1
|
Walters KA, Redding KE, Golbeck JH. Identification and characterization of the low molecular mass ferredoxins involved in central metabolism in Heliomicrobium modesticaldum. PHOTOSYNTHESIS RESEARCH 2024; 162:251-271. [PMID: 38306001 DOI: 10.1007/s11120-023-01069-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/11/2023] [Indexed: 02/03/2024]
Abstract
The homodimeric Type I reaction center (RC) from Heliomicrobium modesticaldum lacks the PsaC subunit found in Photosystem I and instead uses the interpolypeptide [4Fe-4S] cluster FX as the terminal electron acceptor. Our goal was to identify which of the small mobile dicluster ferredoxins encoded by the H. modesticaldum genome are capable of accepting electrons from the heliobacterial RC (HbRC) and pyruvate:ferredoxin oxidoreductase (PFOR), a key metabolic enzyme. Analysis of the genome revealed seven candidates: HM1_1462 (PshB1), HM1_1461 (PshB2), HM1_2505 (Fdx3), HM1_0869 (FdxB), HM1_1043, HM1_0357, and HM1_2767. Heterologous expression in Escherichia coli and studies using time-resolved optical spectroscopy revealed that only PshB1, PshB2, and Fdx3 are capable of accepting electrons from the HbRC and PFOR. Modeling studies using AlphaFold show that only PshB1, PshB2, and Fdx3 should be capable of docking on PFOR at a positively charged patch that overlays a surface-proximal [4Fe-4S] cluster. Proteomic analysis of wild-type and gene deletion strains ΔpshB1, ΔpshB2, ΔpshB1pshB2, and Δfdx3 grown under nitrogen-replete conditions revealed that Fdx3 is undetectable in the wild-type, ΔpshB1, and Δfdx3 strains, but it is present in the ΔpshB2 and ΔpshB1pshB2 strains, implying that Fdx3 may substitute for PshB2. When grown under nitrogen-deplete conditions, Fdx3 is present in the wild-type and all deletion strains except for Δfdx3. None of the knockout strains demonstrated significant impairment during chemotrophic dark growth on pyruvate, photoheterotrophic light growth on pyruvate, or phototrophic growth on acetate+CO2, indicating a high degree of redundancy among these three electron transfer proteins. Loss of both PshB1 and PshB2, but not FdxB, resulted in poor growth under N2-fixing conditions.
Collapse
Affiliation(s)
- Karim A Walters
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Kevin E Redding
- School of Molecular Sciences, Arizona State University, 1711 S Rural Rd, Box 871604, Tempe, AZ, 85287-1604, USA.
- Center for Bioenergy & Photosynthesis, Arizona State University, Tempe, AZ, 85287, USA.
| | - John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
2
|
Giri NC, Mintmier B, Radhakrishnan M, Mielke JW, Wilcoxen J, Basu P. The critical role of a conserved lysine residue in periplasmic nitrate reductase catalyzed reactions. J Biol Inorg Chem 2024; 29:395-405. [PMID: 38782786 DOI: 10.1007/s00775-024-02057-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/10/2024] [Indexed: 05/25/2024]
Abstract
Periplasmic nitrate reductase NapA from Campylobacter jejuni (C. jejuni) contains a molybdenum cofactor (Moco) and a 4Fe-4S cluster and catalyzes the reduction of nitrate to nitrite. The reducing equivalent required for the catalysis is transferred from NapC → NapB → NapA. The electron transfer from NapB to NapA occurs through the 4Fe-4S cluster in NapA. C. jejuni NapA has a conserved lysine (K79) between the Mo-cofactor and the 4Fe-4S cluster. K79 forms H-bonding interactions with the 4Fe-4S cluster and connects the latter with the Moco via an H-bonding network. Thus, it is conceivable that K79 could play an important role in the intramolecular electron transfer and the catalytic activity of NapA. In the present study, we show that the mutation of K79 to Ala leads to an almost complete loss of activity, suggesting its role in catalytic activity. The inhibition of C. jejuni NapA by cyanide, thiocyanate, and azide has also been investigated. The inhibition studies indicate that cyanide inhibits NapA in a non-competitive manner, while thiocyanate and azide inhibit NapA in an uncompetitive manner. Neither inhibition mechanism involves direct binding of the inhibitor to the Mo-center. These results have been discussed in the context of the loss of catalytic activity of NapA K79A variant and a possible anion binding site in NapA has been proposed.
Collapse
Affiliation(s)
- Nitai C Giri
- Department of Chemistry and Chemical Biology, Indiana University Indianapolis, Indianapolis, IN, USA
| | - Breeanna Mintmier
- Department of Chemistry and Chemical Biology, Indiana University Indianapolis, Indianapolis, IN, USA
| | - Manohar Radhakrishnan
- Department of Chemistry and Chemical Biology, Indiana University Indianapolis, Indianapolis, IN, USA
| | - Jonathan W Mielke
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Jarett Wilcoxen
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI, USA.
| | - Partha Basu
- Department of Chemistry and Chemical Biology, Indiana University Indianapolis, Indianapolis, IN, USA.
| |
Collapse
|
3
|
Srivastava AP, Mishra N, Prasad RLA, Rajesh P, Knaff DB. Thermodynamics of ferredoxin binding to cyanobacterial nitrate reductase. PHOTOSYNTHESIS RESEARCH 2020; 144:73-84. [PMID: 32222887 DOI: 10.1007/s11120-020-00738-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/20/2020] [Indexed: 06/10/2023]
Abstract
The role of the seven negatively charged amino acids of Synechocystis sp. PCC 6803 ferredoxin (Fd), i.e., Glu29, Glu30, Asp60, Asp65, Asp66, Glu92, and Glu93, predicted to form complex with nitrate reductase (NR), was investigated using site-directed mutagenesis and isothermal titration calorimetry (ITC). These experiments identified four Fd amino acids, i.e., Glu29, Asp60, Glu92, and Glu93, that are essential for the Fd binding and efficient electron transfer to the NR. ITC measurements showed that the most likely stoichiometry for the wild-type NR/wild-type Fd complex is 1:1, a Kd value 4.7 μM for the complex at low ionic strength residues and both the enthalpic and entropic components are associated with complex formation. ITC titrations of wild-type NR with four Fd variants, E29N, D60N, E92Q, and E93N demonstrated that the complex formation, although favorable, was less energetically favorable when compared to complex formation between the two wild-type proteins, suggesting that these negatively charged Fd residues at these positions are important for the effective and productive interaction with wild-type enzyme.
Collapse
Affiliation(s)
- Anurag P Srivastava
- Department of Life Sciences, Garden City University, Bangalore, Karnataka, India.
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA.
| | - Neelam Mishra
- Department of Botany, St. Joseph's College, Bangalore, Karnataka, India
| | | | - Preethi Rajesh
- Department of Life Sciences, Garden City University, Bangalore, Karnataka, India.
| | - David B Knaff
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
4
|
Tan W, Liao TH, Wang J, Ye Y, Wei YC, Zhou HK, Xiao Y, Zhi XY, Shao ZH, Lyu LD, Zhao GP. A recently evolved diflavin-containing monomeric nitrate reductase is responsible for highly efficient bacterial nitrate assimilation. J Biol Chem 2020; 295:5051-5066. [PMID: 32111737 DOI: 10.1074/jbc.ra120.012859] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/25/2020] [Indexed: 12/11/2022] Open
Abstract
Nitrate is one of the major inorganic nitrogen sources for microbes. Many bacterial and archaeal lineages have the capacity to express assimilatory nitrate reductase (NAS), which catalyzes the rate-limiting reduction of nitrate to nitrite. Although a nitrate assimilatory pathway in mycobacteria has been proposed and validated physiologically and genetically, the putative NAS enzyme has yet to be identified. Here, we report the characterization of a novel NAS encoded by Mycolicibacterium smegmatis Msmeg_4206, designated NasN, which differs from the canonical NASs in its structure, electron transfer mechanism, enzymatic properties, and phylogenetic distribution. Using sequence analysis and biochemical characterization, we found that NasN is an NADPH-dependent, diflavin-containing monomeric enzyme composed of a canonical molybdopterin cofactor-binding catalytic domain and an FMN-FAD/NAD-binding, electron-receiving/transferring domain, making it unique among all previously reported hetero-oligomeric NASs. Genetic studies revealed that NasN is essential for aerobic M. smegmatis growth on nitrate as the sole nitrogen source and that the global transcriptional regulator GlnR regulates nasN expression. Moreover, unlike the NADH-dependent heterodimeric NAS enzyme, NasN efficiently supports bacterial growth under nitrate-limiting conditions, likely due to its significantly greater catalytic activity and oxygen tolerance. Results from a phylogenetic analysis suggested that the nasN gene is more recently evolved than those encoding other NASs and that its distribution is limited mainly to Actinobacteria and Proteobacteria. We observed that among mycobacterial species, most fast-growing environmental mycobacteria carry nasN, but that it is largely lacking in slow-growing pathogenic mycobacteria because of multiple independent genomic deletion events along their evolution.
Collapse
Affiliation(s)
- Wei Tan
- Department of Microbiology and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong 999077, China.,Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai 200032, China
| | - Tian-Hua Liao
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jin Wang
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yu Ye
- Department of Microbiology and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong 999077, China
| | - Yu-Chen Wei
- Department of Microbiology and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong 999077, China
| | - Hao-Kui Zhou
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Youli Xiao
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiao-Yang Zhi
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Zhi-Hui Shao
- CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Liang-Dong Lyu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai 200032, China
| | - Guo-Ping Zhao
- Department of Microbiology and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong 999077, China .,Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai 200032, China.,Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.,Bio-Med Big Data Center, Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Shanghai-MOST Key Laboratory for Health and Disease Genomics, Chinese National Human Genome Center, Shanghai 201203, China
| |
Collapse
|
5
|
Pan X, Cao D, Xie F, Xu F, Su X, Mi H, Zhang X, Li M. Structural basis for electron transport mechanism of complex I-like photosynthetic NAD(P)H dehydrogenase. Nat Commun 2020; 11:610. [PMID: 32001694 PMCID: PMC6992706 DOI: 10.1038/s41467-020-14456-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/09/2020] [Indexed: 11/23/2022] Open
Abstract
NAD(P)H dehydrogenase-like (NDH) complex NDH-1L of cyanobacteria plays a crucial role in cyclic electron flow (CEF) around photosystem I and respiration processes. NDH-1L couples the electron transport from ferredoxin (Fd) to plastoquinone (PQ) and proton pumping from cytoplasm to the lumen that drives the ATP production. NDH-1L-dependent CEF increases the ATP/NADPH ratio, and is therefore pivotal for oxygenic phototrophs to function under stress. Here we report two structures of NDH-1L from Thermosynechococcus elongatus BP-1, in complex with one Fd and an endogenous PQ, respectively. Our structures represent the complete model of cyanobacterial NDH-1L, revealing the binding manner of NDH-1L with Fd and PQ, as well as the structural elements crucial for proper functioning of the NDH-1L complex. Together, our data provides deep insights into the electron transport from Fd to PQ, and its coupling with proton translocation in NDH-1L. NAD(P)H dehydrogenase-like complex NDH-1L couples the electron transport from ferredoxin (Fd) to plastoquinone (PQ) and proton pumping from cytoplasm to the lumen. Here authors report two structures of NDH-1L from Thermosynechococcus elongatus BP-1, in complex with one Fd and an endogenous PQ, respectively.
Collapse
Affiliation(s)
- Xiaowei Pan
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Duanfang Cao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Fen Xie
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, PR China.,University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Fang Xu
- University of Chinese Academy of Sciences, Beijing, 100049, PR China.,National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai, 200032, PR China
| | - Xiaodong Su
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Hualing Mi
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai, 200032, PR China.
| | - Xinzheng Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, PR China. .,University of Chinese Academy of Sciences, Beijing, 100049, PR China. .,Center for Biological Imaging, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, PR China.
| | - Mei Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, PR China.
| |
Collapse
|
6
|
Structure of the complex I-like molecule NDH of oxygenic photosynthesis. Nature 2019; 566:411-414. [PMID: 30742075 DOI: 10.1038/s41586-019-0921-0] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/14/2019] [Indexed: 12/20/2022]
Abstract
Cyclic electron flow around photosystem I (PSI) is a mechanism by which photosynthetic organisms balance the levels of ATP and NADPH necessary for efficient photosynthesis1,2. NAD(P)H dehydrogenase-like complex (NDH) is a key component of this pathway in most oxygenic photosynthetic organisms3,4 and is the last large photosynthetic membrane-protein complex for which the structure remains unknown. Related to the respiratory NADH dehydrogenase complex (complex I), NDH transfers electrons originating from PSI to the plastoquinone pool while pumping protons across the thylakoid membrane, thereby increasing the amount of ATP produced per NADP+ molecule reduced4,5. NDH possesses 11 of the 14 core complex I subunits, as well as several oxygenic-photosynthesis-specific (OPS) subunits that are conserved from cyanobacteria to plants3,6. However, the three core complex I subunits that are involved in accepting electrons from NAD(P)H are notably absent in NDH3,5,6, and it is therefore not clear how NDH acquires and transfers electrons to plastoquinone. It is proposed that the OPS subunits-specifically NdhS-enable NDH to accept electrons from its electron donor, ferredoxin3-5,7. Here we report a 3.1 Å structure of the 0.42-MDa NDH complex from the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1, obtained by single-particle cryo-electron microscopy. Our maps reveal the structure and arrangement of the principal OPS subunits in the NDH complex, as well as an unexpected cofactor close to the plastoquinone-binding site in the peripheral arm. The location of the OPS subunits supports a role in electron transfer and defines two potential ferredoxin-binding sites at the apex of the peripheral arm. These results suggest that NDH could possess several electron transfer routes, which would serve to maximize plastoquinone reduction and avoid deleterious off-target chemistry of the semi-plastoquinone radical.
Collapse
|