1
|
Zhang Y, Wu M, Li H, Sun J, Huang L, Yuan Y. Potential benefits of Rehmanniae Radix after ancient rice-steaming process in promotion of antioxidant activity in rats' health. Food Sci Nutr 2023; 11:5532-5542. [PMID: 37701193 PMCID: PMC10494654 DOI: 10.1002/fsn3.3509] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 09/14/2023] Open
Abstract
Rice steam processed product of Rehmanniae Radix (RSRR), one of the processed products of Rehmanniae Radix (RR), is popular as an herbal medicine and food. However, the health-promoting effects and mechanisms of RSRR are still unclear. In this study, 10-week-old Sprague-Dawley female rats were treated with different processed products of RR. No organ coefficient differences were observed between RSRR and the control group, indicating that RSRR did not cause damage to the rats. Compared with other RR products, superoxide dismutase, glutathione, and catalase levels were significantly higher and malondialdehyde levels were significantly lower in the RSRR group, indicating that RSRR exerted a better antioxidant effect. Gene expression analysis showed that hemoglobin genes (Hba-a1, Hba-a2, Hbb-bs, Hbb, Hbq1b, Hbb-b1, and LOC103694857) may be potential biomarkers to evaluate the antioxidant effect of RSRR. Antioxidation-related signaling pathways in GO annotation, including cellular oxidant detoxification, hydrogen peroxide metabolic process, hemoglobin complex, and oxygen binding signaling pathways were significantly enriched, indicating these pathways may represent the antioxidant mechanism of RSRR. To explore the main active compounds primarily responsible for the antioxidant activity of RSRR, UPLC-Q-TOF-MS was used and six components (catalpol, rehmannioside A, rehmannioside D, melittoside, ajugol, and verbascoside) were identified in rat serum. Catalpol and rehmannioside A were predicted to be the major active components by network pharmacology. These results suggested that RSRR exhibits antioxidant activity and has health-promoting properties. This study provides a scientific basis for the antioxidant mechanism and clinical use of RSRR.
Collapse
Affiliation(s)
- Ying Zhang
- National Resource Center for Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Meng‐xi Wu
- National Resource Center for Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Hong‐mei Li
- Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
- State Key Laboratory of Dao‐di HerbsChina Academy of Chinese Medical SciencesBeijingChina
| | - Jianhui Sun
- Institute of Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Lu‐qi Huang
- National Resource Center for Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| | - Yuan Yuan
- National Resource Center for Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina
| |
Collapse
|
2
|
Heme-bound tyrosine vibrations in hemoglobin M: Resonance Raman, crystallography, and DFT calculation. Biophys J 2022; 121:2767-2780. [PMID: 35689380 DOI: 10.1016/j.bpj.2022.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/23/2022] [Accepted: 06/03/2022] [Indexed: 11/22/2022] Open
Abstract
Hemoglobins M (Hbs M) are human hemoglobin variants in which either the α or β subunit contains a ferric heme in the α2β2 tetramer. Though the ferric subunit cannot bind O2, it regulates O2 affinity of its counterpart ferrous subunit. We have investigated resonance Raman spectra of two Hbs, M Iwate (α87His → tyrosine [Tyr]) and M Boston (α58His → Tyr), having tyrosine as a heme axial ligand at proximal and distal positions, respectively, that exhibit unassigned resonance Raman bands arising from ferric (not ferrous) hemes at 899 and 876 cm-1. Our quantum chemical calculations using density functional theory on Fe-porphyrin models with p-cresol and/or 4-methylimidazole showed that the unassigned bands correspond to the breathing-like modes of Fe3+-bound Tyr and are sensitive to the Fe-O-C(Tyr) angle. Based on the frequencies of the Raman bands, the Fe-O-C(Tyr) angles of Hbs M Iwate and M Boston were predicted to be 153.5° and 129.2°, respectively. Consistent with this prediction, x-ray crystallographic analysis showed that the Fe-O-C(Tyr) angles of Hbs M Iwate and M Boston in the T quaternary structure were 153.6° and 134.6°, respectively. It also showed a similar Fe-O bond length (1.96 and 1.97 Å) and different tilting angles.
Collapse
|
3
|
Nagatomo S, Nagai M, Kitagawa T. Structural origin of cooperativity in human hemoglobin: a view from different roles of α and β subunits in the α2β2 tetramer. Biophys Rev 2022; 14:483-498. [PMID: 35528033 PMCID: PMC9043147 DOI: 10.1007/s12551-022-00945-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/14/2022] [Indexed: 11/26/2022] Open
Abstract
This mini-review, mainly based on our resonance Raman studies on the structural origin of cooperative O2 binding in human adult hemoglobin (HbA), aims to answering why HbA is a tetramer consisting of two α and two β subunits. Here, we focus on the Fe-His bond, the sole coordination bond connecting heme to a globin. The Fe-His stretching frequencies reflect the O2 affinity and also the magnitude of strain imposed through globin by inter-subunit interactions, which is the origin of cooperativity. Cooperativity was first explained by Monod, Wyman, and Changeux, referred to as the MWC theory, but later explained by the two tertiary states (TTS) theory. Here, we related the higher-order structures of globin observed mainly by vibrational spectroscopy to the MWC theory. It became clear from the recent spectroscopic studies, X-ray crystallographic analysis, and mutagenesis experiments that the Fe-His bonds exhibit different roles between the α and β subunits. The absence of the Fe-His bond in the α subunit in some mutant and artificial Hbs inhibits T to R quaternary structural change upon O2 binding. However, its absence from the β subunit in mutant and artificial Hbs simply enhances the O2 affinity of the α subunit. Accordingly, the inter-subunit interactions between α and β subunits are nonsymmetric but substantial for HbA to perform cooperative O2 binding.
Collapse
Affiliation(s)
- Shigenori Nagatomo
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571 Japan
| | - Masako Nagai
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, 184-0003 Japan
- School of Health Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa 920-0942 Japan
| | - Teizo Kitagawa
- Graduate School of Life Science, Picobiology Institute, University of Hyogo, Kouto, Kamigori, Ako-gun Hyogo, 678-1297 Japan
| |
Collapse
|
4
|
Frankenfield K, Marchany-Rivera D, Flanders KG, Cruz-Balberdy A, Lopez-Garriga J, Cerda JF. Fluoride binding to characteristic heme-pocket centers: Insights into ligand stability. J Inorg Biochem 2021; 224:111578. [PMID: 34481348 PMCID: PMC8463504 DOI: 10.1016/j.jinorgbio.2021.111578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 07/17/2021] [Accepted: 08/10/2021] [Indexed: 11/20/2022]
Abstract
The studies on the L. pectinata hemoglobins (HbI, HbII, and HbIII) are essential because of their biological roles in hydrogen sulfide transport and metabolism. Variation in the pH could also play a role in the transport of hydrogen sulfide by HbI and oxygen by HbII and HbIII, respectively. Here, fluoride binding was used to further understand the structural properties essential for the molecular mechanism of ligand stabilization as a function of pH. The data allowed us to gain insights into how the physiological roles of HbI, HbII, HbIII, adult hemoglobin (A-Hb), and horse heart myoglobin (Mb) have an impact on the heme-bound fluoride stabilization. In addition, analysis of the vibrational assignments of the met-cyano heme complexes shows varied strength interactions of the heme-bound ligand. The heme pocket composition properties differ between HbI (GlnE7 and PheB10) and HbII/HbIII (GlnE7 and TyrB10). Also, the structural GlnE7 stereo orientation changes between HbI and HbII/HbIII. In HbI, its carbonyl group orients towards the heme iron, while in HbII/HbIII, the amino group occupies this position. Therefore, in HbI, the interactions to the heme-bound fluoride ion, cyanide, and oxygen with GlnE7 via H-bonding are not probable. Still, the aromatic cage PheB10, PheCD1, and PheE11 may contribute to the observed stabilization. However, a robust H-bonding networking stabilizes HbII and HbIII, heme-bound fluoride, cyanide, and oxygen ligand with the OH and NH2 groups of TyrB10 and GlnE7, respectively. At the same time, A-Hb and Mb have moderate but similar ligand interactions controlled by their respective distal E7 histidine.
Collapse
Affiliation(s)
| | - Darya Marchany-Rivera
- Department of Chemistry/Industrial Biotechnology, P.O. Box 9000, University of Puerto Rico, Mayagüez Campus, 00681, Puerto Rico.
| | - Kayla G Flanders
- Department of Chemistry, Saint Joseph's University, 5600 City Ave., Philadelphia, PA 19131, USA.
| | | | - Juan Lopez-Garriga
- Department of Chemistry/Industrial Biotechnology, P.O. Box 9000, University of Puerto Rico, Mayagüez Campus, 00681, Puerto Rico.
| | - Jose F Cerda
- Department of Chemistry, Saint Joseph's University, 5600 City Ave., Philadelphia, PA 19131, USA.
| |
Collapse
|
5
|
Wang TT, Liu JY, An JD, Shi YF, Zhang YY, Huo JZ, Huang ZG, Liu YY, Ding B. Hydrothermal synthesis of two-dimensional cadmium(II) micro-porous coordination material based on Bi-functional building block and its application in highly sensitive detection of Fe 3+ and Cr 2O 72. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 254:119655. [PMID: 33744702 DOI: 10.1016/j.saa.2021.119655] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/19/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Metal-organic framework (MOFs), also known as porous coordination polymers (PCPs), is a new kind of crystalline porous materials, which has received extensive attention in the past few decades. As a new type of sensing material, MOFs stand out from many other traditional fluorescence sensors because of its crystal characteristics, structural diversity, stable porosity and adjustable functional characteristics. In this work, the bi-functional building block containing aromatic carboxylic acid and triazole moieties, namely 3-(1H-1,3,4-triazol-1-yl) benzoic acid, was selected as the linker to synthesize {[Cd(µ5-L)⋅I}n (1, HL = 3-(1H-1,3,4-triazol-1-yl)benzoic acid) by hydrothermal method with transition CdII metal centers. Firstly, the preliminary characterization of 1 was carried out by means of PXRD, FT-IR, and then the UV and fluorescence tests were conducted to study the fluorescence properties of 1. The crystal structure analysis indicates that CdII is the center and the ligand is bridged to form a two-dimensional porous structure. In addition, 1 has good selectivity for Fe3+ and Cr2O72-, meanwhile, it has high detection sensitivity (Ksv quenching efficiency for Fe3+: 1.2 × 104 M-1 and Cr2O72- 1.85 × 104 M-1) and low detection limit (Fe3+: 19.21 μM and Cr2O72-: 12.46 μM). The results of photoluminescence test show that 1 can detect cations and anions with high sensitivity, resist the interference of other ions, and have good reusability. As far as we know, 1 is the first example of ultra-stable two-dimensional (2D) Cadmium (II) microporous coordination material as a fluorescence sensor for Fe3+ and Cr2O72-.
Collapse
Affiliation(s)
- Tian-Tian Wang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratoryof Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Jing-Yi Liu
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratoryof Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Jun-Dan An
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratoryof Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Yang-Fan Shi
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratoryof Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Yi-Yun Zhang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratoryof Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Jian-Zhong Huo
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratoryof Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Zheng-Guo Huang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratoryof Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Yuan-Yuan Liu
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratoryof Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China
| | - Bin Ding
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratoryof Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China; Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China.
| |
Collapse
|
6
|
Nagatomo S, Kitagawa T, Nagai M. Roles of Fe-Histidine bonds in stability of hemoglobin: Recognition of protein flexibility by Q Sepharose. Biophys J 2021; 120:2734-2745. [PMID: 34087219 DOI: 10.1016/j.bpj.2021.05.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/22/2021] [Accepted: 05/07/2021] [Indexed: 11/24/2022] Open
Abstract
Using various mutants, we investigated to date the roles of the Fe-histidine (F8) bonds in cooperative O2 binding of human hemoglobin (Hb) and differences in roles between α- and β-subunits in the α2β2 tetramer. An Hb variant with a mutation in the heme cavity exhibited an unexpected feature. When the β mutant rHb (βH92G), in which the proximal histidine (His F8) of the β-subunit is replaced by glycine (Gly), was subjected to ion-exchange chromatography (Q Sepharose column) and eluted with an NaCl concentration gradient in the presence of imidazole, yielded two large peaks, whereas the corresponding α-mutant, rHb (αH87G), gave a single peak similar to Hb A. The β-mutant rHb proteins under each peak had identical isoelectric points according to isoelectric focusing electrophoresis. Proteins under each peak were further characterized by Sephadex G-75 gel filtration, far-UV CD, 1H NMR, and resonance Raman spectroscopy. We found that rHb (βH92G) exists as a mixture of αβ-dimers and α2β2 tetramers, and that hemes are released from β-subunits in a fraction of the dimers. An approximate amount of released hemes were estimated to be as large as 30% with Raman relative intensities. It is stressed that Q Sepharose columns can distinguish differences in structural flexibility of proteins having identical isoelectric points by altering the exit rates from the porous beads. Thus, the role of Fe-His (F8) bonds in stabilizing the Hb tetramer first described by Barrick et al. was confirmed in this study. In addition, it was found in this study that a specific Fe-His bond in the β-subunit minimizes globin structural flexibility.
Collapse
Affiliation(s)
- Shigenori Nagatomo
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| | - Teizo Kitagawa
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, Ako-gun, Hyogo, Japan.
| | - Masako Nagai
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan; School of Health Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| |
Collapse
|
7
|
Miles JA, Davies TA, Hayman RD, Lorenzen G, Taylor J, Anjarwalla M, Allen SJR, Graham JWD, Taylor PC. A Case Study of Eukaryogenesis: The Evolution of Photoreception by Photolyase/Cryptochrome Proteins. J Mol Evol 2020; 88:662-673. [PMID: 32979052 PMCID: PMC7560933 DOI: 10.1007/s00239-020-09965-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 09/05/2020] [Indexed: 11/23/2022]
Abstract
Eukaryogenesis, the origin of the eukaryotes, is still poorly understood. Herein, we show how a detailed all-kingdom phylogenetic analysis overlaid with a map of key biochemical features can provide valuable clues. The photolyase/cryptochrome family of proteins are well known to repair DNA in response to potentially harmful effects of sunlight and to entrain circadian rhythms. Phylogenetic analysis of photolyase/cryptochrome protein sequences from a wide range of prokaryotes and eukaryotes points to a number of horizontal gene transfer events between ancestral bacteria and ancestral eukaryotes. Previous experimental research has characterised patterns of tryptophan residues in these proteins that are important for photoreception, specifically a tryptophan dyad, a canonical tryptophan triad, an alternative tryptophan triad, a tryptophan tetrad and an alternative tetrad. Our results suggest that the spread of the different triad and tetrad motifs across the kingdoms of life accompanied the putative horizontal gene transfers and is consistent with multiple bacterial contributions to eukaryogenesis.
Collapse
Affiliation(s)
- Jennifer A Miles
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Thomas A Davies
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Robert D Hayman
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Georgia Lorenzen
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Jamie Taylor
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Mubeena Anjarwalla
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Sammie J R Allen
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - John W D Graham
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Paul C Taylor
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
- Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK.
| |
Collapse
|
8
|
Aliakbari F, Haji Hosseinali S, Khalili Sarokhalil Z, Shahpasand K, Akbar Saboury A, Akhtari K, Falahati M. Reactive oxygen species generated by titanium oxide nanoparticles stimulate the hemoglobin denaturation and cytotoxicity against human lymphocyte cell. J Biomol Struct Dyn 2019; 37:4875-4881. [DOI: 10.1080/07391102.2019.1568305] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Fakhteh Aliakbari
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sara Haji Hosseinali
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ziba Khalili Sarokhalil
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Koorosh Shahpasand
- Royan Institute for Stem Cell Biology and Technology (RI-SCBT), Tehran, Iran
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Keivan Akhtari
- Department of Physics, University of Kurdistan, Sanandaj, Iran
| | - Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|