1
|
Wheeler HB, Madrigal AA, Chaim IA. Mapping the future of oxidative RNA damage in neurodegeneration: Rethinking the status quo with new tools. Proc Natl Acad Sci U S A 2024; 121:e2317860121. [PMID: 39495912 DOI: 10.1073/pnas.2317860121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024] Open
Abstract
Over two decades ago, increased levels of RNA oxidation were reported in postmortem patients with ALS, Alzheimer's, Parkinson's, and other neurodegenerative diseases. Interestingly, not all cell types and transcripts were equally oxidized. Furthermore, it was shown that RNA oxidation is an early phenomenon, altogether indicating that oxidative RNA damage could be a driver, and not a consequence, of disease. Despite all these exciting observations, the field appears to have stagnated since then. We argue that this is a consequence of the shortcomings of technologies to model these diseases, limiting our understanding of which transcripts are being oxidized, which RNA-binding proteins are interacting with these RNAs, what their implications are in RNA processing, and as a result, what their potential role is in disease onset and progression. Here, we discuss the limits of previous technologies and propose ways by which advancements in iPSC-derived disease modeling, proteomics, and sequencing technologies can be combined and leveraged to answer new and decades-old questions.
Collapse
Affiliation(s)
- Hailey B Wheeler
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093
| | - Assael A Madrigal
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093
| | - Isaac A Chaim
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093
| |
Collapse
|
2
|
Pan L, Wang K, Hao W, Xue Y, Zheng X, Basu RS, Hazra TK, Islam A, Hosakote Y, Tian B, Gagnon MG, Ba X, Boldogh I. 8-Oxoguanine DNA Glycosylase1 conceals oxidized guanine in nucleoprotein-associated RNA of respiratory syncytial virus. PLoS Pathog 2024; 20:e1012616. [PMID: 39413143 PMCID: PMC11515973 DOI: 10.1371/journal.ppat.1012616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 10/28/2024] [Accepted: 09/25/2024] [Indexed: 10/18/2024] Open
Abstract
Respiratory syncytial virus (RSV), along with other prominent respiratory RNA viruses such as influenza and SARS-CoV-2, significantly contributes to the global incidence of respiratory tract infections. These pathogens induce the production of reactive oxygen species (ROS), which play a crucial role in the onset and progression of respiratory diseases. However, the mechanisms by which viral RNA manages ROS-induced base oxidation remain poorly understood. Here, we reveal that 8-oxo-7,8-dihydroguanine (8-oxoGua) is not merely an incidental byproduct of ROS activity but serves as a strategic adaptation of RSV RNA to maintain genetic fidelity by hijacking the 8-oxoguanine DNA glycosylase 1 (OGG1). Through RNA immunoprecipitation and next-generation sequencing, we discovered that OGG1 binding sites are predominantly found in the RSV antigenome, especially within guanine-rich sequences. Further investigation revealed that viral ribonucleoprotein complexes specifically exploit OGG1. Importantly, inhibiting OGG1's ability to recognize 8-oxoGua significantly decreases RSV progeny production. Our results underscore the viral replication machinery's adaptation to oxidative challenges, suggesting that inhibiting OGG1's reading function could be a novel strategy for antiviral intervention.
Collapse
Affiliation(s)
- Lang Pan
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Ke Wang
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Wenjing Hao
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yaoyao Xue
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Xu Zheng
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Ritwika S. Basu
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Tapas K. Hazra
- Department of Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Azharul Islam
- Department of Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Yashoda Hosakote
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Bing Tian
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Matthieu G. Gagnon
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Xueqing Ba
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
- Key Laboratory of Molecular Epigenetics of Ministry of Education, School of Life Science, Northeast Normal University, Changchun, Jilin, China
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| |
Collapse
|
3
|
Eom S, Peak J, Park J, Ahn SH, Cho YK, Jeong Y, Lee HS, Lee J, Ignatova E, Lee SE, Hong Y, Gu D, Kim GWD, Lee DC, Hahm JY, Jeong J, Choi D, Jang ES, Chi SW. Widespread 8-oxoguanine modifications of miRNA seeds differentially regulate redox-dependent cancer development. Nat Cell Biol 2023; 25:1369-1383. [PMID: 37696949 DOI: 10.1038/s41556-023-01209-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 07/19/2023] [Indexed: 09/13/2023]
Abstract
Oxidative stress contributes to tumourigenesis by altering gene expression. One accompanying modification, 8-oxoguanine (o8G) can change RNA-RNA interactions via o8G•A base pairing, but its regulatory roles remain elusive. Here, on the basis of o8G-induced guanine-to-thymine (o8G > T) variations featured in sequencing, we discovered widespread position-specific o8Gs in tumour microRNAs, preferentially oxidized towards 5' end seed regions (positions 2-8) with clustered sequence patterns and clinically associated with patients in lower-grade gliomas and liver hepatocellular carcinoma. We validated that o8G at position 4 of miR-124 (4o8G-miR-124) and 4o8G-let-7 suppress lower-grade gliomas, whereas 3o8G-miR-122 and 4o8G-let-7 promote malignancy of liver hepatocellular carcinoma by redirecting the target transcriptome to oncogenic regulatory pathways. Stepwise oxidation from tumour-promoting 3o8G-miR-122 to tumour-suppressing 2,3o8G-miR-122 occurs and its specific modulation in mouse liver effectively attenuates diethylnitrosamine-induced hepatocarcinogenesis. These findings provide resources and insights into epitranscriptional o8G regulation of microRNA functions, reprogrammed by redox changes, implicating its control for cancer treatment.
Collapse
Affiliation(s)
- Sangkyeong Eom
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Jongjin Peak
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Jongyeun Park
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Seung Hyun Ahn
- Department of Life Sciences, Korea University, Seoul, Korea
| | - You Kyung Cho
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Yeahji Jeong
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Hye-Sook Lee
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Jung Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Korea
| | | | - Sung Eun Lee
- Department of Life Sciences, Korea University, Seoul, Korea
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Yunji Hong
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Dowoon Gu
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Geun-Woo D Kim
- Department of Life Sciences, Korea University, Seoul, Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Korea
| | - Dong Chan Lee
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Ja Young Hahm
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Jaemin Jeong
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
| | - Dongho Choi
- Department of Surgery, Hanyang University College of Medicine, Seoul, Korea
| | - Eun-Sook Jang
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Sung Wook Chi
- Department of Life Sciences, Korea University, Seoul, Korea.
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Korea.
- Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea.
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, Korea.
| |
Collapse
|
4
|
DNA glycosylase deficiency leads to decreased severity of lupus in the Polb-Y265C mouse model. DNA Repair (Amst) 2021; 105:103152. [PMID: 34186496 DOI: 10.1016/j.dnarep.2021.103152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 05/22/2021] [Accepted: 06/02/2021] [Indexed: 10/21/2022]
Abstract
The Polb gene encodes DNA polymerase beta (Pol β), a DNA polymerase that functions in base excision repair (BER) and microhomology-mediated end-joining. The Pol β-Y265C protein exhibits low catalytic activity and fidelity, and is also deficient in microhomology-mediated end-joining. We have previously shown that the PolbY265C/+ and PolbY265C/C mice develop lupus. These mice exhibit high levels of antinuclear antibodies and severe glomerulonephritis. We also demonstrated that the low catalytic activity of the Pol β-Y265C protein resulted in accumulation of BER intermediates that lead to cell death. Debris released from dying cells in our mice could drive development of lupus. We hypothesized that deletion of the Neil1 and Ogg1 DNA glycosylases that act upstream of Pol β during BER would result in accumulation of fewer BER intermediates, resulting in less severe lupus. We found that high levels of antinuclear antibodies are present in the sera of PolbY265C/+ mice deleted of Ogg1 and Neil1 DNA glycosylases. However, these mice develop significantly less severe renal disease, most likely due to high levels of IgM in their sera.
Collapse
|
5
|
Tanaka M, Chock PB. Oxidative Modifications of RNA and Its Potential Roles in Biosystem. Front Mol Biosci 2021; 8:685331. [PMID: 34055897 PMCID: PMC8149912 DOI: 10.3389/fmolb.2021.685331] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
Elevated level of oxidized RNA was detected in vulnerable neurons in Alzheimer patients. Subsequently, several diseases and pathological conditions were reported to be associated with RNA oxidation. In addition to several oxidized derivatives, cross-linking and unique strand breaks are generated by RNA oxidation. With a premise that dysfunctional RNA mediated by oxidation is the pathogenetic molecular mechanism, intensive investigations have revealed the mechanism for translation errors, including premature termination, which gives rise to aberrant polypeptides. To this end, we and others revealed that mRNA oxidation could compromise its translational activity and fidelity. Under certain conditions, oxidized RNA can also induce several signaling pathways, to mediate inflammatory response and induce apoptosis. In this review, we focus on the oxidative modification of RNA and its resulting effect on protein synthesis as well as cell signaling. In addition, we will also discuss the potential roles of enzymatic oxidative modification of RNA in mediating cellular effects.
Collapse
Affiliation(s)
- Mikiei Tanaka
- Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - P Boon Chock
- Biochemistry and Biophysics Center, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
6
|
Zhang M, Li K, Bai J, Velema WA, Yu C, van Damme R, Lee WH, Corpuz ML, Chen JF, Lu Z. Optimized photochemistry enables efficient analysis of dynamic RNA structuromes and interactomes in genetic and infectious diseases. Nat Commun 2021; 12:2344. [PMID: 33879794 PMCID: PMC8058046 DOI: 10.1038/s41467-021-22552-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 03/18/2021] [Indexed: 02/02/2023] Open
Abstract
Direct determination of RNA structures and interactions in living cells is critical for understanding their functions in normal physiology and disease states. Here, we present PARIS2, a dramatically improved method for RNA duplex determination in vivo with >4000-fold higher efficiency than previous methods. PARIS2 captures ribosome binding sites on mRNAs, reporting translation status on a transcriptome scale. Applying PARIS2 to the U8 snoRNA mutated in the neurological disorder LCC, we discover a network of dynamic RNA structures and interactions which are destabilized by patient mutations. We report the first whole genome structure of enterovirus D68, an RNA virus that causes polio-like symptoms, revealing highly dynamic conformations altered by antiviral drugs and different pathogenic strains. We also discover a replication-associated asymmetry on the (+) and (-) strands of the viral genome. This study establishes a powerful technology for efficient interrogation of the RNA structurome and interactome in human diseases.
Collapse
MESH Headings
- Calcinosis/genetics
- Calcinosis/metabolism
- Central Nervous System Cysts/genetics
- Central Nervous System Cysts/metabolism
- Communicable Diseases/genetics
- Communicable Diseases/metabolism
- Cross-Linking Reagents
- Enterovirus D, Human/genetics
- Furocoumarins
- Genetic Diseases, Inborn/genetics
- Genetic Diseases, Inborn/metabolism
- Genome, Viral
- Humans
- Leukoencephalopathies/genetics
- Leukoencephalopathies/metabolism
- Models, Molecular
- Mutation
- Nucleic Acid Conformation
- Photochemical Processes
- Photochemistry/methods
- RNA/chemistry
- RNA/genetics
- RNA/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Nucleolar/chemistry
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- RNA, Viral/chemistry
- RNA, Viral/genetics
Collapse
Affiliation(s)
- Minjie Zhang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Kongpan Li
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Jianhui Bai
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Willem A Velema
- Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Chengqing Yu
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Ryan van Damme
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Wilson H Lee
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Maia L Corpuz
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Jian-Fu Chen
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, USA
| | - Zhipeng Lu
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
7
|
Products of Oxidative Guanine Damage Form Base Pairs with Guanine. Int J Mol Sci 2020; 21:ijms21207645. [PMID: 33076559 PMCID: PMC7589758 DOI: 10.3390/ijms21207645] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 01/18/2023] Open
Abstract
Among the natural bases, guanine is the most oxidizable base. The damage caused by oxidation of guanine, commonly referred to as oxidative guanine damage, results in the formation of several products, including 2,5-diamino-4H-imidazol-4-one (Iz), 2,2,4-triamino-5(2H)-oxazolone (Oz), guanidinoformimine (Gf), guanidinohydantoin/iminoallantoin (Gh/Ia), spiroiminodihydantoin (Sp), 5-carboxamido-5-formamido-2-iminohydantoin (2Ih), urea (Ua), 5-guanidino-4-nitroimidazole (NI), spirodi(iminohydantoin) (5-Si and 8-Si), triazine, the M+7 product, other products by peroxynitrite, alkylated guanines, and 8,5'-cyclo-2'-deoxyguanosine (cG). Herein, we summarize the present knowledge about base pairs containing the products of oxidative guanine damage and guanine. Of these products, Iz is involved in G-C transversions. Oz, Gh/Ia, and Sp form preferably Oz:G, Gh/Ia:G, and Sp:G base pairs in some cases. An involvement of Gf, 2Ih, Ua, 5-Si, 8-Si, triazine, the M+7 product, and 4-hydroxy-2,5-dioxo-imidazolidine-4-carboxylic acid (HICA) in G-C transversions requires further experiments. In addition, we describe base pairs that target the RNA-dependent RNA polymerase (RdRp) of RNA viruses and describe implications for the 2019 novel coronavirus (SARS-CoV-2): When products of oxidative guanine damage are adapted for the ribonucleoside analogs, mimics of oxidative guanine damages, which can form base pairs, may become antiviral agents for SARS-CoV-2.
Collapse
|
8
|
Martínez-Calvo M, Guerrini L, Rodríguez J, Álvarez-Puebla RA, Mascareñas JL. Surface-Enhanced Raman Scattering Detection of Nucleic Acids Exhibiting Sterically Accessible Guanines Using Ruthenium-Polypyridyl Reagents. J Phys Chem Lett 2020; 11:7218-7223. [PMID: 32787310 DOI: 10.1021/acs.jpclett.0c02148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Here, we report the application of surface-enhanced Raman scattering (SERS) spectroscopy as a rapid and practical tool for assessing the formation of coordinative adducts between nucleic acid guanines and ruthenium polypyridyl reagents. The technology provides a practical approach for the wash-free and quick identification of nucleic acid structures exhibiting sterically accessible guanines. This is demonstrated for the detection of a quadruplex-forming sequence present in the promoter region of the c-myc oncogene, which exhibits a nonpaired, reactive guanine at a flanking position of the G-quartets.
Collapse
Affiliation(s)
- Miguel Martínez-Calvo
- Centro Singular de Investigación en Quı́mica Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Quı́mica Orgánica, Universidade de Santiago de Compostela, Rúa Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
- Centro de Investigaciones Avanzadas (CICA), AE CICA-INIBIC, Departamento de Quı́mica, Facultade de Ciencias, Universidade da Coruña, Rúa As Carballeiras s/n, 15071 A Coruña, Galicia, Spain
| | - Luca Guerrini
- Universitat Rovira i Virgili, Departament de Quı́mica Fı́sica i Inorgànica, EmaS. Carrer de Marcel-lí Domingo s/n, 43007 Tarragona, Spain
| | - Jéssica Rodríguez
- Centro Singular de Investigación en Quı́mica Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Quı́mica Orgánica, Universidade de Santiago de Compostela, Rúa Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| | - Ramón A Álvarez-Puebla
- Universitat Rovira i Virgili, Departament de Quı́mica Fı́sica i Inorgànica, EmaS. Carrer de Marcel-lí Domingo s/n, 43007 Tarragona, Spain
- ICREA, Passeig Lluı́s Companys 23, 08010 Barcelona, Spain
| | - José L Mascareñas
- Centro Singular de Investigación en Quı́mica Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Quı́mica Orgánica, Universidade de Santiago de Compostela, Rúa Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
| |
Collapse
|
9
|
Translesion synthesis by AMV, HIV, and MMLVreverse transcriptases using RNA templates containing inosine, guanosine, and their 8-oxo-7,8-dihydropurine derivatives. PLoS One 2020; 15:e0235102. [PMID: 32857764 PMCID: PMC7455023 DOI: 10.1371/journal.pone.0235102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/07/2020] [Indexed: 12/31/2022] Open
Abstract
Inosine is ubiquitous and essential in many biological processes, including RNA-editing. In addition, oxidative stress on RNA has been a topic of increasing interest due, in part, to its potential role in the development/progression of disease. In this work we probed the ability of three reverse transcriptases (RTs) to catalyze the synthesis of cDNA in the presence of RNA templates containing inosine (I), 8-oxo-7,8-dihydroinosine (8oxo-I), guanosine (G), or 8-oxo-7,8-dihydroguanosine (8-oxoG), and explored the impact that these purine derivatives have as a function of position. To this end, we used 29-mers of RNA (as template) containing the modifications at position-18 and reverse transcribed DNA using 17-mers, 18-mers, or 19-mers (as primers). Generally reactivity of the viral RTs, AMV / HIV / MMLV, towards cDNA synthesis was similar for templates containing G or I as well as for those with 8-oxoG or 8-oxoI. Notable differences are: 1) the use of 18-mers of DNA (to explore cDNA synthesis past the lesion/modification) led to inhibition of DNA elongation in cases where a G:dA wobble pair was present, while the presence of I, 8-oxoI, or 8-oxoG led to full synthesis of the corresponding cDNA, with the latter two displaying a more efficient process; 2) HIV RT is more sensitive to modified base pairs in the vicinity of cDNA synthesis; and 3) the presence of a modification two positions away from transcription initiation has an adverse impact on the overall process. Steady-state kinetics were established using AMV RT to determine substrate specificities towards canonical dNTPs (N = G, C, T, A). Overall we found evidence that RNA templates containing inosine are likely to incorporate dC > dT > > dA, where reactivity in the presence of dA was found to be pH dependent (process abolished at pH 7.3); and that the absence of the C2-exocyclic amine, as displayed with templates containing 8-oxoI, leads to increased selectivity towards incorporation of dA over dC. The data will be useful in assessing the impact that the presence of inosine and/or oxidatively generated lesions have on viral processes and adds to previous reports where I codes exclusively like G. Similar results were obtained upon comparison of AMV and MMLV RTs.
Collapse
|
10
|
Position-specific oxidation of miR-1 encodes cardiac hypertrophy. Nature 2020; 584:279-285. [PMID: 32760005 DOI: 10.1038/s41586-020-2586-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 05/06/2020] [Indexed: 11/08/2022]
Abstract
In pathophysiology, reactive oxygen species oxidize biomolecules that contribute to disease phenotypes1. One such modification, 8-oxoguanine2 (o8G), is abundant in RNA3 but its epitranscriptional role has not been investigated for microRNAs (miRNAs). Here we specifically sequence oxidized miRNAs in a rat model of the redox-associated condition cardiac hypertrophy4. We find that position-specific o8G modifications are generated in seed regions (positions 2-8) of selective miRNAs, and function to regulate other mRNAs through o8G•A base pairing. o8G is induced predominantly at position 7 of miR-1 (7o8G-miR-1) by treatment with an adrenergic agonist. Introducing 7o8G-miR-1 or 7U-miR-1 (in which G at position 7 is substituted with U) alone is sufficient to cause cardiac hypertrophy in mice, and the mRNA targets of o8G-miR-1 function in affected phenotypes; the specific inhibition of 7o8G-miR-1 in mouse cardiomyocytes was found to attenuate cardiac hypertrophy. o8G-miR-1 is also implicated in patients with cardiomyopathy. Our findings show that the position-specific oxidation of miRNAs could serve as an epitranscriptional mechanism to coordinate pathophysiological redox-mediated gene expression.
Collapse
|
11
|
Kiggins C, Skinner A, Resendiz MJE. 7,8-Dihydro-8-oxoguanosine Lesions Inhibit the Theophylline Aptamer or Change Its Selectivity. Chembiochem 2020; 21:1347-1355. [PMID: 31845489 PMCID: PMC7297664 DOI: 10.1002/cbic.201900684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Indexed: 12/15/2022]
Abstract
Aptamers are attractive constructs due to their high affinity/selectivity towards a target. Here 7,8-dihydro-8-oxoguanosine (8-oxoG) has been used, due in part to its unique H-bonding capabilities (Watson-Crick or Hoogsteen), to expand the "RNA alphabet". Its impact on the theophylline RNA aptamer was explored by modifying its binding pocket at positions G11, G25, or G26. Structural probing, with RNases A and T1 , showed that modification at G11 leads to a drastic structural change, whereas the G25-/G26-modified analogues exhibited cleavage patterns similar to that of the canonical construct. The recognition properties towards three xanthine derivatives were then explored through thermophoresis. Modifying the aptamer at position G11 led to binding inhibition. Modification at G25, however, changed the selectivity towards theobromine (Kd ≈160 μm), with a poor affinity for theophylline (Kd >1.5 mm) being observed. Overall, 8-oxoG can have an impact on the structures of aptamers in a position-dependent manner, leading to altered target selectivity.
Collapse
Affiliation(s)
- Courtney Kiggins
- Present address: Department of ChemistryU.S. Air Force Academy2355 Fairchild DriveUSAF AcademyColorado SpringsCO80840USA
| | - Austin Skinner
- Department of ChemistryUniversity of Colorado Denver1151 Arapahoe Street, Science Building Room 4145DenverCO80204USA
| | - Marino J. E. Resendiz
- Department of ChemistryUniversity of Colorado Denver1151 Arapahoe Street, Science Building Room 4145DenverCO80204USA
| |
Collapse
|
12
|
RNA polymerase II stalls on oxidative DNA damage via a torsion-latch mechanism involving lone pair-π and CH-π interactions. Proc Natl Acad Sci U S A 2020; 117:9338-9348. [PMID: 32284409 DOI: 10.1073/pnas.1919904117] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Oxidation of guanine generates several types of DNA lesions, such as 8-oxoguanine (8OG), 5-guanidinohydantoin (Gh), and spiroiminodihydantoin (Sp). These guanine-derived oxidative DNA lesions interfere with both replication and transcription. However, the molecular mechanism of transcription processing of Gh and Sp remains unknown. In this study, by combining biochemical and structural analysis, we revealed distinct transcriptional processing of these chemically related oxidized lesions: 8OG allows both error-free and error-prone bypass, whereas Gh or Sp causes strong stalling and only allows slow error-prone incorporation of purines. Our structural studies provide snapshots of how polymerase II (Pol II) is stalled by a nonbulky Gh lesion in a stepwise manner, including the initial lesion encounter, ATP binding, ATP incorporation, jammed translocation, and arrested states. We show that while Gh can form hydrogen bonds with adenosine monophosphate (AMP) during incorporation, this base pair hydrogen bonding is not sufficient to hold an ATP substrate in the addition site and is not stable during Pol II translocation after the chemistry step. Intriguingly, we reveal a unique structural reconfiguration of the Gh lesion in which the hydantoin ring rotates ∼90° and is perpendicular to the upstream base pair planes. The perpendicular hydantoin ring of Gh is stabilized by noncanonical lone pair-π and CH-π interactions, as well as hydrogen bonds. As a result, the Gh lesion, as a functional mimic of a 1,2-intrastrand crosslink, occupies canonical -1 and +1 template positions and compromises the loading of the downstream template base. Furthermore, we suggest Gh and Sp lesions are potential targets of transcription-coupled repair.
Collapse
|
13
|
Ghodke PP, Guengerich FP. Impact of 1, N 6-ethenoadenosine, a damaged ribonucleotide in DNA, on translesion synthesis and repair. J Biol Chem 2020; 295:6092-6107. [PMID: 32213600 DOI: 10.1074/jbc.ra120.012829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/23/2020] [Indexed: 01/02/2023] Open
Abstract
Incorporation of ribonucleotides into DNA can severely diminish genome integrity. However, how ribonucleotides instigate DNA damage is poorly understood. In DNA, they can promote replication stress and genomic instability and have been implicated in several diseases. We report here the impact of the ribonucleotide rATP and of its naturally occurring damaged analog 1,N 6-ethenoadenosine (1,N 6-ϵrA) on translesion synthesis (TLS), mediated by human DNA polymerase η (hpol η), and on RNase H2-mediated incision. Mass spectral analysis revealed that 1,N 6-ϵrA in DNA generates extensive frameshifts during TLS, which can lead to genomic instability. Moreover, steady-state kinetic analysis of the TLS process indicated that deoxypurines (i.e. dATP and dGTP) are inserted predominantly opposite 1,N 6-ϵrA. We also show that hpol η acts as a reverse transcriptase in the presence of damaged ribonucleotide 1,N 6-ϵrA but has poor RNA primer extension activities. Steady-state kinetic analysis of reverse transcription and RNA primer extension showed that hpol η favors the addition of dATP and dGTP opposite 1,N 6-ϵrA. We also found that RNase H2 recognizes 1,N 6-ϵrA but has limited incision activity across from this lesion, which can lead to the persistence of this detrimental DNA adduct. We conclude that the damaged and unrepaired ribonucleotide 1,N 6-ϵrA in DNA exhibits mutagenic potential and can also alter the reading frame in an mRNA transcript because 1,N 6-ϵrA is incompletely incised by RNase H2.
Collapse
Affiliation(s)
- Pratibha P Ghodke
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37323-0146
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37323-0146.
| |
Collapse
|
14
|
Affiliation(s)
- Bi-Feng Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry and Sauvage Center for Molecular Sciences, Wuhan University, Wuhan 430072, P.R. China
| |
Collapse
|
15
|
Potapov V, Fu X, Dai N, Corrêa IR, Tanner NA, Ong JL. Base modifications affecting RNA polymerase and reverse transcriptase fidelity. Nucleic Acids Res 2019; 46:5753-5763. [PMID: 29750267 PMCID: PMC6009661 DOI: 10.1093/nar/gky341] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 04/18/2018] [Indexed: 01/28/2023] Open
Abstract
Ribonucleic acid (RNA) is capable of hosting a variety of chemically diverse modifications, in both naturally-occurring post-transcriptional modifications and artificial chemical modifications used to expand the functionality of RNA. However, few studies have addressed how base modifications affect RNA polymerase and reverse transcriptase activity and fidelity. Here, we describe the fidelity of RNA synthesis and reverse transcription of modified ribonucleotides using an assay based on Pacific Biosciences Single Molecule Real-Time sequencing. Several modified bases, including methylated (m6A, m5C and m5U), hydroxymethylated (hm5U) and isomeric bases (pseudouridine), were examined. By comparing each modified base to the equivalent unmodified RNA base, we can determine how the modification affected cumulative RNA polymerase and reverse transcriptase fidelity. 5-hydroxymethyluridine and N6-methyladenosine both increased the combined error rate of T7 RNA polymerase and reverse transcriptases, while pseudouridine specifically increased the error rate of RNA synthesis by T7 RNA polymerase. In addition, we examined the frequency, mutational spectrum and sequence context of reverse transcription errors on DNA templates from an analysis of second strand DNA synthesis.
Collapse
Affiliation(s)
| | - Xiaoqing Fu
- New England Biolabs, Inc, Ipswich, Massachusetts, 01938, USA
- Dalian University of Technology, School of Life Science and Biotechnology, Dalian, Liaoning 116021, China
| | - Nan Dai
- New England Biolabs, Inc, Ipswich, Massachusetts, 01938, USA
| | - Ivan R Corrêa
- New England Biolabs, Inc, Ipswich, Massachusetts, 01938, USA
| | - Nathan A Tanner
- New England Biolabs, Inc, Ipswich, Massachusetts, 01938, USA
| | - Jennifer L Ong
- New England Biolabs, Inc, Ipswich, Massachusetts, 01938, USA
- To whom correspondence should be addressed. Tel: +1 978 380 7448; Fax: +1 978 921 1350;
| |
Collapse
|
16
|
Hosseini M, Roy P, Sissler M, Zirbel CL, Westhof E, Leontis N. How to fold and protect mitochondrial ribosomal RNA with fewer guanines. Nucleic Acids Res 2019; 46:10946-10968. [PMID: 30215760 PMCID: PMC6237812 DOI: 10.1093/nar/gky762] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 09/06/2018] [Indexed: 01/25/2023] Open
Abstract
Mammalian mitochondrial ribosomes evolved from bacterial ribosomes by reduction of ribosomal RNAs, increase of ribosomal protein content, and loss of guanine nucleotides. Guanine is the base most sensitive to oxidative damage. By systematically comparing high-quality, small ribosomal subunit RNA sequence alignments and solved 3D ribosome structures from mammalian mitochondria and bacteria, we deduce rules for folding a complex RNA with the remaining guanines shielded from solvent. Almost all conserved guanines in both bacterial and mammalian mitochondrial ribosomal RNA form guanine-specific, local or long-range, RNA–RNA or RNA–protein interactions. Many solvent-exposed guanines conserved in bacteria are replaced in mammalian mitochondria by bases less sensitive to oxidation. New guanines, conserved only in the mitochondrial alignment, are strategically positioned at solvent inaccessible sites to stabilize the ribosomal RNA structure. New mitochondrial proteins substitute for truncated RNA helices, maintain mutual spatial orientations of helices, compensate for lost RNA–RNA interactions, reduce solvent accessibility of bases, and replace guanines conserved in bacteria by forming specific amino acid–RNA interactions.
Collapse
Affiliation(s)
- Maryam Hosseini
- Department of Chemistry, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Poorna Roy
- Center for RNA Biomedicine, Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Marie Sissler
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg France
| | - Craig L Zirbel
- Department of Mathematics and Statistics, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Eric Westhof
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg France
| | - Neocles Leontis
- Department of Chemistry, Bowling Green State University, Bowling Green, OH 43403, USA
| |
Collapse
|
17
|
Tang F, Liu S, Li QY, Yuan J, Li L, Wang Y, Yuan BF, Feng YQ. Location analysis of 8-oxo-7,8-dihydroguanine in DNA by polymerase-mediated differential coding. Chem Sci 2019; 10:4272-4281. [PMID: 31015952 PMCID: PMC6460952 DOI: 10.1039/c8sc04946g] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 03/11/2019] [Indexed: 12/17/2022] Open
Abstract
Bsu and Tth DNA polymerases-mediated DNA replication in conjugation with sequencing enables quantitative and location analysis of 8-oxo-7,8-dihydroguanine in DNA.
Accumulating lines of evidence indicate that reactive oxygen species (ROS) are important signalling molecules for various cellular processes. 8-Oxo-7,8-dihydroguanine (OG) is a prominent oxidative modification formed in DNA by ROS. Recently, it has been proposed that OG may have regulatory and possibly epigenetic-like properties in modulating gene expression by interfering with transcription components or affecting the formation of G-quadruplex structures. Deciphering the molecular mechanisms of OG on regulation of gene expression requires uncovering the location of OG on genome. In the current study, we characterized two commercially available DNA polymerases, Bsu DNA polymerase (Bsu Pol) and Tth DNA polymerase (Tth Pol), which can selectively incorporate adenine (A) and cytosine (C) opposite OG, respectively. By virtue of the differential coding properties of Bsu Pol and Tth Pol that can faithfully or error-prone copy a DNA strand carrying OG, we achieved quantitative and single-base resolution analysis of OG in synthesized DNA that carries OG as well as in the G-rich telomeric DNA from HeLa cells. In addition, the parallel analysis of the primer extension products with Bsu Pol and Tth Pol followed by sequencing provided distinct detection of OG in synthesized DNA. Future application of this approach will greatly increase our knowledge of the chemical biology of OG with respect to its epigenetic-like regulatory roles.
Collapse
Affiliation(s)
- Feng Tang
- Key Laboratory of Analytical Chemistry for Biology and Medicine , Ministry of Education , Department of Chemistry , Wuhan University , Wuhan 430072 , P. R. China . ; ; Tel: +86-27-68755595
| | - Shan Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine , Ministry of Education , Department of Chemistry , Wuhan University , Wuhan 430072 , P. R. China . ; ; Tel: +86-27-68755595
| | - Qiao-Ying Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine , Ministry of Education , Department of Chemistry , Wuhan University , Wuhan 430072 , P. R. China . ; ; Tel: +86-27-68755595
| | - Jun Yuan
- Department of Chemistry and Environmental Toxicology Graduate Program , University of California , Riverside , CA 92521-0403 , USA
| | - Lin Li
- Department of Chemistry and Environmental Toxicology Graduate Program , University of California , Riverside , CA 92521-0403 , USA
| | - Yinsheng Wang
- Department of Chemistry and Environmental Toxicology Graduate Program , University of California , Riverside , CA 92521-0403 , USA
| | - Bi-Feng Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine , Ministry of Education , Department of Chemistry , Wuhan University , Wuhan 430072 , P. R. China . ; ; Tel: +86-27-68755595
| | - Yu-Qi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine , Ministry of Education , Department of Chemistry , Wuhan University , Wuhan 430072 , P. R. China . ; ; Tel: +86-27-68755595
| |
Collapse
|
18
|
Zhou Q, Vu Ngoc BT, Leszczynska G, Stigliani JL, Pratviel G. Oxidation of 5-methylaminomethyl uridine (mnm⁵U) by Oxone Leads to Aldonitrone Derivatives. Biomolecules 2018; 8:biom8040145. [PMID: 30441840 PMCID: PMC6315764 DOI: 10.3390/biom8040145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 11/19/2022] Open
Abstract
Oxidative RNA damage is linked to cell dysfunction and diseases. The present work focuses on the in vitro oxidation of 5-methylaminomethyl uridine (mnm5U), which belongs to the numerous post-transcriptional modifications that are found in tRNA. The reaction of oxone with mnm5U in water at pH 7.5 leads to two aldonitrone derivatives. They form by two oxidation steps and one dehydration step. Therefore, the potential oxidation products of mnm5U in vivo may not be only aldonitrones, but also hydroxylamine and imine derivatives (which may be chemically more reactive). Irradiation of aldonitrone leads to unstable oxaziridine derivatives that are susceptible to isomerization to amide or to hydrolysis to aldehyde derivative.
Collapse
Affiliation(s)
- Qishun Zhou
- CNRS, Laboratoire de Chimie de Coordination, 205 route de Narbonne, 31077 Toulouse CEDEX4, France.
- Université de Toulouse, Université Paul Sabatier, UPS, 31330 Toulouse, France.
| | - Bao Tram Vu Ngoc
- CNRS, Laboratoire de Chimie de Coordination, 205 route de Narbonne, 31077 Toulouse CEDEX4, France.
- Université de Toulouse, Université Paul Sabatier, UPS, 31330 Toulouse, France.
| | - Grazyna Leszczynska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland.
| | - Jean-Luc Stigliani
- CNRS, Laboratoire de Chimie de Coordination, 205 route de Narbonne, 31077 Toulouse CEDEX4, France.
- Université de Toulouse, Université Paul Sabatier, UPS, 31330 Toulouse, France.
| | - Geneviève Pratviel
- CNRS, Laboratoire de Chimie de Coordination, 205 route de Narbonne, 31077 Toulouse CEDEX4, France.
- Université de Toulouse, Université Paul Sabatier, UPS, 31330 Toulouse, France.
| |
Collapse
|
19
|
Wang SR, Wang JQ, Fu BS, Chen K, Xiong W, Wei L, Qing G, Tian T, Zhou X. Supramolecular Coordination-Directed Reversible Regulation of Protein Activities at Epigenetic DNA Marks. J Am Chem Soc 2018; 140:15842-15849. [DOI: 10.1021/jacs.8b09113] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Shao-Ru Wang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, Hubei, China
| | - Jia-Qi Wang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, Hubei, China
| | - Bo-Shi Fu
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, Hubei, China
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, Liaoning, China
| | - Kun Chen
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, Hubei, China
| | - Wei Xiong
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, Hubei, China
| | - Lai Wei
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, Hubei, China
| | - Guangyan Qing
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Tian Tian
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, Hubei, China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, Hubei, China
| |
Collapse
|
20
|
McKeague M. Aptamers for DNA Damage and Repair. Int J Mol Sci 2017; 18:ijms18102212. [PMID: 29065503 PMCID: PMC5666892 DOI: 10.3390/ijms18102212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 10/17/2017] [Accepted: 10/20/2017] [Indexed: 12/14/2022] Open
Abstract
DNA is damaged on a daily basis, which can lead to heritable mutations and the activation of proto-oncogenes. Therefore, DNA damage and repair are critical risk factors in cancer, aging and disease, and are the underlying bases of most frontline cancer therapies. Much of our current understanding of the mechanisms that maintain DNA integrity has been obtained using antibody-based assays. The oligonucleotide equivalents of antibodies, known as aptamers, have emerged as potential molecular recognition rivals. Aptamers possess several ideal properties including chemical stability, in vitro selection and lack of batch-to-batch variability. These properties have motivated the incorporation of aptamers into a wide variety of analytical, diagnostic, research and therapeutic applications. However, their use in DNA repair studies and DNA damage therapies is surprisingly un-tapped. This review presents an overview of the progress in selecting and applying aptamers for DNA damage and repair research.
Collapse
Affiliation(s)
- Maureen McKeague
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zurich, Switzerland.
| |
Collapse
|