1
|
Wanka V, Fottner M, Cigler M, Lang K. Genetic Code Expansion Approaches to Decipher the Ubiquitin Code. Chem Rev 2024; 124:11544-11584. [PMID: 39311880 PMCID: PMC11503651 DOI: 10.1021/acs.chemrev.4c00375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/05/2024] [Accepted: 08/19/2024] [Indexed: 10/25/2024]
Abstract
The covalent attachment of Ub (ubiquitin) to target proteins (ubiquitylation) represents one of the most versatile PTMs (post-translational modifications) in eukaryotic cells. Substrate modifications range from a single Ub moiety being attached to a target protein to complex Ub chains that can also contain Ubls (Ub-like proteins). Ubiquitylation plays pivotal roles in most aspects of eukaryotic biology, and cells dedicate an orchestrated arsenal of enzymes to install, translate, and reverse these modifications. The entirety of this complex system is coined the Ub code. Deciphering the Ub code is challenging due to the difficulty in reconstituting enzymatic machineries and generating defined Ub/Ubl-protein conjugates. This Review provides a comprehensive overview of recent advances in using GCE (genetic code expansion) techniques to study the Ub code. We highlight strategies to site-specifically ubiquitylate target proteins and discuss their advantages and disadvantages, as well as their various applications. Additionally, we review the potential of small chemical PTMs targeting Ub/Ubls and present GCE-based approaches to study this additional layer of complexity. Furthermore, we explore methods that rely on GCE to develop tools to probe interactors of the Ub system and offer insights into how future GCE-based tools could help unravel the complexity of the Ub code.
Collapse
Affiliation(s)
- Vera Wanka
- Laboratory
for Organic Chemistry (LOC), Department of Chemistry and Applied Biosciences
(D-CHAB), ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| | - Maximilian Fottner
- Laboratory
for Organic Chemistry (LOC), Department of Chemistry and Applied Biosciences
(D-CHAB), ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| | - Marko Cigler
- Department
of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Kathrin Lang
- Laboratory
for Organic Chemistry (LOC), Department of Chemistry and Applied Biosciences
(D-CHAB), ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
- Department
of Chemistry, Technical University of Munich, 85748 Garching, Germany
| |
Collapse
|
2
|
Patel RS, Pannala NM, Das C. Reading and Writing the Ubiquitin Code Using Genetic Code Expansion. Chembiochem 2024; 25:e202400190. [PMID: 38588469 PMCID: PMC11161312 DOI: 10.1002/cbic.202400190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/10/2024]
Abstract
Deciphering ubiquitin proteoform signaling and its role in disease has been a long-standing challenge in the field. The effects of ubiquitin modifications, its relation to ubiquitin-related machineries, and its signaling output has been particularly limited by its reconstitution and means of characterization. Advances in genetic code expansion have contributed towards addressing these challenges by precision incorporation of unnatural amino acids through site selective codon suppression. This review discusses recent advances in studying the 'writers', 'readers', and 'erasers' of the ubiquitin code using genetic code expansion. Highlighting strategies towards genetically encoded protein ubiquitination, ubiquitin phosphorylation, acylation, and finally surveying ubiquitin interactions, we strive to bring attention to this unique approach towards addressing a widespread proteoform problem.
Collapse
Affiliation(s)
- Rishi S Patel
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907, USA
| | - Nipuni M Pannala
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907, USA
| | - Chittaranjan Das
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907, USA
| |
Collapse
|
3
|
Patel R, Negrón Terón K, Zhou M, Nakayasu E, Drown B, Das C. Genetically Encoded Crosslinking Enables Identification of Multivalent Ubiquitin-Deubiquitylating Enzyme Interactions. Chembiochem 2023; 24:e202300305. [PMID: 37262077 PMCID: PMC11088939 DOI: 10.1002/cbic.202300305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/03/2023]
Abstract
Ubiquitin (Ub) proteoforms control nearly every aspect of eukaryotic cell biology through their diversity. Inspired by the widely used Ub C-terminal electrophiles (Ub-E), here we report the identification of multivalent binding of Ub with deubiquitylating enzymes (Dubs) using genetic code expansion (GCE) and crosslinking mass spectrometry. While the Ub-Es only gather structural information with the S1 Dub sites, we demonstrate that GCE of Ub with p-benzoyl-L-phenylalanine enables identification of interaction modes beyond the S1 site with a panel of Dubs of both eukaryotic and prokaryotic origin. Collectively, this represents the next generation of Ub-based affinity probes with a unique ability to unravel Ub interaction landscapes beyond what is afforded by cysteine-based chemistries.
Collapse
Affiliation(s)
- Rishi Patel
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907, USA
| | - Kristos Negrón Terón
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907, USA
| | - Mowei Zhou
- Environmental and Molecular Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99352, USA
| | - Ernesto Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99352, USA
| | - Bryon Drown
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907, USA
| | - Chittaranjan Das
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907, USA
| |
Collapse
|
4
|
Shade O, Ryan A, Deiters A. Targeted protein degradation through light-activated E3 ligase recruitment. Methods Enzymol 2023; 681:265-286. [PMID: 36764761 DOI: 10.1016/bs.mie.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Optical control of protein function through proteasomal degradation benefits from the noninvasive nature and spatiotemporal precision of light as a trigger. In this chapter, light activation of protein degradation with an optically controlled degron, termed optoDeg, is discussed. This method utilizes genetic code expansion to insert a photocaged analog of lysine at the N-terminal position of a protein of interest for spatial and temporal control of the N-end pathway, inducing proteasomal degradation. Methods for the use of optoDeg for degradation of the fluorescent reporter EGFP and the kinase MEK1 are described. The system is fast, with complete degradation of proteins within minutes following irradiation, and highly specific, with genetically directed introduction of the light-activated degron.
Collapse
Affiliation(s)
- Olivia Shade
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Amy Ryan
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
5
|
Shu X, Liao QQ, Li ST, Liu L, Zhang X, Zhou L, Zhang L, Coin I, Wang L, Wu H, Yang B. Detecting Active Deconjugating Enzymes with Genetically Encoded Activity-Based Ubiquitin and Ubiquitin-like Protein Probes. Anal Chem 2023; 95:846-853. [PMID: 36595388 DOI: 10.1021/acs.analchem.2c03270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Post-translational modification of proteins by Ubiquitin (Ub) and Ubiquitin-like proteins (Ubls) can be reversed by deconjugating enzymes, which have been implicated in different pathways and associated with various human diseases. To understand the activity and dynamics of deconjugating enzymes, multiple synthetic and semi-synthetic Ub/Ubl probes have been developed, and some of them have been applied to screen inhibitors of deconjugating enzymes. Since these Ub/Ubl probes are generally not cell-permeable, different strategies have been developed to deliver Ub/Ubl probes to live cells. However, till now, no Ub/Ubl probes can be expressed in live cells to directly report on the activities of deconjugating enzymes in the most relevant cellular environment. Here, we genetically encoded cross-linkable Ub/Ubl probes in live E. coli and HEK293T cells. These probes can cross-link with deconjugating enzymes in vitro and in vivo. Using these Ub probes combined with mass spectrometry, we have successfully identified endogenous deconjugating enzymes in live cells. We believe that these genetically encoded Ub/Ubl probes are valuable for investigating biological functions of deconjugating enzymes in physiological environments.
Collapse
Affiliation(s)
- Xin Shu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China.,Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Qing-Qing Liao
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China.,Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shang-Tong Li
- Glbizzia Biosciences Company Limited, Beijing 102601, China
| | - Lu Liu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiajun Zhang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lianqi Zhou
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Long Zhang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China.,Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Irene Coin
- Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, Leipzig 04103, Germany
| | - Lei Wang
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94158, United States
| | - Haifan Wu
- Department of Chemistry and Biochemistry, Wichita State University, Wichita, Kansas 67260, United States
| | - Bing Yang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China.,Cancer Center, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
6
|
Zhou H, Carpenter T, Fu X, Jin B, Ody B, Hassan MS, Jacobs SE, Cheung J, Nicholson EM, Turlington M, Zhao B, Lorenz S, Cropp TA, Yin J. Linkage-Specific Synthesis of Di-ubiquitin Probes Enabled by the Incorporation of Unnatural Amino Acid ThzK. Chembiochem 2022; 23:e202200133. [PMID: 35263494 PMCID: PMC9129888 DOI: 10.1002/cbic.202200133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Indexed: 11/08/2022]
Abstract
Di-ubiquitin (diUB) conjugates of defined linkages are useful tools for probing the functions of UB ligases, UB-binding proteins and deubiquitinating enzymes (DUBs) in coding, decoding and editing the signals carried by the UB chains. Here we developed an efficient method for linkage-specific synthesis of diUB probes based on the incorporation of the unnatural amino acid (UAA) Nϵ -L-thiaprolyl-L-Lys (L-ThzK) into UB for ligation with another UB at a defined Lys position. The diUB formed by the UAA-mediated ligation reaction has a G76C mutation on the side of donor UB for conjugation with E2 and E3 enzymes or undergoing dethiolation to generate a covalent trap for DUBs. The development of UAA mutagenesis for diUB synthesis provides an easy route for preparing linkage-specific UB-based probes to decipher the biological signals mediated by protein ubiquitination.
Collapse
Affiliation(s)
- Han Zhou
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Tomaya Carpenter
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Xuan Fu
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Bo Jin
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Britton Ody
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Mohammad Sazid Hassan
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Savannah E Jacobs
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Jenny Cheung
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Eve M Nicholson
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Mark Turlington
- Department of Chemistry and Biochemistry, Berry College, Mount Berry, GA 30149, USA
| | - Bo Zhao
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Sonja Lorenz
- Max Planck Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - T Ashton Cropp
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284, USA
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA
| | - Jun Yin
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
7
|
Dubey AR, Jagtap YA, Kumar P, Patwa SM, Kinger S, Kumar A, Singh S, Prasad A, Jana NR, Mishra A. Biochemical strategies of E3 ubiquitin ligases target viruses in critical diseases. J Cell Biochem 2021; 123:161-182. [PMID: 34520596 DOI: 10.1002/jcb.30143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/23/2021] [Accepted: 08/24/2021] [Indexed: 12/15/2022]
Abstract
Viruses are known to cause various diseases in human and also infect other species such as animal plants, fungi, and bacteria. Replication of viruses depends upon their interaction with hosts. Human cells are prone to such unwanted viral infections. Disintegration and reconstitution require host machinery and various macromolecules like DNA, RNA, and proteins are invaded by viral particles. E3 ubiquitin ligases are known for their specific function, that is, recognition of their respective substrates for intracellular degradation. Still, we do not understand how ubiquitin proteasome system-based enzymes E3 ubiquitin ligases do their functional interaction with different viruses. Whether E3 ubiquitin ligases help in the elimination of viral components or viruses utilize their molecular capabilities in their intracellular propagation is not clear. The first time our current article comprehends fundamental concepts and new insights on the different viruses and their interaction with various E3 Ubiquitin Ligases. In this review, we highlight the molecular pathomechanism of viruses linked with E3 Ubiquitin Ligases dependent mechanisms. An enhanced understanding of E3 Ubiquitin Ligase-mediated removal of viral proteins may open new therapeutic strategies against viral infections.
Collapse
Affiliation(s)
- Ankur R Dubey
- Department of Bioscience and Bioengineering, Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Yuvraj A Jagtap
- Department of Bioscience and Bioengineering, Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Prashant Kumar
- Department of Bioscience and Bioengineering, Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Som M Patwa
- Department of Bioscience and Bioengineering, Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Sumit Kinger
- Department of Bioscience and Bioengineering, Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| | - Amit Kumar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Sarika Singh
- Department of Neuroscience and Ageing Biology, Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Amit Prasad
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
| | - Nihar R Jana
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Amit Mishra
- Department of Bioscience and Bioengineering, Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, India
| |
Collapse
|
8
|
Boughton AJ, Liu L, Lavy T, Kleifeld O, Fushman D. A novel recognition site for polyubiquitin and ubiquitin-like signals in an unexpected region of proteasomal subunit Rpn1. J Biol Chem 2021; 297:101052. [PMID: 34364874 PMCID: PMC8405992 DOI: 10.1016/j.jbc.2021.101052] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/19/2021] [Accepted: 08/04/2021] [Indexed: 12/02/2022] Open
Abstract
The ubiquitin (Ub)–proteasome system is the primary mechanism for maintaining protein homeostasis in eukaryotes, yet the underlying signaling events and specificities of its components are poorly understood. Proteins destined for degradation are tagged with covalently linked polymeric Ub chains and subsequently delivered to the proteasome, often with the assistance of shuttle proteins that contain Ub-like domains. This degradation pathway is riddled with apparent redundancy—in the form of numerous polyubiquitin chains of various lengths and distinct architectures, multiple shuttle proteins, and at least three proteasomal receptors. Moreover, the largest proteasomal receptor, Rpn1, contains one known binding site for polyubiquitin and shuttle proteins, although several studies have recently proposed the existence of an additional uncharacterized site. Here, using a combination of NMR spectroscopy, photocrosslinking, mass spectrometry, and mutagenesis, we show that Rpn1 does indeed contain another recognition site that exhibits affinities and binding preferences for polyubiquitin and Ub-like signals comparable to those of the known binding site in Rpn1. Surprisingly, this novel site is situated in the N-terminal section of Rpn1, a region previously surmised to be devoid of functionality. We identified a stretch of adjacent helices as the location of this previously uncharacterized binding site, whose spatial proximity and similar properties to the known binding site in Rpn1 suggest the possibility of multivalent signal recognition across the solvent-exposed surface of Rpn1. These findings offer new mechanistic insights into signal recognition processes that are at the core of the Ub–proteasome system.
Collapse
Affiliation(s)
- Andrew J Boughton
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, Maryland, USA
| | - Leonard Liu
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, Maryland, USA
| | - Tali Lavy
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa, Israel
| | - Oded Kleifeld
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa, Israel
| | - David Fushman
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, Maryland, USA.
| |
Collapse
|
9
|
Beyer JN, Raniszewski NR, Burslem GM. Advances and Opportunities in Epigenetic Chemical Biology. Chembiochem 2020; 22:17-42. [PMID: 32786101 DOI: 10.1002/cbic.202000459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/10/2020] [Indexed: 12/13/2022]
Abstract
The study of epigenetics has greatly benefited from the development and application of various chemical biology approaches. In this review, we highlight the key targets for modulation and recent methods developed to enact such modulation. We discuss various chemical biology techniques to study DNA methylation and the post-translational modification of histones as well as their effect on gene expression. Additionally, we address the wealth of protein synthesis approaches to yield histones and nucleosomes bearing epigenetic modifications. Throughout, we highlight targets that present opportunities for the chemical biology community, as well as exciting new approaches that will provide additional insight into the roles of epigenetic marks.
Collapse
Affiliation(s)
- Jenna N Beyer
- Department of Biochemistry and Biophysics Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd., Philadelphia, PA 19104, USA
| | - Nicole R Raniszewski
- Department of Biochemistry and Biophysics Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd., Philadelphia, PA 19104, USA
| | - George M Burslem
- Department of Biochemistry and Biophysics Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd., Philadelphia, PA 19104, USA.,Department of Cancer Biology and Epigenetics Institute Perelman School of Medicine, University of Pennsylvania, 422 Curie Blvd., Philadelphia, PA 19104, USA
| |
Collapse
|
10
|
Zhao B, Tsai YC, Jin B, Wang B, Wang Y, Zhou H, Carpenter T, Weissman AM, Yin J. Protein Engineering in the Ubiquitin System: Tools for Discovery and Beyond. Pharmacol Rev 2020; 72:380-413. [PMID: 32107274 PMCID: PMC7047443 DOI: 10.1124/pr.118.015651] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ubiquitin (UB) transfer cascades consisting of E1, E2, and E3 enzymes constitute a complex network that regulates a myriad of biologic processes by modifying protein substrates. Deubiquitinating enzymes (DUBs) reverse UB modifications or trim UB chains of diverse linkages. Additionally, many cellular proteins carry UB-binding domains (UBDs) that translate the signals encoded in UB chains to target proteins for degradation by proteasomes or in autophagosomes, as well as affect nonproteolytic outcomes such as kinase activation, DNA repair, and transcriptional regulation. Dysregulation of the UB transfer pathways and malfunctions of DUBs and UBDs play causative roles in the development of many diseases. A greater understanding of the mechanism of UB chain assembly and the signals encoded in UB chains should aid in our understanding of disease pathogenesis and guide the development of novel therapeutics. The recent flourish of protein-engineering approaches such as unnatural amino acid incorporation, protein semisynthesis by expressed protein ligation, and high throughput selection by phage and yeast cell surface display has generated designer proteins as powerful tools to interrogate cell signaling mediated by protein ubiquitination. In this study, we highlight recent achievements of protein engineering on mapping, probing, and manipulating UB transfer in the cell. SIGNIFICANCE STATEMENT: The post-translational modification of proteins with ubiquitin alters the fate and function of proteins in diverse ways. Protein engineering is fundamentally transforming research in this area, providing new mechanistic insights and allowing for the exploration of concepts that can potentially be applied to therapeutic intervention.
Collapse
Affiliation(s)
- Bo Zhao
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China (B.Z., B.J., B.W.); Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China (Y.W.); Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland (Y.C.T., A.M.W.); and Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia (Y.W., H.Z., T.C., J.Y.)
| | - Yien Che Tsai
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China (B.Z., B.J., B.W.); Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China (Y.W.); Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland (Y.C.T., A.M.W.); and Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia (Y.W., H.Z., T.C., J.Y.)
| | - Bo Jin
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China (B.Z., B.J., B.W.); Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China (Y.W.); Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland (Y.C.T., A.M.W.); and Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia (Y.W., H.Z., T.C., J.Y.)
| | - Bufan Wang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China (B.Z., B.J., B.W.); Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China (Y.W.); Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland (Y.C.T., A.M.W.); and Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia (Y.W., H.Z., T.C., J.Y.)
| | - Yiyang Wang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China (B.Z., B.J., B.W.); Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China (Y.W.); Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland (Y.C.T., A.M.W.); and Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia (Y.W., H.Z., T.C., J.Y.)
| | - Han Zhou
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China (B.Z., B.J., B.W.); Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China (Y.W.); Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland (Y.C.T., A.M.W.); and Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia (Y.W., H.Z., T.C., J.Y.)
| | - Tomaya Carpenter
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China (B.Z., B.J., B.W.); Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China (Y.W.); Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland (Y.C.T., A.M.W.); and Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia (Y.W., H.Z., T.C., J.Y.)
| | - Allan M Weissman
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China (B.Z., B.J., B.W.); Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China (Y.W.); Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland (Y.C.T., A.M.W.); and Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia (Y.W., H.Z., T.C., J.Y.)
| | - Jun Yin
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China (B.Z., B.J., B.W.); Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China (Y.W.); Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland (Y.C.T., A.M.W.); and Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia (Y.W., H.Z., T.C., J.Y.)
| |
Collapse
|
11
|
Taylor NC, Hessman G, Kramer HB, McGouran JF. Probing enzymatic activity - a radical approach. Chem Sci 2020; 11:2967-2972. [PMID: 34122797 PMCID: PMC8157568 DOI: 10.1039/c9sc05258e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Deubiquitinating enzymes (DUBs) are known to have numerous important interactions with the ubiquitin cascade and their dysregulation is associated with several diseases, including cancer and neurodegeneration. They are an important class of enzyme, and activity-based probes have been developed as an effective strategy to study them. Existing activity-based probes that target the active site of these enzymes work via nucleophilic mechanisms. We present the development of latent ubiquitin-based probes that target DUBs via a site selective, photoinitiated radical mechanism. This approach differs from existing photocrosslinking probes as it requires a free active site cysteine. In contrast to existing cysteine reactive probes, control over the timing of the enzyme-probe reaction is possible as the alkene warhead is completely inert under ambient conditions, even upon probe binding. The probe's reactivity has been demonstrated against recombinant DUBs and to capture endogenous DUB activity in cell lysate. This allows more finely resolved investigations of DUBs.
Collapse
Affiliation(s)
- Neil C Taylor
- School of Chemistry, Trinity College Dublin, Trinity Biomedical Sciences Institute 152-160 Pearse St. Dublin 2 Ireland
| | - Gary Hessman
- School of Chemistry, Trinity College Dublin, Trinity Biomedical Sciences Institute 152-160 Pearse St. Dublin 2 Ireland
| | - Holger B Kramer
- Department of Physiology, Anatomy and Genetics, University of Oxford Parks Road Oxford OX1 3PT UK
| | - Joanna F McGouran
- School of Chemistry, Trinity College Dublin, Trinity Biomedical Sciences Institute 152-160 Pearse St. Dublin 2 Ireland
| |
Collapse
|
12
|
Zhou H, Cheung JW, Carpenter T, Jones SK, Luong NH, Tran NC, Jacobs SE, Galbada Liyanage SA, Cropp TA, Yin J. Enhancing the incorporation of lysine derivatives into proteins with methylester forms of unnatural amino acids. Bioorg Med Chem Lett 2020; 30:126876. [PMID: 31836447 PMCID: PMC7644286 DOI: 10.1016/j.bmcl.2019.126876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 12/12/2022]
Abstract
We have improved the incorporation of l- and d-forms of unnatural amino acid (UAA) Nε-thiaprolyl-l-lysine (ThzK) into ubiquitin (UB) and green fluorescent protein (GFP) by 2-6 folds with the use of the methylester forms of the UAAs in E coli cell culture. We also improved the yields of UAA-incorporated UB and GFP with the methylester forms of Nε-Boc-l-Lysine (BocK) and Nε-propargyl-l-Lysine (PrK) by 2-5 folds compared to their free acid forms. Our work demonstrated that using methylester-capped UAAs for protein expression is a useful strategy to enhance the yields of UAA-incorporated proteins.
Collapse
Affiliation(s)
- Han Zhou
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302, United States
| | - Jenny W Cheung
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Tomaya Carpenter
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302, United States
| | - Stacey K Jones
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302, United States
| | - Nhu H Luong
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302, United States
| | - Nhi C Tran
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302, United States
| | - Savannah E Jacobs
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302, United States
| | | | - T Ashton Cropp
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284, United States; Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, United States.
| | - Jun Yin
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302, United States.
| |
Collapse
|
13
|
Zhang Y, Hirota T, Kuwata K, Oishi S, Gramani SG, Bode JW. Chemical Synthesis of Atomically Tailored SUMO E2 Conjugating Enzymes for the Formation of Covalently Linked SUMO-E2-E3 Ligase Ternary Complexes. J Am Chem Soc 2019; 141:14742-14751. [PMID: 31436980 DOI: 10.1021/jacs.9b06820] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
E2 conjugating enzymes are the key catalytic actors in the transfer of ubiquitin, SUMO, and other ubiquitin-like modifiers to their substrate proteins. Their high rates of transfer and promiscuous binding complicate studies of their interactions and binding partners. To access specific, covalently linked conjugates of the SUMO E2 conjugating enzyme Ubc9, we prepared synthetic variants bearing site-specific non-native modifications including the following: (1) replacement of Cys93 to 2,3-diaminopropionic acid to form the amide-linked stable E2-SUMO conjugate, which is known to have high affinity for E3 ligases; (2) a photoreactive group (diazirine) to trap E3 ligases upon UV irradiation; and (3) an N-terminal biotin for purification and detection. To construct these Ubc9 variants in a flexible, convergent manner, we combined the three leading methods: native chemical ligation (NCL), α-ketoacid-hydroxylamine (KAHA) ligation, and serine/threonine ligation (STL). Using the synthetic proteins, we demonstrated the selective formation of Ubc9-SUMO conjugates and the trapping of an E3 ligase (RanBP2) to form the stable, covalently linked SUMO1-Ubc9-RanBP2 ternary complex. The powerful combination of ligation methods-which minimizes challenges of functional group manipulations-will enable chemical probes based on E2 conjugating enzymes to trap E3 ligases and facilitate the synthesis of other protein classes.
Collapse
Affiliation(s)
- Yinfeng Zhang
- Institute of Transformative Bio-Molecules (WPI-ITbM) , Nagoya University , Chikusa , Nagoya 464-8602 , Japan
| | - Tsuyoshi Hirota
- Institute of Transformative Bio-Molecules (WPI-ITbM) , Nagoya University , Chikusa , Nagoya 464-8602 , Japan
| | - Keiko Kuwata
- Institute of Transformative Bio-Molecules (WPI-ITbM) , Nagoya University , Chikusa , Nagoya 464-8602 , Japan
| | - Shunsuke Oishi
- Institute of Transformative Bio-Molecules (WPI-ITbM) , Nagoya University , Chikusa , Nagoya 464-8602 , Japan
| | - Subramanian G Gramani
- Institute of Transformative Bio-Molecules (WPI-ITbM) , Nagoya University , Chikusa , Nagoya 464-8602 , Japan
| | - Jeffrey W Bode
- Institute of Transformative Bio-Molecules (WPI-ITbM) , Nagoya University , Chikusa , Nagoya 464-8602 , Japan.,Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences , ETH Zürich , Zürich 8093 , Switzerland
| |
Collapse
|