1
|
Syriste L, Patel DT, Stogios PJ, Skarina T, Patel D, Savchenko A. An acetyltransferase effector conserved across Legionella species targets the eukaryotic eIF3 complex to modulate protein translation. mBio 2024; 15:e0322123. [PMID: 38335095 PMCID: PMC10936415 DOI: 10.1128/mbio.03221-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/16/2024] [Indexed: 02/12/2024] Open
Abstract
The survival of Legionella spp. as intracellular pathogens relies on the combined action of protein effectors delivered inside their eukaryotic hosts by the Dot/Icm (defective in organelle trafficking/intracellular multiplication) type IVb secretion system. The specific repertoire of effector arsenals varies dramatically across over 60 known species of this genera with Legionella pneumophila responsible for most cases of Legionnaires' disease in humans encoding over 360 Dot/Icm effectors. However, a small subset of "core" effectors appears to be conserved across all Legionella species raising an intriguing question of their role in these bacteria's pathogenic strategy, which for most of these effectors remains unknown. L. pneumophila Lpg0103 effector, also known as VipF, represents one of the core effector families that features a tandem of Gcn5-related N-acetyltransferase (GNAT) domains. Here, we present the crystal structure of the Lha0223, the VipF representative from Legionella hackeliae in complex with acetyl-coenzyme A determined to 1.75 Å resolution. Our structural analysis suggested that this effector family shares a common fold with the two GNAT domains forming a deep groove occupied by residues conserved across VipF homologs. Further analysis suggested that only the C-terminal GNAT domain of VipF effectors retains the active site composition compatible with catalysis, whereas the N-terminal GNAT domain binds the ligand in a non-catalytical mode. We confirmed this by in vitro enzymatic assays which revealed VipF activity not only against generic small molecule substrates, such as chloramphenicol, but also against poly-L-lysine and histone-derived peptides. We identified the human eukaryotic translation initiation factor 3 (eIF3) complex co-precipitating with Lpg0103 and demonstrated the direct interaction between the several representatives of the VipF family, including Lpg0103 and Lha0223 with the K subunit of eIF3. According to our data, these interactions involve primarily the C-terminal tail of eIF3-K containing two lysine residues that are acetylated by VipF. VipF catalytic activity results in the suppression of eukaryotic protein translation in vitro, revealing the potential function of VipF "core" effectors in Legionella's pathogenic strategy.IMPORTANCEBy translocating effectors inside the eukaryotic host cell, bacteria can modulate host cellular processes in their favor. Legionella species, which includes the pneumonia-causing Legionella pneumophila, encode a widely diverse set of effectors with only a small subset that is conserved across this genus. Here, we demonstrate that one of these conserved effector families, represented by L. pneumophila VipF (Lpg0103), is a tandem Gcn5-related N-acetyltransferase interacting with the K subunit of human eukaryotic initiation factor 3 complex. VipF catalyzes the acetylation of lysine residues on the C-terminal tail of the K subunit, resulting in the suppression of eukaryotic translation initiation factor 3-mediated protein translation in vitro. These new data provide the first insight into the molecular function of this pathogenic factor family common across Legionellae.
Collapse
Affiliation(s)
- Lukas Syriste
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Deepak T. Patel
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Peter J. Stogios
- Department of Chemical Engineering and Applied Chemistry, Toronto University, Toronto, Ontario, Canada
| | - Tatiana Skarina
- Department of Chemical Engineering and Applied Chemistry, Toronto University, Toronto, Ontario, Canada
| | - Dhruvin Patel
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Alexei Savchenko
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Chemical Engineering and Applied Chemistry, Toronto University, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Chen TT, Lin Y, Zhang S, Han A. Structural basis for the acetylation mechanism of the Legionella effector VipF. Acta Crystallogr D Struct Biol 2022; 78:1110-1119. [DOI: 10.1107/s2059798322007318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 07/14/2022] [Indexed: 11/11/2022] Open
Abstract
The pathogen Legionella pneumophila, which is the causative agent of Legionnaires' disease, secrets hundreds of effectors into host cells via its Dot/Icm secretion system to subvert host-cell pathways during pathogenesis. VipF, a conserved core effector among Legionella species, is a putative acetyltransferase, but its structure and catalytic mechanism remain unknown. Here, three crystal structures of VipF in complex with its cofactor acetyl-CoA and/or a substrate are reported. The two GNAT-like domains of VipF are connected as two wings by two β-strands to form a U-shape. Both domains bind acetyl-CoA or CoA, but only in the C-terminal domain does the molecule extend to the bottom of the U-shaped groove as required for an active transferase reaction; the molecule in the N-terminal domain folds back on itself. Interestingly, when chloramphenicol, a putative substrate, binds in the pocket of the central U-shaped groove adjacent to the N-terminal domain, VipF remains in an open conformation. Moreover, mutations in the central U-shaped groove, including Glu129 and Asp251, largely impaired the acetyltransferase activity of VipF, suggesting a unique enzymatic mechanism for the Legionella effector VipF.
Collapse
|
3
|
M A B Alsarraf H, Lam Ung K, Johansen MD, Dimon J, Olieric V, Kremer L, Blaise M. Biochemical, structural, and functional studies reveal that MAB_4324c from Mycobacterium abscessus is an active tandem repeat N-acetyltransferase. FEBS Lett 2022; 596:1516-1532. [PMID: 35470425 DOI: 10.1002/1873-3468.14360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 11/12/2022]
Abstract
Mycobacterium abscessus is a pathogenic non-tuberculous mycobacterium that possesses an intrinsic drug-resistance profile. Several N-acetyltransferases mediate drug resistance and/or participate in M. abscessus virulence. Mining the M. abscessus genome has revealed genes encoding additional N-acetyltransferases whose functions remain uncharacterized, among them MAB_4324c. Here, we showed that the purified MAB_4324c protein is a N-acetyltransferase able to acetylate small polyamine substrates. The crystal structure of MAB_4324c was solved at high resolution in complex with its cofactor, revealing the presence of two GCN5-related N-acetyltransferase domains and a cryptic binding site for NADPH. Genetic studies demonstrate that MAB_4324c is not essential for in vitro growth of M. abscessus, however overexpression of the protein enhanced the uptake and survival of M. abscessus in THP-1 macrophages.
Collapse
Affiliation(s)
- Husam M A B Alsarraf
- IRIM, Université de Montpellier, CNRS, Montpellier, France.,Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Kien Lam Ung
- IRIM, Université de Montpellier, CNRS, Montpellier, France.,Department of molecular biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Matt D Johansen
- IRIM, Université de Montpellier, CNRS, Montpellier, France.,Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Juliette Dimon
- IRIM, Université de Montpellier, CNRS, Montpellier, France
| | - Vincent Olieric
- Swiss Light Source, Paul Scherrer Institute, CH-5232, Villigen-PSI, Switzerland
| | - Laurent Kremer
- IRIM, Université de Montpellier, CNRS, Montpellier, France.,INSERM, IRIM, Montpellier, France
| | - Mickaël Blaise
- IRIM, Université de Montpellier, CNRS, Montpellier, France
| |
Collapse
|
4
|
Zhang P, Liu P, Xu Y, Liang Y, Wang PG, Cheng J. N-acetyltransferases from three different organisms displaying distinct selectivity toward hexosamines and N-terminal amine of peptides. Carbohydr Res 2018; 472:72-75. [PMID: 30500476 DOI: 10.1016/j.carres.2018.11.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 11/18/2018] [Accepted: 11/21/2018] [Indexed: 12/31/2022]
Abstract
N-acetyltransferases are a family of enzymes that catalyze the transfer of the acetyl moiety (COCH3) from acetyl coenzyme A (Acetyl-CoA) to a primary amine of acceptor substrates from small molecules such as aminoglycoside to macromolecules of various proteins. In this study, the substrate selectivity of three N-acetyltransferases falling into different phylogenetic groups was probed against a series of hexosamines and synthetic peptides. GlmA from Clostridium acetobutylicum and RmNag from Rhizomucor miehei, which have been defined as glucosamine N-acetyltransferases, were herein demonstrated to be also capable of acetylating the free amino group on the very first glycine residue of peptide in spite of varied catalytic efficiency. The human recombinant N-acetyltransferase of Naa10p, however, prefers primary amine groups in the peptides as opposed to glucosamine. The varied preference of GlmA, RmNag and Naa10p probably arose from the divergent evolution of these N-acetyltransferases. The expanded knowledge of acceptor specificity would as well facilitate the application of these N-acetyltransferases in the acetylation of hexosamines or peptides.
Collapse
Affiliation(s)
- Peiru Zhang
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, PR China
| | - Pei Liu
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, PR China
| | - Yangyang Xu
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, PR China
| | - Yulu Liang
- College of Chemistry, Nankai University, Tianjin, 300071, PR China
| | - Peng George Wang
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, PR China
| | - Jiansong Cheng
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, PR China.
| |
Collapse
|