1
|
Haseltine WA, Hazel K, Patarca R. RNA Structure: Past, Future, and Gene Therapy Applications. Int J Mol Sci 2024; 26:110. [PMID: 39795966 PMCID: PMC11719923 DOI: 10.3390/ijms26010110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/21/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025] Open
Abstract
First believed to be a simple intermediary between the information encoded in deoxyribonucleic acid and that functionally displayed in proteins, ribonucleic acid (RNA) is now known to have many functions through its abundance and intricate, ubiquitous, diverse, and dynamic structure. About 70-90% of the human genome is transcribed into protein-coding and noncoding RNAs as main determinants along with regulatory sequences of cellular to populational biological diversity. From the nucleotide sequence or primary structure, through Watson-Crick pairing self-folding or secondary structure, to compaction via longer distance Watson-Crick and non-Watson-Crick interactions or tertiary structure, and interactions with RNA or other biopolymers or quaternary structure, or with metabolites and biomolecules or quinary structure, RNA structure plays a critical role in RNA's lifecycle from transcription to decay and many cellular processes. In contrast to the success of 3-dimensional protein structure prediction using AlphaFold, RNA tertiary and beyond structures prediction remains challenging. However, approaches involving machine learning and artificial intelligence, sequencing of RNA and its modifications, and structural analyses at the single-cell and intact tissue levels, among others, provide an optimistic outlook for the continued development and refinement of RNA-based applications. Here, we highlight those in gene therapy.
Collapse
Affiliation(s)
- William A. Haseltine
- ACCESS Health International, 384 West Lane, Ridgefield, CT 06877, USA; (K.H.); (R.P.)
- Feinstein Institutes for Medical Research, 350 Community Dr., Manhasset, NY 11030, USA
| | - Kim Hazel
- ACCESS Health International, 384 West Lane, Ridgefield, CT 06877, USA; (K.H.); (R.P.)
| | - Roberto Patarca
- ACCESS Health International, 384 West Lane, Ridgefield, CT 06877, USA; (K.H.); (R.P.)
- Feinstein Institutes for Medical Research, 350 Community Dr., Manhasset, NY 11030, USA
| |
Collapse
|
2
|
Yu J, Ramirez LM, Lin Q, Burz DS, Shekhtman A. Ribosome External Electric Field Regulates Metabolic Enzyme Activity: The RAMBO Effect. J Phys Chem B 2024; 128:7002-7021. [PMID: 39012038 DOI: 10.1021/acs.jpcb.4c00628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Ribosomes bind to many metabolic enzymes and change their activity. A general mechanism for ribosome-mediated amplification of metabolic enzyme activity, RAMBO, was formulated and elucidated for the glycolytic enzyme triosephosphate isomerase, TPI. The RAMBO effect results from a ribosome-dependent electric field-substrate dipole interaction energy that can increase or decrease the ground state of the reactant and product to regulate catalytic rates. NMR spectroscopy was used to determine the interaction surface of TPI binding to ribosomes and to measure the corresponding kinetic rates in the absence and presence of intact ribosome particles. Chemical cross-linking and mass spectrometry revealed potential ribosomal protein binding partners of TPI. Structural results and related changes in TPI energetics and activity show that the interaction between TPI and ribosomal protein L11 mediate the RAMBO effect.
Collapse
Affiliation(s)
- Jianchao Yu
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Lisa M Ramirez
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Qishan Lin
- RNA Epitranscriptomics & Proteomics Resource, University at Albany, State University of New York, Albany, New York 12222, United States
| | - David S Burz
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Alexander Shekhtman
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| |
Collapse
|
3
|
Zhang Z, Kato K, Tamaki H, Matsuki Y. Background signal suppression by opposite polarity subtraction for targeted DNP NMR spectroscopy on mixture samples. Phys Chem Chem Phys 2024; 26:9880-9890. [PMID: 38317640 DOI: 10.1039/d3cp06280e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
A novel method for background signal suppression is introduced to improve the selectivity of dynamic nuclear polarization (DNP) NMR spectroscopy in the study of target molecules within complex mixtures. The method uses subtraction between positively and negatively enhanced DNP spectra, leading to an improved contrast factor, which is the ratio between the target and background signal intensities. The proposed approach was experimentally validated using a reverse-micelle system that confines the target molecules together with the polarizing agent, OX063 trityl. A substantial increase in the contrast factor was observed, and the contrast factor was optimized through careful selection of the DNP build-up time. A simulation study based on the experimental results provides insights into a strategy for choosing the appropriate DNP build-up time and the corresponding selectivity of the method. Further analysis revealed a broad applicability of the technique, encompassing studies from large biomolecules to surface-modified polymers, depending on the nuclear spin diffusion rate with a range of gyromagnetic ratios.
Collapse
Affiliation(s)
- Zhongliang Zhang
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Ken Kato
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Hajime Tamaki
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Yoh Matsuki
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan.
- Center for Quantum Information and Quantum Biology, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
4
|
Theillet FX, Luchinat E. In-cell NMR: Why and how? PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 132-133:1-112. [PMID: 36496255 DOI: 10.1016/j.pnmrs.2022.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 06/17/2023]
Abstract
NMR spectroscopy has been applied to cells and tissues analysis since its beginnings, as early as 1950. We have attempted to gather here in a didactic fashion the broad diversity of data and ideas that emerged from NMR investigations on living cells. Covering a large proportion of the periodic table, NMR spectroscopy permits scrutiny of a great variety of atomic nuclei in all living organisms non-invasively. It has thus provided quantitative information on cellular atoms and their chemical environment, dynamics, or interactions. We will show that NMR studies have generated valuable knowledge on a vast array of cellular molecules and events, from water, salts, metabolites, cell walls, proteins, nucleic acids, drugs and drug targets, to pH, redox equilibria and chemical reactions. The characterization of such a multitude of objects at the atomic scale has thus shaped our mental representation of cellular life at multiple levels, together with major techniques like mass-spectrometry or microscopies. NMR studies on cells has accompanied the developments of MRI and metabolomics, and various subfields have flourished, coined with appealing names: fluxomics, foodomics, MRI and MRS (i.e. imaging and localized spectroscopy of living tissues, respectively), whole-cell NMR, on-cell ligand-based NMR, systems NMR, cellular structural biology, in-cell NMR… All these have not grown separately, but rather by reinforcing each other like a braided trunk. Hence, we try here to provide an analytical account of a large ensemble of intricately linked approaches, whose integration has been and will be key to their success. We present extensive overviews, firstly on the various types of information provided by NMR in a cellular environment (the "why", oriented towards a broad readership), and secondly on the employed NMR techniques and setups (the "how", where we discuss the past, current and future methods). Each subsection is constructed as a historical anthology, showing how the intrinsic properties of NMR spectroscopy and its developments structured the accessible knowledge on cellular phenomena. Using this systematic approach, we sought i) to make this review accessible to the broadest audience and ii) to highlight some early techniques that may find renewed interest. Finally, we present a brief discussion on what may be potential and desirable developments in the context of integrative studies in biology.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Enrico Luchinat
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum - Università di Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; CERM - Magnetic Resonance Center, and Neurofarba Department, Università degli Studi di Firenze, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
5
|
In-cell NMR: From target structure and dynamics to drug screening. Curr Opin Struct Biol 2022; 74:102374. [DOI: 10.1016/j.sbi.2022.102374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/11/2022] [Accepted: 03/22/2022] [Indexed: 11/18/2022]
|
6
|
Luchinat E, Cremonini M, Banci L. Radio Signals from Live Cells: The Coming of Age of In-Cell Solution NMR. Chem Rev 2022; 122:9267-9306. [PMID: 35061391 PMCID: PMC9136931 DOI: 10.1021/acs.chemrev.1c00790] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Indexed: 12/12/2022]
Abstract
A detailed knowledge of the complex processes that make cells and organisms alive is fundamental in order to understand diseases and to develop novel drugs and therapeutic treatments. To this aim, biological macromolecules should ideally be characterized at atomic resolution directly within the cellular environment. Among the existing structural techniques, solution NMR stands out as the only one able to investigate at high resolution the structure and dynamic behavior of macromolecules directly in living cells. With the advent of more sensitive NMR hardware and new biotechnological tools, modern in-cell NMR approaches have been established since the early 2000s. At the coming of age of in-cell NMR, we provide a detailed overview of its developments and applications in the 20 years that followed its inception. We review the existing approaches for cell sample preparation and isotopic labeling, the application of in-cell NMR to important biological questions, and the development of NMR bioreactor devices, which greatly increase the lifetime of the cells allowing real-time monitoring of intracellular metabolites and proteins. Finally, we share our thoughts on the future perspectives of the in-cell NMR methodology.
Collapse
Affiliation(s)
- Enrico Luchinat
- Dipartimento
di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum−Università di Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
- Magnetic
Resonance Center, Università degli
Studi di Firenze, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Matteo Cremonini
- Magnetic
Resonance Center, Università degli
Studi di Firenze, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Lucia Banci
- Magnetic
Resonance Center, Università degli
Studi di Firenze, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
- Consorzio
Interuniversitario Risonanze Magnetiche di Metallo Proteine, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
- Dipartimento
di Chimica, Università degli Studi
di Firenze, Via della
Lastruccia 3, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
7
|
Sciolino N, Liu A, Breindel L, Burz DS, Sulchek T, Shekhtman A. Microfluidics delivery of DARPP-32 into HeLa cells maintains viability for in-cell NMR spectroscopy. Commun Biol 2022; 5:451. [PMID: 35551287 PMCID: PMC9098904 DOI: 10.1038/s42003-022-03412-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 04/26/2022] [Indexed: 11/09/2022] Open
Abstract
High-resolution structural studies of proteins and protein complexes in a native eukaryotic environment present a challenge to structural biology. In-cell NMR can characterize atomic resolution structures but requires high concentrations of labeled proteins in intact cells. Most exogenous delivery techniques are limited to specific cell types or are too destructive to preserve cellular physiology. The feasibility of microfluidics transfection or volume exchange for convective transfer, VECT, as a means to deliver labeled target proteins to HeLa cells for in-cell NMR experiments is demonstrated. VECT delivery does not require optimization or impede cell viability; cells are immediately available for long-term eukaryotic in-cell NMR experiments. In-cell NMR-based drug screening using VECT was demonstrated by collecting spectra of the sensor molecule DARPP32, in response to exogenous administration of Forskolin.
Collapse
Affiliation(s)
- Nicholas Sciolino
- University at Albany, Department of Chemistry, Albany, NY, 12222, USA
| | - Anna Liu
- Georgia Tech, School of Mechanical Engineering, Atlanta, GA, 30332, USA
| | - Leonard Breindel
- University at Albany, Department of Chemistry, Albany, NY, 12222, USA
| | - David S Burz
- University at Albany, Department of Chemistry, Albany, NY, 12222, USA
| | - Todd Sulchek
- Georgia Tech, School of Mechanical Engineering, Atlanta, GA, 30332, USA
| | | |
Collapse
|
8
|
Abstract
In-cell structural biology aims at extracting structural information about proteins or nucleic acids in their native, cellular environment. This emerging field holds great promise and is already providing new facts and outlooks of interest at both fundamental and applied levels. NMR spectroscopy has important contributions on this stage: It brings information on a broad variety of nuclei at the atomic scale, which ensures its great versatility and uniqueness. Here, we detail the methods, the fundamental knowledge, and the applications in biomedical engineering related to in-cell structural biology by NMR. We finally propose a brief overview of the main other techniques in the field (EPR, smFRET, cryo-ET, etc.) to draw some advisable developments for in-cell NMR. In the era of large-scale screenings and deep learning, both accurate and qualitative experimental evidence are as essential as ever to understand the interior life of cells. In-cell structural biology by NMR spectroscopy can generate such a knowledge, and it does so at the atomic scale. This review is meant to deliver comprehensive but accessible information, with advanced technical details and reflections on the methods, the nature of the results, and the future of the field.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
9
|
Jew KM, Le VTB, Amaral K, Ta A, Nguyen May NM, Law M, Adelstein N, Kuhn ML. Investigation of the Importance of Protein 3D Structure for Assessing Conservation of Lysine Acetylation Sites in Protein Homologs. Front Microbiol 2022; 12:805181. [PMID: 35173693 PMCID: PMC8843374 DOI: 10.3389/fmicb.2021.805181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
Acetylation is a protein post-translational modification (PTM) that can affect a variety of cellular processes. In bacteria, two PTM Nε-acetylation mechanisms have been identified: non-enzymatic/chemical acetylation via acetyl phosphate or acetyl coenzyme A and enzymatic acetylation via protein acetyltransferases. Prior studies have shown that extensive acetylation of Nε-lysine residues of numerous proteins from a variety of bacteria occurs via non-enzymatic acetylation. In Escherichia coli, new Nε-lysine acetyltransferases (KATs) that enzymatically acetylate other proteins have been identified, thus expanding the repertoire of protein substrates that are potentially regulated by acetylation. Therefore, we designed a study to leverage the wealth of structural data in the Protein Data Bank (PDB) to determine: (1) the 3D location of lysine residues on substrate proteins that are acetylated by E. coli KATs, and (2) investigate whether these residues are conserved on 3D structures of their homologs. Five E. coli KAT substrate proteins that were previously identified as being acetylated by YiaC and had 3D structures in the PDB were selected for further analysis: adenylate kinase (Adk), isocitrate dehydrogenase (Icd), catalase HPII (KatE), methionyl-tRNA formyltransferase (Fmt), and a peroxide stress resistance protein (YaaA). We methodically compared over 350 protein structures of these E. coli enzymes and their homologs; to accurately determine lysine residue conservation requires a strategy that incorporates both flexible structural alignments and visual inspection. Moreover, our results revealed discrepancies in conclusions about lysine residue conservation in homologs when examining linear amino acid sequences compared to 3D structures.
Collapse
Affiliation(s)
- Kristen M Jew
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, CA, United States
| | - Van Thi Bich Le
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, CA, United States
| | - Kiana Amaral
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, CA, United States
| | - Allysa Ta
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, CA, United States
| | - Nina M Nguyen May
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, CA, United States
| | - Melissa Law
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, CA, United States
| | - Nicole Adelstein
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, CA, United States
| | - Misty L Kuhn
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, CA, United States
| |
Collapse
|
10
|
Common sequence motifs of nascent chains engage the ribosome surface and trigger factor. Proc Natl Acad Sci U S A 2021; 118:2103015118. [PMID: 34930833 PMCID: PMC8719866 DOI: 10.1073/pnas.2103015118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2021] [Indexed: 11/18/2022] Open
Abstract
Proteins are produced by ribosomes in the cell, and during this process, can begin to adopt their biologically active forms assisted by molecular chaperones such as trigger factor. This fundamental cellular mechanism is crucial to maintaining a functional proteome and avoiding deleterious misfolding. Here, we study how disordered nascent chains emerge from the ribosome exit tunnel, and find that interactions with the ribosome surface dominate their dynamics in vitro and in vivo. Moreover, we show that the types of amino acids that mediate such interactions are also those that recruit trigger factor. This lays the foundation to describe how nascent chains are handed over from the ribosome surface to chaperones during biosynthesis within the crowded cytosol. In the cell, the conformations of nascent polypeptide chains during translation are modulated by both the ribosome and its associated molecular chaperone, trigger factor. The specific interactions that underlie these modulations, however, are still not known in detail. Here, we combine protein engineering, in-cell and in vitro NMR spectroscopy, and molecular dynamics simulations to explore how proteins interact with the ribosome during their biosynthesis before folding occurs. Our observations of α-synuclein nascent chains in living Escherichia coli cells reveal that ribosome surface interactions dictate the dynamics of emerging disordered polypeptides in the crowded cytosol. We show that specific basic and aromatic motifs drive such interactions and directly compete with trigger factor binding while biasing the direction of the nascent chain during its exit out of the tunnel. These results reveal a structural basis for the functional role of the ribosome as a scaffold with holdase characteristics and explain how handover of the nascent chain to specific auxiliary proteins occurs among a host of other factors in the cytosol.
Collapse
|
11
|
Yu J, Ramirez LM, Premo A, Busch DB, Lin Q, Burz DS, Shekhtman A. Ribosome-Amplified Metabolism, RAMBO, Measured by NMR Spectroscopy. Biochemistry 2021; 60:1885-1895. [PMID: 34081430 PMCID: PMC11299219 DOI: 10.1021/acs.biochem.1c00074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
NMR spectroscopy was used to investigate the phenomenon of ribosome-amplified metabolism or RAMBO between pyruvate kinase and ribosomes. Because the concentration of ribosomes increases as the cell grows, ribosome binding interactions may regulate metabolic fluxes by altering the distribution of bound and free enzymes. Pyruvate kinase (PK) catalyzes the last step of glycolysis and represents a major drug target for controlling bacterial infections. The binding of metabolic enzymes to ribosomes creates protein quinary structures with altered catalytic activities. NMR spectroscopy and chemical cross-linking combined with high-resolution mass spectrometry were used to establish that PK binds to ribosome at three independent sites, the L1 stalk, the A site, and the mRNA entry pore. The bioanalytical methodology described characterizes the altered kinetics and confirms the specificity of pyruvate kinase-ribosome interaction, affording an opportunity to investigate the ribosome dependence of metabolic reactions under solution conditions that closely mimic the cytosol. Expanding on the concept of ribosomal heterogeneity, which describes variations in ribosomal constituents that contribute to the specificity of cellular processes, this work firmly establishes the reciprocal process by which ribosome-dependent quinary interactions affect metabolic activity.
Collapse
Affiliation(s)
- JianChao Yu
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Lisa M Ramirez
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Aaron Premo
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Devin B Busch
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Qishan Lin
- RNA Epitranscriptomics & Proteomics Resource, University at Albany, State University of New York, Albany, New York 12222, United States
| | - David S Burz
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Alexander Shekhtman
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| |
Collapse
|
12
|
Abstract
Folding of polypeptides begins during their synthesis on ribosomes. This process has evolved as a means for the cell to maintain proteostasis, by mitigating the risk of protein misfolding and aggregation. The capacity to now depict this cellular feat at increasingly higher resolution is providing insight into the mechanistic determinants that promote successful folding. Emerging from these studies is the intimate interplay between protein translation and folding, and within this the ribosome particle is the key player. Its unique structural properties provide a specialized scaffold against which nascent polypeptides can begin to form structure in a highly coordinated, co-translational manner. Here, we examine how, as a macromolecular machine, the ribosome modulates the intrinsic dynamic properties of emerging nascent polypeptide chains and guides them toward their biologically active structures.
Collapse
Affiliation(s)
- Anaïs M E Cassaignau
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, London WC1E 7HX, United Kingdom; , ,
| | - Lisa D Cabrita
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, London WC1E 7HX, United Kingdom; , ,
| | - John Christodoulou
- Institute of Structural and Molecular Biology, University College London and Birkbeck College, London WC1E 7HX, United Kingdom; , ,
| |
Collapse
|
13
|
Davis CM, Gruebele M. Cellular Sticking Can Strongly Reduce Complex Binding by Speeding Dissociation. J Phys Chem B 2021; 125:3815-3823. [PMID: 33826329 DOI: 10.1021/acs.jpcb.1c00950] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
While extensive studies have been carried out to determine protein-RNA binding affinities, mechanisms, and dynamics in vitro, such studies do not take into consideration the effect of the many weak nonspecific interactions in a cell filled with potential binding partners. Here we experimentally tested the role of the cellular environment on affinity and binding dynamics between a protein and RNA in living U-2 OS cells. Our model system is the spliceosomal protein U1A and its binding partner SL2 of the U1 snRNA. The binding equilibrium was perturbed by a laser-induced temperature jump and monitored by Förster resonance energy transfer. The apparent binding affinity in live cells was reduced by up to 2 orders of magnitude compared to in vitro. The measured in-cell dissociation rate coefficients were up to 2 orders of magnitude larger, whereas no change in the measured association rate coefficient was observed. The latter is not what would be anticipated due to macromolecular crowding or nonspecific sticking of the uncomplexed U1A and SL2 in the cell. A quantitative model fits our experimental results, with the major cellular effect being that U1A and SL2 sticking to cellular components are capable of binding, just not as strongly as the free complex. This observation suggests that high binding affinities measured or designed in vitro are necessary for proper binding in vivo, where competition with many nonspecific interactions exists, especially for strongly interacting species with high charge or large hydrophobic surface areas.
Collapse
|
14
|
Iwakawa N, Morimoto D, Walinda E, Leeb S, Shirakawa M, Danielsson J, Sugase K. Transient Diffusive Interactions with a Protein Crowder Affect Aggregation Processes of Superoxide Dismutase 1 β-Barrel. J Phys Chem B 2021; 125:2521-2532. [PMID: 33657322 DOI: 10.1021/acs.jpcb.0c11162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Aggregate formation of superoxide dismutase 1 (SOD1) inside motor neurons is known as a major factor in onset of amyotrophic lateral sclerosis. The thermodynamic stability of the SOD1 β-barrel has been shown to decrease in crowded environments such as inside a cell, but it remains unclear how the thermodynamics of crowding-induced protein destabilization relate to SOD1 aggregation. Here we have examined the effects of a protein crowder, lysozyme, on fibril aggregate formation of the SOD1 β-barrel. We found that aggregate formation of SOD1 is decelerated even in mildly crowded solutions. Intriguingly, transient diffusive interactions with lysozyme do not significantly affect the static structure of the SOD1 β-barrel but stabilize an alternative excited "invisible" state. The net effect of crowding is to favor species off the aggregation pathway, thereby explaining the decelerated aggregation in the crowded environment. Our observations suggest that the intracellular environment may have a similar negative (inhibitory) effect on fibril formation of other amyloidogenic proteins in living cells. Deciphering how crowded intracellular environments affect aggregation and fibril formation of such disease-associated proteins will probably become central in understanding the exact role of aggregation in the etiology of these enigmatic diseases.
Collapse
Affiliation(s)
- Naoto Iwakawa
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Daichi Morimoto
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Erik Walinda
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Sarah Leeb
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - Masahiro Shirakawa
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Jens Danielsson
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | - Kenji Sugase
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
15
|
Westrich LD, Gotsmann VL, Herkt C, Ries F, Kazek T, Trösch R, Armbruster L, Mühlenbeck JS, Ramundo S, Nickelsen J, Finkemeier I, Wirtz M, Storchová Z, Räschle M, Willmund F. The versatile interactome of chloroplast ribosomes revealed by affinity purification mass spectrometry. Nucleic Acids Res 2021; 49:400-415. [PMID: 33330923 PMCID: PMC7797057 DOI: 10.1093/nar/gkaa1192] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022] Open
Abstract
In plant cells, chloroplast gene expression is predominantly controlled through post-transcriptional regulation. Such fine-tuning is vital for precisely orchestrating protein complex assembly as for the photosynthesis machinery and for quickly responding to environmental changes. While regulation of chloroplast protein synthesis is of central importance, little is known about the degree and nature of the regulatory network, mainly due to challenges associated with the specific isolation of transient ribosome interactors. Here, we established a ribosome affinity purification method, which enabled us to broadly uncover putative ribosome-associated proteins in chloroplasts. Endogenously tagging of a protein of the large or small subunit revealed not only interactors of the holo complex, but also preferential interactors of the two subunits. This includes known canonical regulatory proteins as well as several new proteins belonging to the categories of protein and RNA regulation, photosystem biogenesis, redox control and metabolism. The sensitivity of the here applied screen was validated for various transiently interacting proteins. We further provided evidence for the existence of a ribosome-associated Nα-acetyltransferase in chloroplasts and its ability to acetylate substrate proteins at their N-terminus. The broad set of ribosome interactors underscores the potential to regulate chloroplast gene expression on the level of protein synthesis.
Collapse
Affiliation(s)
- Lisa Désirée Westrich
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, Paul-Ehrlich-Str. 23, 67663 Kaiserslautern, Germany
| | - Vincent Leon Gotsmann
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, Paul-Ehrlich-Str. 23, 67663 Kaiserslautern, Germany
| | - Claudia Herkt
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, Paul-Ehrlich-Str. 23, 67663 Kaiserslautern, Germany
| | - Fabian Ries
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, Paul-Ehrlich-Str. 23, 67663 Kaiserslautern, Germany
| | - Tanja Kazek
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, Paul-Ehrlich-Str. 23, 67663 Kaiserslautern, Germany
| | - Raphael Trösch
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, Paul-Ehrlich-Str. 23, 67663 Kaiserslautern, Germany
| | - Laura Armbruster
- Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany
| | - Jens Stephan Mühlenbeck
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 7, 48149 Münster, Germany
| | - Silvia Ramundo
- Department of Biochemistry and Biophysics, University of California, 600 16th St, N316, San Francisco, CA 94143, USA
| | - Jörg Nickelsen
- Department of Molecular Plant Science, University of Munich, Grosshaderner-Str. 2-4, 82152 Planegg-Martinsried, Germany
| | - Iris Finkemeier
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 7, 48149 Münster, Germany
| | - Markus Wirtz
- Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany
| | - Zuzana Storchová
- Molecular Genetics, University of Kaiserslautern, Paul-Ehrlich-Str. 24, 67663 Kaiserslautern, Germany
| | - Markus Räschle
- Molecular Genetics, University of Kaiserslautern, Paul-Ehrlich-Str. 24, 67663 Kaiserslautern, Germany
| | - Felix Willmund
- Molecular Genetics of Eukaryotes, University of Kaiserslautern, Paul-Ehrlich-Str. 23, 67663 Kaiserslautern, Germany
| |
Collapse
|
16
|
Leeb S, Yang F, Oliveberg M, Danielsson J. Connecting Longitudinal and Transverse Relaxation Rates in Live-Cell NMR. J Phys Chem B 2020; 124:10698-10707. [PMID: 33179918 PMCID: PMC7735724 DOI: 10.1021/acs.jpcb.0c08274] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/22/2020] [Indexed: 12/26/2022]
Abstract
In the cytosolic environment, protein crowding and Brownian motions result in numerous transient encounters. Each such encounter event increases the apparent size of the interacting molecules, leading to slower rotational tumbling. The extent of transient protein complexes formed in live cells can conveniently be quantified by an apparent viscosity, based on NMR-detected spin-relaxation measurements, that is, the longitudinal (T1) and transverse (T2) relaxation. From combined analysis of three different proteins and surface mutations thereof, we find that T2 implies significantly higher apparent viscosity than T1. At first sight, the effect on T1 and T2 seems thus nonunifiable, consistent with previous reports on other proteins. We show here that the T1 and T2 deviation is actually not a inconsistency but an expected feature of a system with fast exchange between free monomers and transient complexes. In this case, the deviation is basically reconciled by a model with fast exchange between the free-tumbling reporter protein and a transient complex with a uniform 143 kDa partner. The analysis is then taken one step further by accounting for the fact that the cytosolic content is by no means uniform but comprises a wide range of molecular sizes. Integrating over the complete size distribution of the cytosolic interaction ensemble enables us to predict both T1 and T2 from a single binding model. The result yields a bound population for each protein variant and provides a quantification of the transient interactions. We finally extend the approach to obtain a correction term for the shape of a database-derived mass distribution of the interactome in the mammalian cytosol, in good accord with the existing data of the cellular composition.
Collapse
Affiliation(s)
- Sarah Leeb
- Department of Biochemistry and Biophysics,
Arrhenius Laboratories of Natural Sciences, Stockholm University, Stockholm 106 91, Sweden
| | - Fan Yang
- Department of Biochemistry and Biophysics,
Arrhenius Laboratories of Natural Sciences, Stockholm University, Stockholm 106 91, Sweden
| | - Mikael Oliveberg
- Department of Biochemistry and Biophysics,
Arrhenius Laboratories of Natural Sciences, Stockholm University, Stockholm 106 91, Sweden
| | - Jens Danielsson
- Department of Biochemistry and Biophysics,
Arrhenius Laboratories of Natural Sciences, Stockholm University, Stockholm 106 91, Sweden
| |
Collapse
|
17
|
Breindel L, Yu J, Burz DS, Shekhtman A. Intact ribosomes drive the formation of protein quinary structure. PLoS One 2020; 15:e0232015. [PMID: 32330166 PMCID: PMC7182177 DOI: 10.1371/journal.pone.0232015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/05/2020] [Indexed: 01/19/2023] Open
Abstract
Transient, site-specific, or so-called quinary, interactions are omnipresent in live cells and modulate protein stability and activity. Quinary intreactions are readily detected by in-cell NMR spectroscopy as severe broadening of the NMR signals. Intact ribosome particles were shown to be necessary for the interactions that give rise to the NMR protein signal broadening observed in cell lysates and sufficient to mimic quinary interactions present in the crowded cytosol. Recovery of target protein NMR spectra that were broadened in lysates, in vitro and in the presence of purified ribosomes was achieved by RNase A digestion only after the structure of the ribosome was destabilized by removing magnesium ions from the system. Identifying intact ribosomal particles as the major protein-binding component of quinary interactions and consequent spectral peak broadening will facilitate quantitative characterization of macromolecular crowding effects in live cells and streamline models of metabolic activity.
Collapse
Affiliation(s)
- Leonard Breindel
- Department of Chemistry, University at Albany, State University of New York, Albany, NY, United States of America
| | - Jianchao Yu
- Department of Chemistry, University at Albany, State University of New York, Albany, NY, United States of America
| | - David S. Burz
- Department of Chemistry, University at Albany, State University of New York, Albany, NY, United States of America
| | - Alexander Shekhtman
- Department of Chemistry, University at Albany, State University of New York, Albany, NY, United States of America
| |
Collapse
|
18
|
Davis CM, Deutsch J, Gruebele M. An in vitro mimic of in-cell solvation for protein folding studies. Protein Sci 2020; 29:1060-1068. [PMID: 31994240 DOI: 10.1002/pro.3833] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 01/15/2023]
Abstract
Ficoll, an inert macromolecule, is a common in vitro crowder, but by itself it does not reproduce in-cell stability or kinetic trends for protein folding. Lysis buffer, which contains ions, glycerol as a simple kosmotrope, and mimics small crowders with hydrophilic/hydrophobic patches, can reproduce sticking trends observed in cells but not the crowding. We previously suggested that the proper combination of Ficoll and lysis buffer could reproduce the opposite in-cell folding stability trend of two proteins: variable major protein-like sequence expressed (VlsE) is destabilized in eukaryotic cells and phosphoglycerate kinase (PGK) is stabilized. Here, to discover a well-characterized solvation environment that mimics in-cell stabilities for these two very differently behaved proteins, we conduct a two-dimensional scan of Ficoll (0-250 mg/ml) and lysis buffer (0-75%) mixtures. Contrary to our previous expectation, we show that mixtures of Ficoll and lysis buffer have a significant nonadditive effect on the folding stability. Lysis buffer enhances the stabilizing effect of Ficoll on PGK and inhibits the stabilizing effect of Ficoll on VlsE. We demonstrate that a combination of 150 mg/ml Ficoll and 60% lysis buffer can be used as an in vitro mimic to account for both crowding and non-steric effects on PGK and VlsE stability and folding kinetics in the cell. Our results also suggest that this mixture is close to the point where phase separation will occur. The simple mixture proposed here, based on commercially available reagents, could be a useful tool to study a variety of cytoplasmic protein interactions, such as folding, binding and assembly, and enzymatic reactions. SIGNIFICANCE STATEMENT: The complexity of the in-cell environment is difficult to reproduce in the test tube. Here we validate a mimic of cellular crowding and sticking interactions in a test tube using two proteins that are differently impacted by the cell: one is stabilized and the other is destabilized. This mimic is a starting point to reproduce cellular effects on a variety of protein and biomolecular interactions, such as folding and binding.
Collapse
Affiliation(s)
- Caitlin M Davis
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Jonathan Deutsch
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Martin Gruebele
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
19
|
Siegal G, Selenko P. Cells, drugs and NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 306:202-212. [PMID: 31358370 DOI: 10.1016/j.jmr.2019.07.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/08/2019] [Accepted: 07/08/2019] [Indexed: 05/18/2023]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a versatile tool for investigating cellular structures and their compositions. While in vivo and whole-cell NMR have a long tradition in cell-based approaches, high-resolution in-cell NMR spectroscopy is a new addition to these methods. In recent years, technological advancements in multiple areas provided converging benefits for cellular MR applications, especially in terms of robustness, reproducibility and physiological relevance. Here, we review the use of cellular NMR methods for drug discovery purposes in academia and industry. Specifically, we discuss how developments in NMR technologies such as miniaturized bioreactors and flow-probe perfusion systems have helped to consolidate NMR's role in cell-based drug discovery efforts.
Collapse
Affiliation(s)
- Gregg Siegal
- ZoBio B.V., BioPartner 2 Building, J.H. Oortweg 19, 2333 Leiden, the Netherlands
| | - Philipp Selenko
- Department of Biological Regulation, Weizmann Institute of Science, 234 Herzl Street, 761000 Rehovot, Israel.
| |
Collapse
|
20
|
Guin D, Gruebele M. Weak Chemical Interactions That Drive Protein Evolution: Crowding, Sticking, and Quinary Structure in Folding and Function. Chem Rev 2019; 119:10691-10717. [PMID: 31356058 DOI: 10.1021/acs.chemrev.8b00753] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In recent years, better instrumentation and greater computing power have enabled the imaging of elusive biomolecule dynamics in cells, driving many advances in understanding the chemical organization of biological systems. The focus of this Review is on interactions in the cell that affect both biomolecular stability and function and modulate them. The same protein or nucleic acid can behave differently depending on the time in the cell cycle, the location in a specific compartment, or the stresses acting on the cell. We describe in detail the crowding, sticking, and quinary structure in the cell and the current methods to quantify them both in vitro and in vivo. Finally, we discuss protein evolution in the cell in light of current biophysical evidence. We describe the factors that drive protein evolution and shape protein interaction networks. These interactions can significantly affect the free energy, ΔG, of marginally stable and low-population proteins and, due to epistasis, direct the evolutionary pathways in an organism. We finally conclude by providing an outlook on experiments to come and the possibility of collaborative evolutionary biology and biophysical efforts.
Collapse
Affiliation(s)
- Drishti Guin
- Department of Chemistry , University of Illinois , Urbana , Illinois 61801 , United States
| | - Martin Gruebele
- Department of Chemistry , University of Illinois , Urbana , Illinois 61801 , United States.,Department of Physics , University of Illinois , Urbana , Illinois 61801 , United States.,Center for Biophysics and Quantitative Biology , University of Illinois , Urbana , Illinois 61801 , United States
| |
Collapse
|
21
|
The Inescapable Effects of Ribosomes on In-Cell NMR Spectroscopy and the Implications for Regulation of Biological Activity. Int J Mol Sci 2019; 20:ijms20061297. [PMID: 30875837 PMCID: PMC6471074 DOI: 10.3390/ijms20061297] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/05/2019] [Accepted: 03/09/2019] [Indexed: 12/16/2022] Open
Abstract
The effects of RNA on in-cell NMR spectroscopy and ribosomes on the kinetic activity of several metabolic enzymes are reviewed. Quinary interactions between labelled target proteins and RNA broaden in-cell NMR spectra yielding apparent megadalton molecular weights in-cell. The in-cell spectra can be resolved by using cross relaxation-induced polarization transfer (CRINEPT), heteronuclear multiple quantum coherence (HMQC), transverse relaxation-optimized, NMR spectroscopy (TROSY). The effect is reproduced in vitro by using reconstituted total cellular RNA and purified ribosome preparations. Furthermore, ribosomal binding antibiotics alter protein quinary structure through protein-ribosome and protein-mRNA-ribosome interactions. The quinary interactions of Adenylate kinase, Thymidylate synthase and Dihydrofolate reductase alter kinetic properties of the enzymes. The results demonstrate that ribosomes may specifically contribute to the regulation of biological activity.
Collapse
|
22
|
Selenko P. Quo Vadis Biomolecular NMR Spectroscopy? Int J Mol Sci 2019; 20:ijms20061278. [PMID: 30875725 PMCID: PMC6472163 DOI: 10.3390/ijms20061278] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 02/06/2023] Open
Abstract
In-cell nuclear magnetic resonance (NMR) spectroscopy offers the possibility to study proteins and other biomolecules at atomic resolution directly in cells. As such, it provides compelling means to complement existing tools in cellular structural biology. Given the dominance of electron microscopy (EM)-based methods in current structure determination routines, I share my personal view about the role of biomolecular NMR spectroscopy in the aftermath of the revolution in resolution. Specifically, I focus on spin-off applications that in-cell NMR has helped to develop and how they may provide broader and more generally applicable routes for future NMR investigations. I discuss the use of ‘static’ and time-resolved solution NMR spectroscopy to detect post-translational protein modifications (PTMs) and to investigate structural consequences that occur in their response. I argue that available examples vindicate the need for collective and systematic efforts to determine post-translationally modified protein structures in the future. Furthermore, I explain my reasoning behind a Quinary Structure Assessment (QSA) initiative to interrogate cellular effects on protein dynamics and transient interactions present in physiological environments.
Collapse
Affiliation(s)
- Philipp Selenko
- Weizmann Institute of Science, Department of Biological Regulation, 234 Herzl Street, Rehovot 76100, Israel.
| |
Collapse
|
23
|
Duff MR, Desai N, Craig MA, Agarwal PK, Howell EE. Crowders Steal Dihydrofolate Reductase Ligands through Quinary Interactions. Biochemistry 2019; 58:1198-1213. [PMID: 30724552 DOI: 10.1021/acs.biochem.8b01110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dihydrofolate reductase (DHFR) reduces dihydrofolate (DHF) to tetrahydrofolate using NADPH as a cofactor. Due to its role in one carbon metabolism, chromosomal DHFR is the target of the antibacterial drug, trimethoprim. Resistance to trimethoprim has resulted in a type II DHFR that is not structurally related to the chromosomal enzyme target. Because of its metabolic significance, understanding DHFR kinetics and ligand binding behavior in more cell-like conditions, where the total macromolecule concentration can be as great as 300 mg/mL, is important. The progress-curve kinetics and ligand binding properties of the drug target (chromosomal E. coli DHFR) and the drug resistant (R67 DHFR) enzymes were studied in the presence of macromolecular cosolutes. There were varied effects on NADPH oxidation and binding to the two DHFRs, with some cosolutes increasing affinity and others weakening binding. However, DHF binding and reduction in both DHFRs decreased in the presence of all cosolutes. The decreased binding of ligands is mostly attributed to weak associations with the macromolecules, as opposed to crowder effects on the DHFRs. Computer simulations found weak, transient interactions for both ligands with several proteins. The net charge of protein cosolutes correlated with effects on NADP+ binding, with near neutral and positively charged proteins having more detrimental effects on binding. For DHF binding, effects correlated more with the size of binding pockets on the protein crowders. These nonspecific interactions between DHFR ligands and proteins predict that the in vivo efficiency of DHFRs may be much lower than expected from their in vitro rates.
Collapse
Affiliation(s)
- Michael R Duff
- Department of Biochemistry & Cellular and Molecular Biology Department , University of Tennessee-Knoxville , Knoxville , Tennessee 37996 , United States
| | - Nidhi Desai
- Department of Biochemistry & Cellular and Molecular Biology Department , University of Tennessee-Knoxville , Knoxville , Tennessee 37996 , United States
| | - Michael A Craig
- Department of Biochemistry & Cellular and Molecular Biology Department , University of Tennessee-Knoxville , Knoxville , Tennessee 37996 , United States
| | - Pratul K Agarwal
- Department of Biochemistry & Cellular and Molecular Biology Department , University of Tennessee-Knoxville , Knoxville , Tennessee 37996 , United States
| | - Elizabeth E Howell
- Department of Biochemistry & Cellular and Molecular Biology Department , University of Tennessee-Knoxville , Knoxville , Tennessee 37996 , United States
| |
Collapse
|
24
|
Breindel L, Burz DS, Shekhtman A. Interaction proteomics by using in-cell NMR spectroscopy. J Proteomics 2019; 191:202-211. [PMID: 29427760 PMCID: PMC6082733 DOI: 10.1016/j.jprot.2018.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/31/2018] [Accepted: 02/04/2018] [Indexed: 12/17/2022]
Abstract
A synopsis of in-cell NMR spectroscopic approaches to study interaction proteomics in prokaryotic and eukaryotic cells is presented. We describe the use of in-cell NMR spectroscopy to resolve high resolution protein structures, discuss methodologies for determining and analyzing high and low affinity protein-target structural interactions, including intrinsically disordered proteins, and detail important functional interactions that result from these interactions. SIGNIFICANCE: The ultimate goal of structural and biochemical research is to understand how macromolecular interactions give rise to and regulate biological activity in living cells. The challenge is formidable due to the complexity that arises not only from the number of proteins (genes) expressed by the organism, but also from the combinatorial interactions between them. Despite ongoing efforts to decipher the complex nature of protein interactions, new methods for structurally characterizing protein complexes are needed to fully understand molecular networks. With the onset of in-cell NMR spectroscopy, molecular structures and interactions can be studied under physiological conditions shedding light on the structural underpinning of biological activity.
Collapse
Affiliation(s)
- Leonard Breindel
- Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA
| | - David S Burz
- Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Alexander Shekhtman
- Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA.
| |
Collapse
|
25
|
Sciolino N, Burz DS, Shekhtman A. In-Cell NMR Spectroscopy of Intrinsically Disordered Proteins. Proteomics 2019; 19:e1800055. [PMID: 30489014 DOI: 10.1002/pmic.201800055] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/29/2018] [Indexed: 01/14/2023]
Abstract
This review summarizes the results of in-cell Nuclear Magnetic Resonance, NMR, spectroscopic investigations of the eukaryotic and prokaryotic intrinsically disordered proteins, IDPs: α-synuclein, prokaryotic ubiquitin-like protein, Pup, tubulin-related neuronal protein, Tau, phenylalanyl-glycyl-repeat-rich nucleoporins, FG Nups, and the negative regulator of flagellin synthesis, FlgM. The results show that the cellular behavior of IDPs may differ significantly from that observed in the test tube.
Collapse
Affiliation(s)
- Nicholas Sciolino
- Department of Chemistry, University at Albany, State University of New York, Albany, NY, 12222, USA
| | - David S Burz
- Department of Chemistry, University at Albany, State University of New York, Albany, NY, 12222, USA
| | - Alexander Shekhtman
- Department of Chemistry, University at Albany, State University of New York, Albany, NY, 12222, USA
| |
Collapse
|
26
|
Ribeiro S, Ebbinghaus S, Marcos JC. Protein folding and quinary interactions: creating cellular organisation through functional disorder. FEBS Lett 2018; 592:3040-3053. [DOI: 10.1002/1873-3468.13211] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/16/2018] [Accepted: 07/29/2018] [Indexed: 01/18/2023]
Affiliation(s)
- Sara Ribeiro
- Centre of Chemistry University of Minho Braga Portugal
| | - Simon Ebbinghaus
- Institute of Physical and Theoretical Chemistry Technical University Braunschweig Germany
| | | |
Collapse
|
27
|
Davis CM, Gruebele M. Non-Steric Interactions Predict the Trend and Steric Interactions the Offset of Protein Stability in Cells. Chemphyschem 2018; 19:2290-2294. [PMID: 29877016 DOI: 10.1002/cphc.201800534] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Indexed: 01/15/2023]
Abstract
Although biomolecules evolved to function in the cell, most biochemical assays are carried out in vitro. In-cell studies highlight how steric and non-steric interactions modulate protein folding and interactions. VlsE and PGK present two extremes of chemical behavior in the cell: the extracellular protein VlsE is destabilized in eukaryotic cells, whereas the cytoplasmic protein PGK is stabilized. VlsE and PGK are benchmarks in a systematic series of solvation environments to distinguish contributions from non-steric and steric interactions to protein stability, compactness, and folding rate by comparing cell lysate, a crowding agent, ionic buffer and lysate buffer with in-cell results. As anticipated, crowding stabilizes proteins, causes compaction, and can speed folding. Protein flexibility determines its sensitivity to steric interactions or crowding. Non-steric interactions alone predict in-cell stability trends, while crowding provides an offset towards greater stabilization. We suggest that a simple combination of lysis buffer and Ficoll is an effective new in vitro mimic of the intracellular environment on protein folding and stability.
Collapse
Affiliation(s)
- Caitlin M Davis
- Department of Chemistry and Department of Physics, University of Illinois at Urbana-Champaign Urbana, Illinois, 61801, United States
| | - Martin Gruebele
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign Urbana, Illinois, 61801, United States.,Department of Chemistry and Department of Physics, University of Illinois at Urbana-Champaign Urbana, Illinois, 61801, United States
| |
Collapse
|
28
|
DeMott CM, Girardin R, Cobbert J, Reverdatto S, Burz DS, McDonough K, Shekhtman A. Potent Inhibitors of Mycobacterium tuberculosis Growth Identified by Using in-Cell NMR-based Screening. ACS Chem Biol 2018; 13:733-741. [PMID: 29359908 DOI: 10.1021/acschembio.7b00879] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In-cell NMR spectroscopy was used to screen for drugs that disrupt the interaction between prokaryotic ubiquitin like protein, Pup, and mycobacterial proteasome ATPase, Mpa. This interaction is critical for Mycobacterium tuberculosis resistance against nitric oxide (NO) stress; interruption of this process was proposed as a mechanism to control latent infection. Three compounds isolated from the NCI Diversity set III library rescued the physiological proteasome substrate from degradation suggesting that the proteasome degradation pathway was selectively targeted. Two of the compounds bind to Mpa with sub-micromolar to nanomolar affinity, and all three exhibit potency toward mycobacteria comparable to antibiotics currently available on the market, inhibiting growth in the low micromolar range.
Collapse
Affiliation(s)
- Christopher M. DeMott
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Roxie Girardin
- Wadsworth Center, New York Department of Health, Albany, New York 12208, United States
| | - Jacqueline Cobbert
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Sergey Reverdatto
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - David S. Burz
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Kathleen McDonough
- Wadsworth Center, New York Department of Health, Albany, New York 12208, United States
- Department of Biomedical Sciences, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Alexander Shekhtman
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| |
Collapse
|
29
|
Breindel L, DeMott C, Burz DS, Shekhtman A. Real-Time In-Cell Nuclear Magnetic Resonance: Ribosome-Targeted Antibiotics Modulate Quinary Protein Interactions. Biochemistry 2018; 57:540-546. [PMID: 29266932 DOI: 10.1021/acs.biochem.7b00938] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
How ribosome antibiotics affect a wide range of biochemical pathways is not well understood; changes in RNA-mediated protein quinary interactions and consequent activity inside the crowded cytosol may provide one possible mechanism. We developed real-time (RT) in-cell nuclear magnetic resonance (NMR) spectroscopy to monitor temporal changes in protein quinary structure, for ≥24 h, in response to external and internal stimuli. RT in-cell NMR consists of a bioreactor containing gel-encapsulated cells inside a 5 mm NMR tube, a gravity siphon for continuous exchange of medium, and a horizontal drip irrigation system to supply nutrients to the cells during the experiment. We showed that adding antibiotics that bind to the small ribosomal subunit results in more extensive quinary interactions between thioredoxin and mRNA. The results substantiate the idea that RNA-mediated modulation of quinary protein interactions may provide the physical basis for ribosome inhibition and other regulatory pathways.
Collapse
Affiliation(s)
- Leonard Breindel
- Department of Chemistry, University at Albany, State University of New York , 1400 Washington Avenue, Albany, New York 12222, United States
| | - Christopher DeMott
- Department of Chemistry, University at Albany, State University of New York , 1400 Washington Avenue, Albany, New York 12222, United States
| | - David S Burz
- Department of Chemistry, University at Albany, State University of New York , 1400 Washington Avenue, Albany, New York 12222, United States
| | - Alexander Shekhtman
- Department of Chemistry, University at Albany, State University of New York , 1400 Washington Avenue, Albany, New York 12222, United States
| |
Collapse
|
30
|
Abstract
![]()
Knowledge of the
ionic strength in cells is required to understand
the in vivo biochemistry of the charged biomacromolecules.
Here, we present the first sensors to determine the ionic strength
in living cells, by designing protein probes based on Förster
resonance energy transfer (FRET). These probes allow observation of
spatiotemporal changes in the ionic strength on the single-cell level.
Collapse
Affiliation(s)
- Boqun Liu
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Bert Poolman
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Arnold J. Boersma
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|