1
|
Veenis AJ, Li P, Soudackov AV, Hammes-Schiffer S, Bevilacqua PC. Investigation of the p Ka of the Nucleophilic O2' of the Hairpin Ribozyme. J Phys Chem B 2021; 125:11869-11883. [PMID: 34695361 DOI: 10.1021/acs.jpcb.1c06546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Small ribozymes cleave their RNA phosphodiester backbone by catalyzing a transphosphorylation reaction wherein a specific O2' functions as the nucleophile. While deprotonation of this alcohol through its acidification would increase its nucleophilicity, little is known about the pKa of this O2' in small ribozymes, in part because high pKa's are not readily accessible experimentally. Herein, we turn to molecular dynamics to calculate the pKa of the nucleophilic O2' in the hairpin ribozyme and to study interactions within the active site that may impact its value. We estimate the pKa of the nucleophilic O2' in the wild-type hairpin ribozyme to be 18.5 ± 0.8, which is higher than the reference compound, and identify a correlation between proper positioning of the O2' for nucleophilic attack and elevation of its pKa. We find that monovalent ions may play a role in depression of the O2' pKa, while the exocyclic amine appears to be important for organizing the ribozyme active site. Overall, this study suggests that the pKa of the O2' is raised in the ground state and lowers during the course of the reaction owing to positioning and metal ion interactions.
Collapse
Affiliation(s)
| | - Pengfei Li
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States.,Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | - Alexander V Soudackov
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | | | | |
Collapse
|
2
|
Peng H, Latifi B, Müller S, Lupták A, Chen IA. Self-cleaving ribozymes: substrate specificity and synthetic biology applications. RSC Chem Biol 2021; 2:1370-1383. [PMID: 34704043 PMCID: PMC8495972 DOI: 10.1039/d0cb00207k] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 06/14/2021] [Indexed: 12/22/2022] Open
Abstract
Various self-cleaving ribozymes appearing in nature catalyze the sequence-specific intramolecular cleavage of RNA and can be engineered to catalyze cleavage of appropriate substrates in an intermolecular fashion, thus acting as true catalysts. The mechanisms of the small, self-cleaving ribozymes have been extensively studied and reviewed previously. Self-cleaving ribozymes can possess high catalytic activity and high substrate specificity; however, substrate specificity is also engineerable within the constraints of the ribozyme structure. While these ribozymes share a common fundamental catalytic mechanism, each ribozyme family has a unique overall architecture and active site organization, indicating that several distinct structures yield this chemical activity. The multitude of catalytic structures, combined with some flexibility in substrate specificity within each family, suggests that such catalytic RNAs, taken together, could access a wide variety of substrates. Here, we give an overview of 10 classes of self-cleaving ribozymes and capture what is understood about their substrate specificity and synthetic applications. Evolution of these ribozymes in an RNA world might be characterized by the emergence of a new ribozyme family followed by rapid adaptation or diversification for specific substrates. Self-cleaving ribozymes have become important tools of synthetic biology. Here we summarize the substrate specificity and applications of the main classes of these ribozymes.![]()
Collapse
Affiliation(s)
- Huan Peng
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles CA 90095 USA
| | - Brandon Latifi
- Department of Pharmaceutical Sciences, University of California Irvine CA 92697 USA
| | - Sabine Müller
- Institute for Biochemistry, University Greifswald 17487 Greifswald Germany
| | - Andrej Lupták
- Department of Pharmaceutical Sciences, University of California Irvine CA 92697 USA
| | - Irene A Chen
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles CA 90095 USA
| |
Collapse
|
3
|
Abstract
AbstractRibozymes are huge complex biological catalysts composed of a combination of RNA and proteins. Nevertheless, there is a reduced number of small ribozymes, the self-cleavage ribozymes, that are formed just by RNA and, apparently, they existed in cells of primitive biological systems. Unveiling the details of these “fossils” enzymes can contribute not only to the understanding of the origins of life but also to the development of new simplified artificial enzymes. A computational study of the reactivity of the pistol ribozyme carried out by means of classical MD simulations and QM/MM hybrid calculations is herein presented to clarify its catalytic mechanism. Analysis of the geometries along independent MD simulations with different protonation states of the active site basic species reveals that only the canonical system, with no additional protonation changes, renders reactive conformations. A change in the coordination sphere of the Mg2+ ion has been observed during the simulations, which allows proposing a mechanism to explain the unique mode of action of the pistol ribozyme by comparison with other ribozymes. The present results are at the center of the debate originated from recent experimental and theoretical studies on pistol ribozyme.
Collapse
|
4
|
Liu X, Ma S. Recent Development of Glucosamine‐6‐phosphate Derivatives as Potential Antibacterial Agents. ChemistrySelect 2020. [DOI: 10.1002/slct.201904075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xingbang Liu
- Department of Medicinal Chemistry Key Laboratory of Chemical Biology (Ministry of Education) School of Pharmaceutical SciencesShandong University 44 West Culture Road Jinan 250012 P.R. China
| | - Shutao Ma
- Department of Medicinal Chemistry Key Laboratory of Chemical Biology (Ministry of Education) School of Pharmaceutical SciencesShandong University 44 West Culture Road Jinan 250012 P.R. China
| |
Collapse
|
5
|
Ganguly A, Weissman BP, Piccirilli JA, York DM. Evidence for a Catalytic Strategy to Promote Nucleophile Activation in Metal-Dependent RNA-Cleaving Ribozymes and 8-17 DNAzyme. ACS Catal 2019; 9:10612-10617. [PMID: 31840007 PMCID: PMC6902279 DOI: 10.1021/acscatal.9b02035] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/04/2019] [Indexed: 12/30/2022]
Abstract
An unique catalytic strategy was recently reported for the glmS ribozyme [Bingaman et al., Nat. Chem. Biol.2017, 13, 439-445] that involves promotion of productive hydrogen bonding of the O2' nucleophile to facilitate its activation. We provide broad evidence of this strategy in the hammerhead, pistol, and VS ribozymes and 8-17 DNAzyme, enabled by a functionally important divalent metal ion that interacts with the scissile phosphate and disrupts nonproductive competitive hydrogen bonding with the O2' nucleophile. This strategy, designated tertiary gamma (3°γ) catalysis, illustrates an additional role for divalent ions in ribozyme catalysis.
Collapse
Affiliation(s)
- Abir Ganguly
- Laboratory
for Biomolecular Simulation Research, Rutgers,
The State University of New Jersey, Piscataway, New Jersey 08854-8087, United States
- Institute
for Quantitative Biomedicine, Rutgers, The
State University of New Jersey, Piscataway, New Jersey 08854-8087, United States
| | - Benjamin P. Weissman
- Department
of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Joseph A. Piccirilli
- Department
of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- Department
of Biochemistry and Molecular Biology, The
University of Chicago, Chicago, Illinois 60637, United States
| | - Darrin M. York
- Laboratory
for Biomolecular Simulation Research, Rutgers,
The State University of New Jersey, Piscataway, New Jersey 08854-8087, United States
- Institute
for Quantitative Biomedicine, Rutgers, The
State University of New Jersey, Piscataway, New Jersey 08854-8087, United States
- Department
of Chemistry and Chemical Biology, Rutgers,
The State University of New Jersey, Piscataway, New Jersey 08854-8087, United States
| |
Collapse
|
6
|
Ekesan Ş, York DM. Dynamical ensemble of the active state and transition state mimic for the RNA-cleaving 8-17 DNAzyme in solution. Nucleic Acids Res 2019; 47:10282-10295. [PMID: 31511899 PMCID: PMC6821293 DOI: 10.1093/nar/gkz773] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/20/2019] [Accepted: 09/03/2019] [Indexed: 02/01/2023] Open
Abstract
We perform molecular dynamics simulations, based on recent crystallographic data, on the 8-17 DNAzyme at four states along the reaction pathway to determine the dynamical ensemble for the active state and transition state mimic in solution. A striking finding is the diverse roles played by Na+ and Pb2+ ions in the electrostatically strained active site that impact all four fundamental catalytic strategies, and share commonality with some features recently inferred for naturally occurring hammerhead and pistol ribozymes. The active site Pb2+ ion helps to stabilize in-line nucleophilic attack, provides direct electrostatic transition state stabilization, and facilitates leaving group departure. A conserved guanine residue is positioned to act as the general base, and is assisted by a bridging Na+ ion that tunes the pKa and facilitates in-line fitness. The present work provides insight into how DNA molecules are able to solve the RNA-cleavage problem, and establishes functional relationships between the mechanism of these engineered DNA enzymes with their naturally evolved RNA counterparts. This adds valuable information to our growing body of knowledge on general mechanisms of phosphoryl transfer reactions catalyzed by RNA, proteins and DNA.
Collapse
Affiliation(s)
- Şölen Ekesan
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Darrin M York
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
7
|
Bevilacqua PC, Harris ME, Piccirilli JA, Gaines C, Ganguly A, Kostenbader K, Ekesan Ş, York DM. An Ontology for Facilitating Discussion of Catalytic Strategies of RNA-Cleaving Enzymes. ACS Chem Biol 2019; 14:1068-1076. [PMID: 31095369 PMCID: PMC6661149 DOI: 10.1021/acschembio.9b00202] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A predictive understanding of the mechanisms of RNA cleavage is important for the design of emerging technology built from biological and synthetic molecules that have promise for new biochemical and medicinal applications. Over the past 15 years, RNA cleavage reactions involving 2'-O-transphosphorylation have been discussed using a simplified framework introduced by Breaker that consists of four fundamental catalytic strategies (designated α, β, γ, and δ) that contribute to rate enhancement. As more detailed mechanistic data emerge, there is need for the framework to evolve and keep pace. We develop an ontology for discussion of strategies of enzymes that catalyze RNA cleavage via 2'-O-transphosphorylation that stratifies Breaker's framework into primary (1°), secondary (2°), and tertiary (3°) contributions to enable more precise interpretation of mechanism in the context of structure and bonding. Further, we point out instances where atomic-level changes give rise to changes in more than one catalytic contribution, a phenomenon we refer to as "functional blurring". We hope that this ontology will help clarify our conversations and pave the path forward toward a consensus view of these fundamental and fascinating mechanisms. The insight gained will deepen our understanding of RNA cleavage reactions catalyzed by natural protein and RNA enzymes, as well as aid in the design of new engineered DNA and synthetic enzymes.
Collapse
Affiliation(s)
- Philip C. Bevilacqua
- Department of Chemistry, Center for RNA Molecular Biology, and Department of Biochemistry, Microbiology, and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Michael E. Harris
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA
| | - Joseph A. Piccirilli
- Department of Chemistry, and Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Colin Gaines
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854-8087, USA
| | - Abir Ganguly
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854-8087, USA
| | - Ken Kostenbader
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854-8087, USA
| | - Şölen Ekesan
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854-8087, USA
| | - Darrin M. York
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854-8087, USA
| |
Collapse
|
8
|
Pavlova N, Kaloudas D, Penchovsky R. Riboswitch distribution, structure, and function in bacteria. Gene 2019; 708:38-48. [PMID: 31128223 DOI: 10.1016/j.gene.2019.05.036] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/12/2019] [Accepted: 05/20/2019] [Indexed: 10/26/2022]
Abstract
Riboswitches are gene control elements that directly bind to specific ligands to regulate gene expression without the need for proteins. They are found in all three domains of life, including Bacteria, Archaea, and Eukaryota. Riboswitches are mostly spread in bacteria and archaea. In this paper, we discuss the general distribution, structure, and function of 28 different riboswitch classes as we focus our attention on riboswitches in bacteria. Bacterial riboswitches regulate gene expression by four distinct mechanisms. They regulate the expression of a limited number of genes. However, most of these genes are responsible for the synthesis of essential metabolites without which the cell cannot function. Therefore, riboswitch distribution is also important for antibacterial drug development.
Collapse
Affiliation(s)
- Nikolet Pavlova
- Department of Genetics, Faculty of Biology, Sofia University "Saint Kliment Ohridski", 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| | - Dimitrios Kaloudas
- Department of Genetics, Faculty of Biology, Sofia University "Saint Kliment Ohridski", 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| | - Robert Penchovsky
- Department of Genetics, Faculty of Biology, Sofia University "Saint Kliment Ohridski", 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria.
| |
Collapse
|
9
|
Messina KJ, Bevilacqua PC. Cellular Small Molecules Contribute to Twister Ribozyme Catalysis. J Am Chem Soc 2018; 140:10578-10582. [PMID: 30102530 PMCID: PMC6472948 DOI: 10.1021/jacs.8b06065] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The number of self-cleaving small ribozymes has increased sharply in recent years. Advances have been made in describing these ribozymes in terms of four catalytic strategies: α describes in-line attack, β describes neutralization of the nonbridging oxygens, γ describes activation of the nucleophile, and δ describes stabilization of the leaving group. Current literature presents the rapid self-cleavage of the twister ribozyme in terms of all four of these classic catalytic strategies. Herein, we describe the nonspecific contribution of small molecules to ribozyme catalysis. At biological pH, the rate of the wild-type twister ribozyme is enhanced up to 5-fold in the presence of moderate buffer concentrations, similar to the 3-5-fold effects reported previously for buffer catalysis for protein enzymes. We observe this catalytic enhancement not only with standard laboratory buffers, but also with diverse biological small molecules, including imidazole, amino acids, and amino sugars. Brønsted plots suggest that small molecules assist in proton transfer, most likely with δ catalysis. Cellular small molecules provide a simple way to overcome the limited functional diversity of RNA and have the potential to participate in the catalytic mechanisms of many ribozymes in vivo.
Collapse
Affiliation(s)
- Kyle J. Messina
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Philip C. Bevilacqua
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania 16802 United States
| |
Collapse
|
10
|
Seith DD, Bingaman JL, Veenis AJ, Button AC, Bevilacqua PC. Elucidation of Catalytic Strategies of Small Nucleolytic Ribozymes From Comparative Analysis of Active Sites. ACS Catal 2018; 8:314-327. [PMID: 32547833 PMCID: PMC7296830 DOI: 10.1021/acscatal.7b02976] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A number of small, self-cleaving ribozyme classes have been identified including the hammerhead, hairpin, hepatitis delta virus (HDV), Varkud satellite (VS), glmS, twister, hatchet, pistol, and twister sister ribozymes. Within the active sites of these ribozymes, myriad functional groups contribute to catalysis. There has been extensive structure-function analysis of individual ribozymes, but the extent to which catalytic devices are shared across different ribozyme classes is unclear. As such, emergent catalytic principles for ribozymes may await discovery. Identification of conserved catalytic devices can deepen our understanding of RNA catalysis specifically and of enzymic catalysis generally. To probe similarities and differences amongst ribozyme classes, active sites from more than 80 high-resolution crystal structures of self-cleaving ribozymes were compared computationally. We identify commonalities amongst ribozyme classes pertaining to four classic catalytic devices: deprotonation of the 2'OH nucleophile (γ), neutralization of the non-bridging oxygens of the scissile phosphate (β), neutralization of the O5' leaving group (δ), and in-line nucleophilic attack (α). In addition, we uncover conservation of two catalytic devices, each of which centers on the activation of the 2'OH nucleophile by a guanine: one to acidify the 2'OH by hydrogen bond donation to it (γ') and one to acidify the 2'OH by releasing it from non-productive interactions by competitive hydrogen bonding (γ''). Our findings reveal that the amidine functionalities of G, A, and C are especially important for these strategies, and help explain absence of U at ribozyme active sites. The identified γ' and γ'' catalytic strategies help unify the catalytic strategies shared amongst catalytic RNAs and may be important for large ribozymes, as well as protein enzymes that act on nucleic acids.
Collapse
Affiliation(s)
- Daniel D. Seith
- Department of Chemistry and Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
- These two authors contributed equally to this work
| | - Jamie L. Bingaman
- Department of Chemistry and Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
- These two authors contributed equally to this work
| | - Andrew J. Veenis
- Department of Chemistry and Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Aileen C. Button
- Department of Chemistry and Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Biochemistry, The University of Vermont, Burlington, Vermont 05405
| | - Philip C. Bevilacqua
- Department of Chemistry and Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
11
|
Passalacqua LFM, Jimenez RM, Fong JY, Lupták A. Allosteric Modulation of the Faecalibacterium prausnitzii Hepatitis Delta Virus-like Ribozyme by Glucosamine 6-Phosphate: The Substrate of the Adjacent Gene Product. Biochemistry 2017; 56:6006-6014. [PMID: 29045794 DOI: 10.1021/acs.biochem.7b00879] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Self-cleaving ribozymes were discovered 30 years ago and have been found throughout nature, from bacteria to animals, but little is known about their biological functions and regulation, particularly how cofactors and metabolites alter their activity. A hepatitis delta virus-like self-cleaving ribozyme maps upstream of a phosphoglucosamine mutase (glmM) open reading frame in the genome of the human gut bacterium Faecalibacterium prausnitzii. The presence of a ribozyme in the untranslated region of glmM suggests a regulation mechanism of gene expression. In the bacterial hexosamine biosynthesis pathway, the enzyme glmM catalyzes the isomerization of glucosamine 6-phosphate into glucosamine 1-phosphate. In this study, we investigated the effect of these metabolites on the co-transcriptional self-cleavage rate of the ribozyme. Our results suggest that glucosamine 6-phosphate, but not glucosamine 1-phosphate, is an allosteric ligand that increases the self-cleavage rate of drz-Fpra-1, providing the first known example of allosteric modulation of a self-cleaving ribozyme by the substrate of the adjacent gene product. Given that the ribozyme is activated by the glmM substrate, but not the product, this allosteric modulation may represent a potential feed-forward mechanism of gene expression regulation in bacteria.
Collapse
Affiliation(s)
- Luiz F M Passalacqua
- Department of Pharmaceutical Sciences, University of California , Irvine, California 92697, United States
| | - Randi M Jimenez
- Department of Molecular Biology and Biochemistry, University of California , Irvine, California 92697, United States
| | - Jennifer Y Fong
- Department of Pharmaceutical Sciences, University of California , Irvine, California 92697, United States
| | - Andrej Lupták
- Department of Pharmaceutical Sciences, University of California , Irvine, California 92697, United States.,Department of Molecular Biology and Biochemistry, University of California , Irvine, California 92697, United States.,Department of Chemistry, University of California , Irvine, California 92697, United States
| |
Collapse
|