1
|
Lemen D, Rokita SE. Polar Interactions between Substrate and Flavin Control Iodotyrosine Deiodinase Function. Biochemistry 2024; 63:2380-2389. [PMID: 39213510 PMCID: PMC11408085 DOI: 10.1021/acs.biochem.4c00357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Flavin cofactors offer a wide range of chemical mechanisms to support a great diversity in catalytic function. As a corollary, such diversity necessitates careful control within each flavoprotein to limit its function to an appropriate subset of possible reactions and substrates. This task falls to the protein environment surrounding the flavin in most enzymes. For iodotyrosine deiodinase that catalyzes a reductive dehalogenation of halotyrosines, substrates can dictate the chemistry available to the flavin. Their ability to stabilize the necessary one-electron reduced semiquinone form of flavin strictly depends on a direct coordination between the flavin and α-ammonium and carboxylate groups of its substrates. While perturbations to the carboxylate group do not significantly affect binding to the resting oxidized form of the deiodinase, dehalogenation (kcat/Km) is suppressed by over 2000-fold. Lack of the α-ammonium group abolishes detectable binding and dehalogenation. Substitution of the ammonium group with a hydroxyl group does not restore measurable binding but does support dehalogenation with an efficiency greater than those of the carboxylate derivatives. Consistent with these observations, the flavin semiquinone does not accumulate during redox titration in the presence of inert substrate analogues lacking either the α-ammonium or carboxylate groups. As a complement, a nitroreductase activity based on hydride transfer is revealed for the appropriate substrates with perturbations to their zwitterion.
Collapse
Affiliation(s)
- Daniel Lemen
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Steven E Rokita
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
2
|
Greenberg HC, Majumdar A, Cheema EK, Kozyryev A, Rokita SE. 19F NMR Reveals the Dynamics of Substrate Binding and Lid Closure for Iodotyrosine Deiodinase as a Complement to Steady-State Kinetics and Crystallography. Biochemistry 2024; 63:2225-2232. [PMID: 39137127 PMCID: PMC11371475 DOI: 10.1021/acs.biochem.4c00243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Active site lids are common features of enzymes and typically undergo conformational changes upon substrate binding to promote catalysis. Iodotyrosine deiodinase is no exception and contains a lid segment in all of its homologues from human to bacteria. The solution-state dynamics of the lid have now been characterized using 19F NMR spectroscopy with a CF3-labeled enzyme and CF3O-labeled ligands. From two-dimensional 19F-19F NMR exchange spectroscopy, interconversion rates between the free and bound states of a CF3O-substituted tyrosine (45 ± 10 s-1) and the protein label (40 ± 3 s-1) are very similar and suggest a correlation between ligand binding and conformational reorganization of the lid. Both occur at rates that are ∼100-fold faster than turnover, and therefore these steps do not limit catalysis. A simple CF3O-labeled phenol also binds to the active site and induces a conformational change in the lid segment that was not previously detectable by crystallography. Exchange rates of the ligand (130 ± 20 s-1) and protein (98 ± 8 s-1) in this example are faster than those above but remain self-consistent to affirm a correlation between ordering of the lid and binding of the ligand. Both ligands also protect the protein from limited proteolysis, as expected from their ability to stabilize a compact lid structure. However, the minimal turnover of simple phenol substrates indicates that such stabilization may be necessary but is not sufficient for efficient catalysis.
Collapse
Affiliation(s)
- Harrison C Greenberg
- Chemistry-Biology Interface Graduate Training Program, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Ananya Majumdar
- Biomolecular NMR Center, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Ekroop Kaur Cheema
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Anton Kozyryev
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Steven E Rokita
- Chemistry-Biology Interface Graduate Training Program, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
3
|
Kozyryev A, Boucher PA, Quiñones-Jurgensen CM, Rokita SE. The 2'-hydroxy group of flavin mononucleotide influences the catalytic function and promiscuity of the flavoprotein iodotyrosine dehalogenase. RSC Chem Biol 2023; 4:698-705. [PMID: 37654510 PMCID: PMC10467613 DOI: 10.1039/d3cb00094j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023] Open
Abstract
The isoalloxazine ring system of the flavin cofactor is responsible for much of the catalytic power and diversity associated with flavoproteins. While the specificity of these enzymes is greatly influenced by the surrounding protein environment, the ribityl group of the cofactor may also participate in stabilizing transient intermediates formed by substrates and flavin. A conserved interaction between the phenolate oxygen of l-iodotyrosine and the 2'-hydroxy group of flavin mononucleotide (FMN) bound to iodotyrosine deiodianase (IYD) implied such a contribution to catalysis. Reconstitution of this deiodinase with 2'-deoxyflavin mononucleotide (2'-deoxyFMN) decreased the overall catalytic efficiency of l-iodotyrosine dehalogenation (kcat/Km) by more than 5-fold but increased kcat by over 2-fold. These affects are common to human IYD and its homolog from Thermotoga neapolitana and are best explained by an ability of the 2'-hydroxy group of FMN to stabilize association of the substrate in its phenolate form. Loss of this 2'-hydroxy group did not substantially affect the formation of the one electron reduced semiquinone form of FMN but its absence released constraints that otherwise suppresses the ability of IYD to promote hydride transfer as measured by a competing nitroreductase activity. Generation of IYD containing 2'-deoxyFMN also removed steric constraints that had previously limited the use of certain mechanistic probes. For example, l-O-methyl iodotyrosine could be accommodated in the active site lacking the 2'-hydroxy of FMN and shown to be inert to dehalogenation as predicted from a mechanism requiring ketonization of the phenolic oxygen. In the future, ancillary sites within a cofactor should now be considered when engineering new functions within existing protein architectures as demonstrated by the ability of IYD to promote nitroreduction after loss of the 2'-hydroxy group of FMN.
Collapse
Affiliation(s)
- Anton Kozyryev
- Department of Chemistry, Johns Hopkins University 3400 N. Charles St. Maryland 21218 USA +1-410-516-5793
| | - Petrina A Boucher
- Department of Chemistry, Johns Hopkins University 3400 N. Charles St. Maryland 21218 USA +1-410-516-5793
| | - Carla M Quiñones-Jurgensen
- Department of Chemistry, Johns Hopkins University 3400 N. Charles St. Maryland 21218 USA +1-410-516-5793
| | - Steven E Rokita
- Department of Chemistry, Johns Hopkins University 3400 N. Charles St. Maryland 21218 USA +1-410-516-5793
| |
Collapse
|
4
|
Kozyryev A, Lemen D, Dunn J, Rokita SE. Substrate Electronics Dominate the Rate of Reductive Dehalogenation Promoted by the Flavin-Dependent Iodotyrosine Deiodinase. Biochemistry 2023; 62:1298-1306. [PMID: 36892456 PMCID: PMC10073337 DOI: 10.1021/acs.biochem.3c00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Iodotyrosine deiodinase (IYD) is unusual in its reliance on flavin to promote reductive dehalogenation of halotyrosines under aerobic conditions. Applications of this activity can be envisioned for bioremediation, but expansion of its specificity requires an understanding of the mechanistic steps that limit the rate of turnover. Key processes capable of controlling steady-state turnover have now been evaluated and described in this study. While proton transfer is necessary for converting the electron-rich substrate into an electrophilic intermediate suitable for reduction, kinetic solvent deuterium isotope effects suggest that this process does not contribute to the overall efficiency of catalysis under neutral conditions. Similarly, reconstituting IYD with flavin analogues demonstrates that a change in reduction potential by as much as 132 mV affects kcat by less than 3-fold. Furthermore, kcat/Km does not correlate with reduction potential and indicates that electron transfer is also not rate determining. Catalytic efficiency is most sensitive to the electronic nature of its substrates. Electron-donating substituents on the ortho position of iodotyrosine stimulate catalysis and conversely electron-withdrawing substituents suppress catalysis. Effects on kcat and kcat/Km range from 22- to 100-fold and fit a linear free-energy correlation with a ρ ranging from -2.1 to -2.8 for human and bacterial IYD. These values are consistent with a rate-determining process of stabilizing the electrophilic and nonaromatic intermediate poised for reduction. Future engineering can now focus on efforts to stabilize this electrophilic intermediate over a broad series of phenolic substrates that are targeted for removal from our environment.
Collapse
Affiliation(s)
- Anton Kozyryev
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218 United States
| | - Daniel Lemen
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218 United States
| | - Jessica Dunn
- Chemistry Biology Interface Graduate Program, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218 United States
| | - Steven E Rokita
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218 United States
- Chemistry Biology Interface Graduate Program, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218 United States
| |
Collapse
|
5
|
Mori T, Masuzawa N, Kondo K, Nakanishi Y, Chida S, Uehara D, Katahira M, Takeda M. A heterodimeric hyaluronate lyase secreted by the activated sludge bacterium Haliscomenobacter hydrossis. Biosci Biotechnol Biochem 2023; 87:256-266. [PMID: 36535637 DOI: 10.1093/bbb/zbac207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022]
Abstract
Haliscomenobacter hydrossis is a filamentous bacterium common in activated sludge. The bacterium was found to utilize hyaluronic acid, and hyaluronate lyase activity was detected in its culture. However, no hyaluronate lyase gene was found in the genome, suggesting the bacterium secretes a novel hyaluronate lyase. The purified enzyme exhibited two bands on SDS-PAGE and a single peak on gel filtration chromatography, suggesting a heterodimeric composition. N-terminal amino acid sequence and mass spectrometric analyses suggested that the subunits are molybdopterin-binding and [2Fe-2S]-binding subunits of a xanthine oxidase family protein. The presence of the cofactors was confirmed using spectrometric analysis. Oxidase activity was not detected, revealing that the enzyme is not an oxidase but a hyaluronate lyase. Nuclear magnetic resonance analysis of the enzymatic digest revealed that the enzyme breaks hyaluronic acid to 3-(4-deoxy-β-d-gluc-4-enuronosyl)-N-acetyl-d-glucosamine. As hyaluronate lyases (EC 4.2.2.1) are monomeric or trimeric, the enzyme is the first heterodimeric hyaluronate lyase.
Collapse
Affiliation(s)
- Tomomi Mori
- Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya, Yokohama, Japan
| | - Nozomi Masuzawa
- Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya, Yokohama, Japan
| | - Keiko Kondo
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto, Japan.,Biomass Product Tree Industry-Academia Collaborative Research Laboratory, Kyoto University, Gokasho, Uji, Kyoto, Japan
| | - Yuta Nakanishi
- Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya, Yokohama, Japan
| | - Shun Chida
- Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya, Yokohama, Japan
| | - Daiki Uehara
- Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya, Yokohama, Japan
| | - Masato Katahira
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto, Japan.,Biomass Product Tree Industry-Academia Collaborative Research Laboratory, Kyoto University, Gokasho, Uji, Kyoto, Japan.,Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto, Japan
| | - Minoru Takeda
- Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya, Yokohama, Japan
| |
Collapse
|
6
|
Musila JM, Rokita SE. Sequence Conservation Does Not Always Signify a Functional Imperative as Observed in the Nitroreductase Superfamily. Biochemistry 2022; 61:703-711. [PMID: 35319879 PMCID: PMC9018611 DOI: 10.1021/acs.biochem.2c00037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Consensus sequences have the potential to help classify the structure and function of proteins and highlight key regions that may contribute to their biological properties. Often, the level of significance will track with the extent of sequence conservation, but this should not be considered universal. Arg and Lys dominate a position adjacent to the N1 and C2 carbonyl of flavin mononucleotide (FMN) bound in the proteins of the nitroreductase superfamily. Although this placement satisfies expectations for stabilizing the reduced form of FMN, the substitution of these residues in three subfamilies promoting distinct reactions demonstrates their importance to catalysis as only modest. Replacing Arg34 with Lys, Gln, or Glu enhances FMN binding to a flavin destructase (BluB) by twofold and diminishes FMN turnover by no more than 25%. Similarly, replacing Lys14 with Arg, Gln, or Glu in a nitroreductase (NfsB) does not perturb the binding of the substrate nitrofurazone. The catalytic efficiency does decrease by 21-fold for the K14Q variant, but no change in the midpoint potential of FMN was observed with any of the variants. Equivalent substitution at Arg38 in iodotyrosine deiodinase (IYD) affects catalysis even more modestly (<10-fold). While the Arg/Lys to Glu substitution inactivates NfsB and IYD, this change also stabilizes one-electron transfer in IYD contrary to predictions based on other classes of flavoproteins. Accordingly, functional correlations developed in certain structural superfamilies may not necessarily translate well to other superfamilies.
Collapse
Affiliation(s)
- Jonathan M Musila
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Steven E Rokita
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
7
|
Sun Z, Xu B, Spisak S, Kavran JM, Rokita SE. The minimal structure for iodotyrosine deiodinase function is defined by an outlier protein from the thermophilic bacterium Thermotoga neapolitana. J Biol Chem 2021; 297:101385. [PMID: 34748729 PMCID: PMC8668982 DOI: 10.1016/j.jbc.2021.101385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 11/12/2022] Open
Abstract
The nitroreductase superfamily of enzymes encompasses many flavin mononucleotide (FMN)-dependent catalysts promoting a wide range of reactions. All share a common core consisting of an FMN-binding domain, and individual subgroups additionally contain one to three sequence extensions radiating from defined positions within this core to support their unique catalytic properties. To identify the minimum structure required for activity in the iodotyrosine deiodinase subgroup of this superfamily, attention was directed to a representative from the thermophilic organism Thermotoga neapolitana (TnIYD). This representative was selected based on its status as an outlier of the subgroup arising from its deficiency in certain standard motifs evident in all homologues from mesophiles. We found that TnIYD lacked a typical N-terminal sequence and one of its two characteristic sequence extensions, neither of which was found to be necessary for activity. We also show that TnIYD efficiently promotes dehalogenation of iodo-, bromo-, and chlorotyrosine, analogous to related deiodinases (IYDs) from humans and other mesophiles. In addition, 2-iodophenol is a weak substrate for TnIYD as it was for all other IYDs characterized to date. Consistent with enzymes from thermophilic organisms, we observed that TnIYD adopts a compact fold and low surface area compared with IYDs from mesophilic organisms. The insights gained from our investigations on TnIYD demonstrate the advantages of focusing on sequences that diverge from conventional standards to uncover the minimum essentials for activity. We conclude that TnIYD now represents a superior starting structure for future efforts to engineer a stable dehalogenase targeting halophenols of environmental concern.
Collapse
Affiliation(s)
- Zuodong Sun
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland, USA
| | - Bing Xu
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland, USA
| | - Shaun Spisak
- Chemistry-Biology Interface Graduate Program, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jennifer M Kavran
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA; Department of Biophysics and Biophysical Chemistry, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA; Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Steven E Rokita
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|
8
|
|
9
|
Hu J, Su Q, Schlessman JL, Rokita SE. Redox control of iodotyrosine deiodinase. Protein Sci 2019; 28:68-78. [PMID: 30052294 PMCID: PMC6296174 DOI: 10.1002/pro.3479] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 12/29/2022]
Abstract
The redox chemistry of flavoproteins is often gated by substrate and iodotyrosine deiodinase (IYD) has the additional ability to switch between reaction modes based on the substrate. Association of fluorotyrosine (F-Tyr), an inert substrate analog, stabilizes single electron transfer reactions of IYD that are not observed in the absence of this ligand. The co-crystal of F-Tyr and a T239A variant of human IYD have now been characterized to provide a structural basis for control of its flavin reactivity. Coordination of F-Tyr in the active site of this IYD closely mimics that of iodotyrosine and only minor perturbations are observed after replacement of an active site Thr with Ala. However, loss of the side chain hydroxyl group removes a key hydrogen bond from flavin and suppresses the formation of its semiquinone intermediate. Even substitution of Thr with Ser decreases the midpoint potential of human IYD between its oxidized and semiquinone forms of flavin by almost 80 mV. This decrease does not adversely affect the kinetics of reductive dehalogenation although an analogous Ala variant exhibits a 6.7-fold decrease in its kcat /Km . Active site ligands lacking the zwitterion of halotyrosine are not able to induce closure of the active site lid that is necessary for promoting single electron transfer and dehalogenation. Under these conditions, a basal two-electron process dominates catalysis as indicated by preferential reduction of nitrophenol rather than deiodination of iodophenol.
Collapse
Affiliation(s)
- Jimin Hu
- Department of ChemistryJohns Hopkins UniversityBaltimoreMaryland, 21218
| | - Qi Su
- Department of ChemistryJohns Hopkins UniversityBaltimoreMaryland, 21218
| | | | - Steven E. Rokita
- Department of ChemistryJohns Hopkins UniversityBaltimoreMaryland, 21218
| |
Collapse
|
10
|
|
11
|
Sun Z, Rokita SE. Toward a Halophenol Dehalogenase from Iodotyrosine Deiodinase via Computational Design. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Zuodong Sun
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| | - Steven E. Rokita
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| |
Collapse
|
12
|
Phatarphekar A, Su Q, Eun SH, Chen X, Rokita SE. The importance of a halotyrosine dehalogenase for Drosophila fertility. J Biol Chem 2018; 293:10314-10321. [PMID: 29764939 DOI: 10.1074/jbc.ra118.003364] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 05/11/2018] [Indexed: 12/18/2022] Open
Abstract
The ability of iodotyrosine deiodinase to salvage iodide from iodotyrosine has long been recognized as critical for iodide homeostasis and proper thyroid function in vertebrates. The significance of its additional ability to dehalogenate bromo- and chlorotyrosine is less apparent, and none of these functions could have been anticipated in invertebrates until recently. Drosophila, as most arthropods, contains a deiodinase homolog encoded by CG6279, now named condet (cdt), with a similar catalytic specificity. However, its physiological role cannot be equivalent because Drosophila lacks a thyroid and its associated hormones, and no requirement for iodide or halotyrosines has been reported for this species. We have now applied CRISPR/Cas9 technology to generate Drosophila strains in which the cdt gene has been either deleted or mutated to identify its biological function. As previously shown in larvae, expression of cdt is primarily limited to the fat body, and we now report that loss of cdt function does not enhance sensitivity of the larvae to the toxic effects of iodotyrosine. In adult flies by contrast, expression is known to occur in testes and is detected at very high levels in this tissue. The importance of cdt is most evident in the decrease in fertility observed when either males or females carry a deletion or mutation of cdt Therefore, dehalogenation of a halotyrosine appears essential for efficient reproduction in Drosophila and likely contributes to a new pathway for controlling viability in arthropods.
Collapse
Affiliation(s)
| | - Qi Su
- From the Departments of Chemistry and
| | - Suk Ho Eun
- Biology, Johns Hopkins University, Baltimore, Maryland 21218
| | - Xin Chen
- Biology, Johns Hopkins University, Baltimore, Maryland 21218
| | | |
Collapse
|
13
|
Sun Z, Su Q, Rokita SE. The distribution and mechanism of iodotyrosine deiodinase defied expectations. Arch Biochem Biophys 2017; 632:77-87. [PMID: 28774660 DOI: 10.1016/j.abb.2017.07.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/24/2017] [Accepted: 07/30/2017] [Indexed: 12/19/2022]
Abstract
Iodotyrosine deiodinase (IYD) is unusual for its reliance on flavin to promote reductive dehalogenation under aerobic conditions. As implied by the name, this enzyme was first discovered to catalyze iodide elimination from iodotyrosine for recycling iodide during synthesis of tetra- and triiodothyronine collectively known as thyroid hormone. However, IYD likely supports many more functions and has been shown to debrominate and dechlorinate bromo- and chlorotyrosines. A specificity for halotyrosines versus halophenols is well preserved from humans to bacteria. In all examples to date, the substrate zwitterion establishes polar contacts with both the protein and the isoalloxazine ring of flavin. Mechanistic data suggest dehalogenation is catalyzed by sequential one electron transfer steps from reduced flavin to substrate despite the initial expectations for a single two electron transfer mechanism. A purported flavin semiquinone intermediate is stabilized by hydrogen bonding between its N5 position and the side chain of a Thr. Mutation of this residue to Ala suppresses dehalogenation and enhances a nitroreductase activity that is reminiscent of other enzymes within the same structural superfamily.
Collapse
Affiliation(s)
- Zuodong Sun
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Qi Su
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Steven E Rokita
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA.
| |
Collapse
|