mechanism. In this work, we connect physicochemical homeostasis and macromolecular crowding with the formation and function of biomolecular condensates in the bacterial cell and compare the supramolecular structures found in bacteria with those of eukaryotic cells. We focus on the effects of crowding and phase separation on the control of bacterial chromosome replication, segregation, and cell division, and we discuss the contribution of biomolecular condensates to bacterial cell fitness and adaptation to environmental stress.
Collapse
Affiliation(s)
- Begoña Monterroso
- Department
of Structural and Chemical Biology, Centro de Investigaciones Biológicas
Margarita Salas, Consejo Superior de Investigaciones
Científicas (CSIC), 28040 Madrid, Spain
| | - William Margolin
- Department
of Microbiology and Molecular Genetics, McGovern Medical School, UTHealth-Houston, Houston, Texas 77030, United States
| | - Arnold J. Boersma
- Cellular
Protein Chemistry, Bijvoet Centre for Biomolecular Research, Faculty
of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Germán Rivas
- Department
of Structural and Chemical Biology, Centro de Investigaciones Biológicas
Margarita Salas, Consejo Superior de Investigaciones
Científicas (CSIC), 28040 Madrid, Spain
| | - Bert Poolman
- Department
of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Silvia Zorrilla
- Department
of Structural and Chemical Biology, Centro de Investigaciones Biológicas
Margarita Salas, Consejo Superior de Investigaciones
Científicas (CSIC), 28040 Madrid, Spain
| |
Collapse
|
5
|
Bonde NJ, Kozlov AG, Cox MM, Lohman TM, Keck JL. Molecular insights into the prototypical single-stranded DNA-binding protein from E. coli. Crit Rev Biochem Mol Biol 2024; 59:99-127. [PMID: 38770626 PMCID: PMC11209772 DOI: 10.1080/10409238.2024.2330372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/11/2024] [Indexed: 05/22/2024]
Abstract
The SSB protein of Escherichia coli functions to bind single-stranded DNA wherever it occurs during DNA metabolism. Depending upon conditions, SSB occurs in several different binding modes. In the course of its function, SSB diffuses on ssDNA and transfers rapidly between different segments of ssDNA. SSB interacts with many other proteins involved in DNA metabolism, with 22 such SSB-interacting proteins, or SIPs, defined to date. These interactions chiefly involve the disordered and conserved C-terminal residues of SSB. When not bound to ssDNA, SSB can aggregate to form a phase-separated biomolecular condensate. Current understanding of the properties of SSB and the functional significance of its many intermolecular interactions are summarized in this review.
Collapse
Affiliation(s)
- Nina J. Bonde
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Alexander G. Kozlov
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Michael M. Cox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Timothy M. Lohman
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - James L. Keck
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
6
|
Kar M, Vogel LT, Chauhan G, Ausserwöger H, Welsh TJ, Kamath AR, Knowles TPJ, Hyman AA, Seidel CAM, Pappu RV. Glutamate helps unmask the differences in driving forces for phase separation versus clustering of FET family proteins in sub-saturated solutions. RESEARCH SQUARE 2023:rs.3.rs-3252197. [PMID: 37790538 PMCID: PMC10543311 DOI: 10.21203/rs.3.rs-3252197/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Multivalent proteins undergo coupled segregative and associative phase transitions. Phase separation, a segregative transition, is driven by macromolecular solubility, and this leads to coexisting phases above system-specific saturation concentrations. Percolation is a continuous transition that is driven by multivalent associations among cohesive motifs. Contributions from percolation are highlighted by the formation of heterogeneous distributions of clusters in sub-saturated solutions, as was recently reported for Fused in sarcoma (FUS) and FET family proteins. Here, we show that clustering and phase separation are defined by a separation of length- and energy-scales. This is unmasked when glutamate is the primary solution anion. Glutamate is preferentially excluded from protein sites, and this enhances molecular associations. Differences between glutamate and chloride are manifest at ultra-low protein concentrations. These differences are amplified as concentrations increase, and they saturate as the micron-scale is approached. Therefore, condensate formation in supersaturated solutions and clustering in sub-saturated are governed by distinct energy and length scales. Glutamate, unlike chloride, is the dominant intracellular anion, and the separation of scales, which is masked in chloride, is unmasked in glutamate. Our work highlights how components of cellular milieus and sequence-encoded interactions contribute to amplifying distinct contributions from associative versus segregative phase transitions.
Collapse
Affiliation(s)
- Mrityunjoy Kar
- Max Planck Institute of Cell Biology and Genetics, 01307, Dresden, Germany
| | - Laura T. Vogel
- Department of Molecular Physical Chemistry, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Gaurav Chauhan
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Hannes Ausserwöger
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EW, Cambridge, UK
| | - Timothy J. Welsh
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EW, Cambridge, UK
| | - Anjana R. Kamath
- Max Planck Institute of Cell Biology and Genetics, 01307, Dresden, Germany
| | - Tuomas P. J. Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EW, Cambridge, UK
| | - Anthony A. Hyman
- Max Planck Institute of Cell Biology and Genetics, 01307, Dresden, Germany
| | - Claus A. M. Seidel
- Department of Molecular Physical Chemistry, Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Rohit V. Pappu
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
7
|
Kar M, Vogel LT, Chauhan G, Ausserwöger H, Welsh TJ, Kamath AR, Knowles TPJ, Hyman AA, Seidel CAM, Pappu RV. Glutamate helps unmask the differences in driving forces for phase separation versus clustering of FET family proteins in sub-saturated solutions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.11.552963. [PMID: 37609232 PMCID: PMC10441405 DOI: 10.1101/2023.08.11.552963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Multivalent proteins undergo coupled segregative and associative phase transitions. Phase separation, a segregative transition, is driven by macromolecular solubility, and this leads to coexisting phases above system-specific saturation concentrations. Percolation is a continuous transition that is driven by multivalent associations among cohesive motifs. Contributions from percolation are highlighted by the formation of heterogeneous distributions of clusters in sub-saturated solutions, as was recently reported for Fused in sarcoma (FUS) and FET family proteins. Here, we show that clustering and phase separation are defined by a separation of length- and energy-scales. This is unmasked when glutamate is the primary solution anion. Glutamate is preferentially excluded from protein sites, and this enhances molecular associations. Differences between glutamate and chloride are manifest at ultra-low protein concentrations. These differences are amplified as concentrations increase, and they saturate as the micron-scale is approached. Therefore, condensate formation in supersaturated solutions and clustering in sub-saturated are governed by distinct energy and length scales. Glutamate, unlike chloride, is the dominant intracellular anion, and the separation of scales, which is masked in chloride, is unmasked in glutamate. Our work highlights how components of cellular milieus and sequence-encoded interactions contribute to amplifying distinct contributions from associative versus segregative phase transitions.
Collapse
|
8
|
How Glutamate Promotes Liquid-liquid Phase Separation and DNA Binding Cooperativity of E. coli SSB Protein. J Mol Biol 2022; 434:167562. [PMID: 35351518 PMCID: PMC9400470 DOI: 10.1016/j.jmb.2022.167562] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 01/01/2023]
Abstract
E. coli single-stranded-DNA binding protein (EcSSB) displays nearest-neighbor (NN) and non-nearest-neighbor (NNN)) cooperativity in binding ssDNA during genome maintenance. NNN cooperativity requires the intrinsically-disordered linkers (IDL) of the C-terminal tails. Potassium glutamate (KGlu), the primary E. coli salt, promotes NNN-cooperativity, while KCl inhibits it. We find that KGlu promotes compaction of a single polymeric SSB-coated ssDNA beyond what occurs in KCl, indicating a link of compaction to NNN-cooperativity. EcSSB also undergoes liquid-liquid phase separation (LLPS), inhibited by ssDNA binding. We find that LLPS, like NNN-cooperativity, is promoted by increasing [KGlu] in the physiological range, while increasing [KCl] and/or deletion of the IDL eliminate LLPS, indicating similar interactions in both processes. From quantitative determinations of interactions of KGlu and KCl with protein model compounds, we deduce that the opposing effects of KGlu and KCl on SSB LLPS and cooperativity arise from their opposite interactions with amide groups. KGlu interacts unfavorably with the backbone (especially Gly) and side chain amide groups of the IDL, promoting amide-amide interactions in LLPS and NNN-cooperativity. By contrast, KCl interacts favorably with these amide groups and therefore inhibits LLPS and NNN-cooperativity. These results highlight the importance of salt interactions in regulating the propensity of proteins to undergo LLPS.
Collapse
|
9
|
Moroz LL, Nikitin MA, Poličar PG, Kohn AB, Romanova DY. Evolution of glutamatergic signaling and synapses. Neuropharmacology 2021; 199:108740. [PMID: 34343611 PMCID: PMC9233959 DOI: 10.1016/j.neuropharm.2021.108740] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022]
Abstract
Glutamate (Glu) is the primary excitatory transmitter in the mammalian brain. But, we know little about the evolutionary history of this adaptation, including the selection of l-glutamate as a signaling molecule in the first place. Here, we used comparative metabolomics and genomic data to reconstruct the genealogy of glutamatergic signaling. The origin of Glu-mediated communications might be traced to primordial nitrogen and carbon metabolic pathways. The versatile chemistry of L-Glu placed this molecule at the crossroad of cellular biochemistry as one of the most abundant metabolites. From there, innovations multiplied. Many stress factors or injuries could increase extracellular glutamate concentration, which led to the development of modular molecular systems for its rapid sensing in bacteria and archaea. More than 20 evolutionarily distinct families of ionotropic glutamate receptors (iGluRs) have been identified in eukaryotes. The domain compositions of iGluRs correlate with the origins of multicellularity in eukaryotes. Although L-Glu was recruited as a neuro-muscular transmitter in the early-branching metazoans, it was predominantly a non-neuronal messenger, with a possibility that glutamatergic synapses evolved more than once. Furthermore, the molecular secretory complexity of glutamatergic synapses in invertebrates (e.g., Aplysia) can exceed their vertebrate counterparts. Comparative genomics also revealed 15+ subfamilies of iGluRs across Metazoa. However, most of this ancestral diversity had been lost in the vertebrate lineage, preserving AMPA, Kainate, Delta, and NMDA receptors. The widespread expansion of glutamate synapses in the cortical areas might be associated with the enhanced metabolic demands of the complex brain and compartmentalization of Glu signaling within modular neuronal ensembles.
Collapse
Affiliation(s)
- Leonid L Moroz
- Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, FL, 32080, USA; Departments of Neuroscience and McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
| | - Mikhail A Nikitin
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119991, Russia; Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127994, Russia
| | - Pavlin G Poličar
- Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, FL, 32080, USA; Faculty of Computer and Information Science, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Andrea B Kohn
- Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, FL, 32080, USA
| | - Daria Y Romanova
- Cellular Neurobiology of Learning Lab, Institute of Higher Nervous Activity and Neurophysiology, Moscow, 117485, Russia.
| |
Collapse
|
10
|
Cozzolino S, Tortorella A, Del Vecchio P, Graziano G. General Counteraction Exerted by Sugars against Denaturants. Life (Basel) 2021; 11:652. [PMID: 34357025 PMCID: PMC8303697 DOI: 10.3390/life11070652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 11/16/2022] Open
Abstract
The conformational stability of globular proteins is strongly influenced by the addition to water of different co-solutes. Some of the latter destabilize the native state, while others stabilize it. It is emerging that stabilizing agents are able to counteract the action of destabilizing agents. We have already provided experimental evidence that this counteraction is a general phenomenon and offered a rationalization. In the present work, we show that four different sugars, namely fructose, glucose, sucrose, and trehalose, counteract the effect of urea, tetramethylurea, sodium perchlorate, guanidinium chloride, and guanidinium thiocyanate despite the chemical and structural differences of those destabilizing agents. The rationalization we provide is as follows: (a) the solvent-excluded volume effect, a purely entropic effect, stabilizes the native state, whose solvent-accessible surface area is smaller than the one of denatured conformations; (b) the magnitude of the solvent-excluded volume effect increases markedly in ternary solutions because the experimental density of such solutions is larger than that of pure water.
Collapse
Affiliation(s)
- Serena Cozzolino
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cintia, 80126 Napoli, Italy; (S.C.); (A.T.); (P.D.V.)
| | - Attila Tortorella
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cintia, 80126 Napoli, Italy; (S.C.); (A.T.); (P.D.V.)
| | - Pompea Del Vecchio
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cintia, 80126 Napoli, Italy; (S.C.); (A.T.); (P.D.V.)
| | - Giuseppe Graziano
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Via Francesco de Sanctis snc, 82100 Benevento, Italy
| |
Collapse
|
11
|
Potassium Glutamate and Glycine Betaine Induce Self-Assembly of the PCNA and β-Sliding Clamps. Biophys J 2020; 120:73-85. [PMID: 33221249 DOI: 10.1016/j.bpj.2020.11.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022] Open
Abstract
Sliding clamps are oligomeric ring-shaped proteins that increase the efficiency of DNA replication. The stability of the Escherichia coli β-clamp, a homodimer, is particularly remarkable. The dissociation equilibrium constant of the β-clamp is of the order of 10 pM in buffers of moderate ionic strength. Coulombic electrostatic interactions have been shown to contribute to this remarkable stability. Increasing NaCl concentration in the assay buffer results in decreased dimer stability and faster subunit dissociation kinetics in a way consistent with simple charge-screening models. Here, we examine non-Coulombic ionic effects on the oligomerization properties of sliding clamps. We determined relative diffusion coefficients of two sliding clamps using fluorescence correlation spectroscopy. Replacing NaCl by KGlu, the primary cytoplasmic salt in E. coli, results in a decrease of the diffusion coefficient of these proteins consistent with the formation of protein assemblies. The UV-vis spectrum of the β-clamp labeled with tetramethylrhodamine shows the characteristic absorption band of dimers of rhodamine when KGlu is present in the buffer. This suggests that KGlu induces the formation of assemblies that involve two or more rings stacked face-to-face. Results can be quantitatively explained on the basis of unfavorable interactions between KGlu and the functional groups on the protein surface, which drive biomolecular processes that bury exposed surface. Similar results were obtained with the Saccharomyces cerevisiae PCNA sliding clamp, suggesting that KGlu effects are not specific to the β-clamp. Clamp association is also promoted by glycine betaine, a zwitterionic compound that accumulates intracellularly when E. coli is exposed to high concentrations of extracellular solute. Possible biological implications are discussed.
Collapse
|
12
|
Roussel G, White SH. The SecA ATPase motor protein binds to Escherichia coli liposomes only as monomers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183358. [PMID: 32416191 DOI: 10.1016/j.bbamem.2020.183358] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 02/02/2023]
Abstract
The essential SecA motor ATPase acts in concert with the SecYEG translocon to secrete proteins into the periplasmic space of Escherichia coli. In aqueous solutions, SecA exists largely as dimers, but the oligomeric state on membranes is less certain. Crystallographic studies have suggested several possible solution dimeric states, but its oligomeric state when bound to membranes directly or indirectly via the translocon is controversial. We have shown using disulfide crosslinking that the principal solution dimer, corresponding to a crystallographic dimer (PDB 1M6N), binds only weakly to large unilamellar vesicles (LUV) formed from E. coli lipids. We report here that other soluble crosslinked crystallographic dimers also bind weakly, if at all, to LUV. Furthermore, using a simple glutaraldehyde crosslinking scheme, we show that SecA is always monomeric when bound to LUV formed from E. coli lipids.
Collapse
Affiliation(s)
- Guillaume Roussel
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA 92697, United States of America
| | - Stephen H White
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA 92697, United States of America.
| |
Collapse
|
13
|
Roussel G, Lindner E, White SH. Stabilization of SecA ATPase by the primary cytoplasmic salt of Escherichia coli. Protein Sci 2019; 28:984-989. [PMID: 30968480 DOI: 10.1002/pro.3619] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/08/2019] [Indexed: 11/11/2022]
Abstract
Much is known about the structure, function, and stability of the SecA motor ATPase that powers the secretion of periplasmic proteins across the inner membrane of Escherichia coli. Most studies of SecA are carried out in buffered sodium or potassium chloride salt solutions. However, the principal intracellular salt of E. coli is potassium glutamate (KGlu), which is known to stabilize folded proteins and protein-nucleic acid complexes. Here we report that KGlu stabilizes SecA, including its dimeric state, and increases its ATPase activity, suggesting that SecA is likely fully folded, stable, and active in vivo at 37°C. Furthermore, KGlu also stabilizes a precursor form of the secreted maltose-binding protein.
Collapse
Affiliation(s)
- Guillaume Roussel
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, California, 92697-4560
| | - Eric Lindner
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, California, 92697-4560
| | - Stephen H White
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, California, 92697-4560
| |
Collapse
|
14
|
Dopp BJL, Tamiev DD, Reuel NF. Cell-free supplement mixtures: Elucidating the history and biochemical utility of additives used to support in vitro protein synthesis in E. coli extract. Biotechnol Adv 2019; 37:246-258. [DOI: 10.1016/j.biotechadv.2018.12.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/06/2018] [Accepted: 12/15/2018] [Indexed: 12/18/2022]
|
15
|
Cozzolino S, Oliva R, Graziano G, Del Vecchio P. Counteraction of denaturant-induced protein unfolding is a general property of stabilizing agents. Phys Chem Chem Phys 2018; 20:29389-29398. [PMID: 30451257 DOI: 10.1039/c8cp04421j] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
DSC measurements on RNase A at neutral pH show that five stabilizing agents, namely trimethylamine N-oxide, glucose, sucrose, betaine and sodium sulfate, can counteract the destabilizing action of urea, sodium perchlorate, guanidinium chloride and guanidinium thiocyanate. This is an important finding inferring that counteraction has a common physical origin, regardless of the chemical differences among the stabilizing agents and among the destabilizing ones. A rationalization is provided grounded on the following line of reasoning: (a) the decrease in solvent-excluded volume effect is the main stabilizing contribution of the native state; (b) its magnitude increases on increasing the density of the aqueous solution; (c) the density increases significantly in the ternary solutions containing water, a stabilizing agent and a destabilizing one, as indicated by the present experimental data.
Collapse
Affiliation(s)
- Serena Cozzolino
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia - 80126 Napoli, Italy.
| | | | | | | |
Collapse
|
16
|
Abstract
Salts differ in their ability to stabilize protein conformations, thereby affecting the thermodynamics and kinetics of protein folding. We developed a coarse-grained protein model that can predict salt-induced changes in protein properties by using the transfer free-energy data of various chemical groups from water to salt solutions. Using this model and molecular dynamics simulations, we probed the effect of seven different salts on the folding thermodynamics of the DNA binding domain of lac repressor protein ( lac-DBD) and N-terminal domain of ribosomal protein (NTL9). We show that a salt can act as a protein stabilizing or destabilizing agent depending on the protein sequence and folded state topology. The computed thermodynamic properties, especially the m values for various salts, which reveal the relative ability of a salt to stabilize the protein folded state, are in quantitative agreement with the experimentally measured values. The computations show that the degree of protein compaction in the denatured ensemble strongly depends on the salt identity, and for the same variation in salt concentration, the compaction in the protein dimensions varies from ∼4% to ∼30% depending on the salt. The transition-state ensemble (TSE) of lac-DBD is homogeneous and polarized, while the TSE of NTL9 is heterogeneous and diffusive. Salts induce subtle structural changes in the TSE that are in agreement with Hammond's postulate. The barrier to protein folding tends to disappear in the presence of moderate concentrations (∼3-4 m) of strongly stabilizing salts.
Collapse
Affiliation(s)
- Hiranmay Maity
- Solid State and Structural Chemistry Unit , Indian Institute of Science , Bengaluru , Karnataka , India 560012
| | - Aswathy N Muttathukattil
- Solid State and Structural Chemistry Unit , Indian Institute of Science , Bengaluru , Karnataka , India 560012
| | - Govardhan Reddy
- Solid State and Structural Chemistry Unit , Indian Institute of Science , Bengaluru , Karnataka , India 560012
| |
Collapse
|
17
|
Mulero MC, Shahabi S, Ko MS, Schiffer JM, Huang DB, Wang VYF, Amaro RE, Huxford T, Ghosh G. Protein Cofactors Are Essential for High-Affinity DNA Binding by the Nuclear Factor κB RelA Subunit. Biochemistry 2018; 57:2943-2957. [PMID: 29708732 DOI: 10.1021/acs.biochem.8b00158] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Transcription activator proteins typically contain two functional domains: a DNA binding domain (DBD) that binds to DNA with sequence specificity and an activation domain (AD) whose established function is to recruit RNA polymerase. In this report, we show that purified recombinant nuclear factor κB (NF-κB) RelA dimers bind specific κB DNA sites with an affinity significantly lower than that of the same dimers from nuclear extracts of activated cells, suggesting that additional nuclear cofactors might facilitate DNA binding by the RelA dimers. Additionally, recombinant RelA binds DNA with relatively low affinity at a physiological salt concentration in vitro. The addition of p53 or RPS3 (ribosomal protein S3) increases RelA:DNA binding affinity 2- to >50-fold depending on the protein and ionic conditions. These cofactor proteins do not form stable ternary complexes, suggesting that they stabilize the RelA:DNA complex through dynamic interactions. Surprisingly, the RelA-DBD alone fails to bind DNA under the same solution conditions even in the presence of cofactors, suggesting an important role of the RelA-AD in DNA binding. Reduced RelA:DNA binding at a physiological ionic strength suggests that multiple cofactors might be acting simultaneously to mitigate the electrolyte effect and stabilize the RelA:DNA complex in vivo. Overall, our observations suggest that the RelA-AD and multiple cofactor proteins function cooperatively to prime the RelA-DBD and stabilize the RelA:DNA complex in cells. Our study provides a mechanism for nuclear cofactor proteins in NF-κB-dependent gene regulation.
Collapse
Affiliation(s)
- Maria Carmen Mulero
- Department of Chemistry & Biochemistry , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093 , United States
| | - Shandy Shahabi
- Department of Chemistry & Biochemistry , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093 , United States
| | - Myung Soo Ko
- Structural Biochemistry Laboratory, Department of Chemistry & Biochemistry , San Diego State University , 5500 Campanile Drive , San Diego , California 92182 , United States
| | - Jamie M Schiffer
- Department of Chemistry & Biochemistry , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093 , United States
| | - De-Bin Huang
- Department of Chemistry & Biochemistry , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093 , United States
| | - Vivien Ya-Fan Wang
- Faculty of Health Sciences , University of Macau , Avenida da Universidade , Taipa , Macau SAR , China
| | - Rommie E Amaro
- Department of Chemistry & Biochemistry , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093 , United States
| | - Tom Huxford
- Structural Biochemistry Laboratory, Department of Chemistry & Biochemistry , San Diego State University , 5500 Campanile Drive , San Diego , California 92182 , United States
| | - Gourisankar Ghosh
- Department of Chemistry & Biochemistry , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093 , United States
| |
Collapse
|
18
|
Sengupta R, Capp MW, Shkel IA, Record MT. The mechanism and high-free-energy transition state of lac repressor-lac operator interaction. Nucleic Acids Res 2017; 45:12671-12680. [PMID: 29036376 PMCID: PMC5727403 DOI: 10.1093/nar/gkx862] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 09/22/2017] [Indexed: 01/06/2023] Open
Abstract
Significant, otherwise-unavailable information about mechanisms and transition states (TS) of protein folding and binding is obtained from solute effects on rate constants. Here we characterize TS for lac repressor(R)–lac operator(O) binding by analyzing effects of RO-stabilizing and RO-destabilizing solutes on association (ka) and dissociation (kd) rate constants. RO-destabilizing solutes (urea, KCl) reduce ka comparably (urea) or more than (KCl) they increase kd, demonstrating that they destabilize TS relative to reactants and RO, and that TS exhibits most of the Coulombic interactions between R and O. Strikingly, three solutes which stabilize RO by favoring burial/dehydration of amide oxygens and anionic phosphate oxygens all reduce kd without affecting ka significantly. The lack of stabilization of TS by these solutes indicates that O phosphates remain hydrated in TS and that TS preferentially buries aromatic carbons and amide nitrogens while leaving amide oxygens exposed. In our proposed mechanism, DNA-binding-domains (DBD) of R insert in major grooves of O pre-TS, forming most Coulombic interactions of RO and burying aromatic carbons. Nucleation of hinge helices creates TS, burying sidechain amide nitrogens. Post-TS, hinge helices assemble and the DBD-hinge helix-O-DNA module docks on core repressor, partially dehydrating phosphate oxygens and tightening all interfaces to form RO.
Collapse
Affiliation(s)
- Rituparna Sengupta
- Program in Biophysics, University of Wisconsin-Madison, Madison, WI 53706, USA.,Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Michael W Capp
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Irina A Shkel
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.,Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - M Thomas Record
- Program in Biophysics, University of Wisconsin-Madison, Madison, WI 53706, USA.,Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.,Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
19
|
Hjörleifsson JG, Ásgeirsson B. pH-Dependent Binding of Chloride to a Marine Alkaline Phosphatase Affects the Catalysis, Active Site Stability, and Dimer Equilibrium. Biochemistry 2017; 56:5075-5089. [DOI: 10.1021/acs.biochem.7b00690] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jens G. Hjörleifsson
- Department of Biochemistry,
Science Institute, University of Iceland, Dunhagi 3, 107 Reykjavik, Iceland
| | - Bjarni Ásgeirsson
- Department of Biochemistry,
Science Institute, University of Iceland, Dunhagi 3, 107 Reykjavik, Iceland
| |
Collapse
|
20
|
The N-Terminal Domain of Ribosomal Protein L9 Folds via a Diffuse and Delocalized Transition State. Biophys J 2017; 112:1797-1806. [PMID: 28494951 DOI: 10.1016/j.bpj.2017.01.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 01/03/2017] [Accepted: 01/06/2017] [Indexed: 01/05/2023] Open
Abstract
The N-terminal domain of L9 (NTL9) is a 56-residue mixed α-β protein that lacks disulfides, does not bind cofactors, and folds reversibly. NTL9 has been widely used as a model system for experimental and computational studies of protein folding and for investigations of the unfolded state. The role of side-chain interactions in the folding of NTL9 is probed by mutational analysis. ϕ-values, which represent the ratio of the change in the log of the folding rate upon mutation to the change in the log of the equilibrium constant for folding, are reported for 25 point mutations and 15 double mutants. All ϕ-values are small, with an average over all sites probed of only 0.19 and a largest value of 0.4. The effect of modulating unfolded-state interactions is studied by measuring ϕ-values in second- site mutants and under solvent conditions that perturb unfolded-state energetics in a defined way. Neither of these alterations significantly affects the distribution of ϕ-values. The results, combined with those of earlier studies that probe the role of hydrogen-bond formation in folding and the burial of surface area, reveal that the transition state for folding contains extensive backbone structure and buries a significant fraction of hydrophobic surface area, but lacks well developed side-chain-side-chain interactions. The folding transition state for NTL9 does not contain a specific "nucleus" consisting of a few key residues; rather, it involves extensive backbone hydrogen bonding and partially formed structure delocalized over almost the entire domain. The potential generality of these observations is discussed.
Collapse
|
21
|
Glutamate promotes SSB protein-protein Interactions via intrinsically disordered regions. J Mol Biol 2017; 429:2790-2801. [PMID: 28782560 DOI: 10.1016/j.jmb.2017.07.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/10/2017] [Accepted: 07/20/2017] [Indexed: 01/30/2023]
Abstract
E. coli single strand (ss) DNA binding protein (SSB) is an essential protein that binds to ssDNA intermediates formed during genome maintenance. SSB homotetramers bind ssDNA in several modes that differ in occluded site size and cooperativity. High "unlimited" cooperativity is associated with the 35 site size ((SSB)35) mode at low [NaCl], whereas the 65 site size ((SSB)65) mode formed at higher [NaCl] (> 200mM), where ssDNA wraps completely around the tetramer, displays "limited" cooperativity forming dimers of tetramers. It was previously thought that high cooperativity was associated only with the (SSB)35 binding mode. However, we show here that highly cooperative binding also occurs in the (SSB)65/(SSB)56 binding modes at physiological salt concentrations containing either glutamate or acetate. Highly cooperative binding requires the 56 amino acid intrinsically disordered C-terminal linker (IDL) that connects the DNA binding domain with the 9 amino acid C-terminal acidic tip that is involved in SSB binding to other proteins involved in genome maintenance. These results suggest that high cooperativity involves interactions between IDL regions from different SSB tetramers. Glutamate, which is preferentially excluded from protein surfaces, may generally promote interactions between intrinsically disordered regions of proteins. Since glutamate is the major monovalent anion in E. coli, these results suggest that SSB likely binds to ssDNA with high cooperativity in vivo.
Collapse
|
22
|
Schwinefus JJ, Baka NL, Modi K, Billmeyer KN, Lu S, Haase LR, Menssen RJ. l-Proline and RNA Duplex m-Value Temperature Dependence. J Phys Chem B 2017; 121:7247-7255. [PMID: 28737394 DOI: 10.1021/acs.jpcb.7b03608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The temperature dependence of l-proline interactions with the RNA dodecamer duplex surface exposed after unfolding was quantified using thermal and isothermal titration denaturation monitored by uv-absorbance. The m-value quantifying proline interactions with the RNA duplex surface area exposed after unfolding was measured using RNA duplexes with GC content ranging between 17 and 83%. The m-values from thermal denaturation decreased with increasing GC content signifying increasingly favorable proline interactions with the exposed RNA surface area. However, m-values from isothermal titration denaturation at 25.0 °C were independent of GC content and less negative than those from thermal denaturation. The m-value from isothermal titration denaturation for a 50% GC RNA duplex decreased (became more negative) as the temperature increased and was in nearly exact agreement with the m-value from thermal denaturation. Since RNA duplex transition temperatures increased with GC content, the more favorable proline interactions with the high GC content duplex surface area observed from thermal denaturation resulted from the temperature dependence of proline interactions rather than the RNA surface chemical composition. The enthalpy contribution to the m-value was positive and small (indicating a slight increase in duplex unfolding enthalpy with proline) while the entropic contribution to the m-value was positive and increased with temperature. Our results will facilitate proline's use as a probe of solvent accessible surface area changes during biochemical reactions at different reaction temperatures.
Collapse
Affiliation(s)
- Jeffrey J Schwinefus
- Department of Chemistry, St. Olaf College , Northfield, Minnesota 55057, United States
| | - Nadia L Baka
- Department of Chemistry, St. Olaf College , Northfield, Minnesota 55057, United States
| | - Kalpit Modi
- Department of Chemistry, St. Olaf College , Northfield, Minnesota 55057, United States
| | - Kaylyn N Billmeyer
- Department of Chemistry, St. Olaf College , Northfield, Minnesota 55057, United States
| | - Shutian Lu
- Department of Chemistry, St. Olaf College , Northfield, Minnesota 55057, United States
| | - Lucas R Haase
- Department of Chemistry, St. Olaf College , Northfield, Minnesota 55057, United States
| | - Ryan J Menssen
- Department of Chemistry, St. Olaf College , Northfield, Minnesota 55057, United States
| |
Collapse
|
23
|
Basis of Protein Stabilization by K Glutamate: Unfavorable Interactions with Carbon, Oxygen Groups. Biophys J 2017; 111:1854-1865. [PMID: 27806267 DOI: 10.1016/j.bpj.2016.08.050] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 07/27/2016] [Accepted: 08/01/2016] [Indexed: 12/23/2022] Open
Abstract
Potassium glutamate (KGlu) is the primary Escherichia coli cytoplasmic salt. After sudden osmotic upshift, cytoplasmic KGlu concentration increases, initially because of water efflux and subsequently by K+ transport and Glu- synthesis, allowing water uptake and resumption of growth at high osmolality. In vitro, KGlu ranks with Hofmeister salts KF and K2SO4 in driving protein folding and assembly. Replacement of KCl by KGlu stabilizes protein-nucleic acid complexes. To interpret and predict KGlu effects on protein processes, preferential interactions of KGlu with 15 model compounds displaying six protein functional groups-sp3 (aliphatic) C; sp2 (aromatic, amide, carboxylate) C; amide and anionic (carboxylate) O; and amide and cationic N-were determined by osmometry or solubility assays. Analysis of these data yields interaction potentials (α-values) quantifying non-Coulombic chemical interactions of KGlu with unit area of these six groups. Interactions of KGlu with the 15 model compounds predicted from these six α-values agree well with experimental data. KGlu interactions with all carbon groups and with anionic (carboxylate) and amide oxygen are unfavorable, while KGlu interactions with cationic and amide nitrogen are favorable. These α-values, together with surface area information, provide quantitative predictions of why KGlu is an effective E. coli cytoplasmic osmolyte (because of the dominant effect of unfavorable interactions of KGlu with anionic and amide oxygens and hydrocarbon groups on the water-accessible surface of cytoplasmic biopolymers) and why KGlu is a strong stabilizer of folded proteins (because of the dominant effect of unfavorable interactions of KGlu with hydrocarbon groups and amide oxygens exposed in unfolding).
Collapse
|
24
|
Pastor A, Singh AK, Fisher MT, Chaudhuri TK. Protein folding on biosensor tips: folding of maltodextrin glucosidase monitored by its interactions with GroEL. FEBS J 2016; 283:3103-14. [PMID: 27367928 DOI: 10.1111/febs.13796] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/29/2016] [Accepted: 06/29/2016] [Indexed: 01/16/2023]
Abstract
Protein folding has been extensively studied for the past six decades by employing solution-based methods such as solubility, enzymatic activity, secondary structure analysis, and analytical methods like FRET, NMR, and HD exchange. However, for rapid analysis of the folding process, solution-based approaches are often plagued with aggregation side reactions resulting in poor yields. In this work, we demonstrate that a bio-layer interferometry (BLI) chaperonin detection system can identify superior refolding conditions for denatured proteins. The degree of immobilized protein folding as a function of time can be detected by monitoring the binding of the high-affinity nucleotide-free form of the chaperonin GroEL. GroEL preferentially interacts with proteins that have hydrophobic surfaces exposed in their unfolded or partially folded form, so a decrease in GroEL binding can be correlated with burial of hydrophobic surfaces as folding progresses. The magnitude of GroEL binding to the protein immobilized on bio-layer interferometry biosensor inversely reflects the extent of protein folding and hydrophobic residue burial. We demonstrate conditions where accelerated folding can be observed for the aggregation-prone protein maltodextrin glucosidase (MalZ). Superior immobilized folding conditions identified on the bio-layer interferometry biosensor surface were reproduced on Ni-NTA sepharose bead surfaces and resulted in significant improvement in folding yields of released MalZ (measured by enzymatic activity) compared to bulk refolding conditions in solution.
Collapse
Affiliation(s)
- Ashutosh Pastor
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, India
| | - Amit K Singh
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, India
| | - Mark T Fisher
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Centre, KS, USA
| | - Tapan K Chaudhuri
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, India
| |
Collapse
|