1
|
Zhang YW, Zheng N, Chou DHC. Serine-mediated hydrazone ligation displaying insulin-like peptides on M13 phage pIII. Org Biomol Chem 2023; 21:8902-8909. [PMID: 37905463 DOI: 10.1039/d3ob01487h] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Phage display has emerged as a tool for the discovery of therapeutic antibodies and proteins. However, the effective display and engineering of structurally complex proteins, such as insulin, pose significant challenges due to the sequence of insulin, which is composed of two peptide chains linked by three disulfide bonds. In this study, we developed a new approach for the display of insulin-like peptides on M13 phage pIII, employing N-terminal serine-mediated hydrazone ligation. The insulin-displaying phage retains the biological binding affinity of human insulin. To address the viability loss after ligation, we introduced a trypsin-cleavable spacer on pIII, enabling insulin-displayed phage library selection. This method offers a general pathway for the display of structurally complex proteins on pIII, enhancing the practicality of selecting chemically modified phage libraries and opening avenues for the engineering of new insulin analogs for the treatment of diabetes by using phage display.
Collapse
Affiliation(s)
- Yi Wolf Zhang
- Department of Pediatrics, Division of Diabetes and Endocrinology, Stanford University, Palo Alto, CA 94304, USA.
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Nan Zheng
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Danny Hung-Chieh Chou
- Department of Pediatrics, Division of Diabetes and Endocrinology, Stanford University, Palo Alto, CA 94304, USA.
| |
Collapse
|
2
|
Zhang C, Chen H, Zhu Y, Zhang Y, Li X, Wang F. Saccharomyces cerevisiae cell surface display technology: Strategies for improvement and applications. Front Bioeng Biotechnol 2022; 10:1056804. [PMID: 36568309 PMCID: PMC9767963 DOI: 10.3389/fbioe.2022.1056804] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022] Open
Abstract
Microbial cell surface display technology provides a powerful platform for engineering proteins/peptides with enhanced properties. Compared to the classical intracellular and extracellular expression (secretion) systems, this technology avoids enzyme purification, substrate transport processes, and is an effective solution to enzyme instability. Saccharomyces cerevisiae is well suited to cell surface display as a common cell factory for the production of various fuels and chemicals, with the advantages of large cell size, being a Generally Regarded As Safe (GRAS) organism, and post-translational processing of secreted proteins. In this review, we describe various strategies for constructing modified S. cerevisiae using cell surface display technology and outline various applications of this technology in industrial processes, such as biofuels and chemical products, environmental pollution treatment, and immunization processes. The approaches for enhancing the efficiency of cell surface display are also discussed.
Collapse
Affiliation(s)
- Chenmeng Zhang
- Jiangsu Co Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China,Jiangsu Provincial Key Lab for Chemistry and Utilization of Agro Forest Biomass, Jiangsu Key Lab of Biomass Based Green Fuels and Chemicals, Nanjing, China,International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, China
| | - Hongyu Chen
- Jiangsu Co Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China,Jiangsu Provincial Key Lab for Chemistry and Utilization of Agro Forest Biomass, Jiangsu Key Lab of Biomass Based Green Fuels and Chemicals, Nanjing, China,International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, China
| | - Yiping Zhu
- Jiangsu Co Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China,Jiangsu Provincial Key Lab for Chemistry and Utilization of Agro Forest Biomass, Jiangsu Key Lab of Biomass Based Green Fuels and Chemicals, Nanjing, China,International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, China
| | - Yu Zhang
- Jiangsu Co Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China,Jiangsu Provincial Key Lab for Chemistry and Utilization of Agro Forest Biomass, Jiangsu Key Lab of Biomass Based Green Fuels and Chemicals, Nanjing, China,International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, China
| | - Xun Li
- Jiangsu Co Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China,Jiangsu Provincial Key Lab for Chemistry and Utilization of Agro Forest Biomass, Jiangsu Key Lab of Biomass Based Green Fuels and Chemicals, Nanjing, China,International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, China
| | - Fei Wang
- Jiangsu Co Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China,Jiangsu Provincial Key Lab for Chemistry and Utilization of Agro Forest Biomass, Jiangsu Key Lab of Biomass Based Green Fuels and Chemicals, Nanjing, China,International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, China,*Correspondence: Fei Wang,
| |
Collapse
|
3
|
Li Z, Li W, Wang Y, Chen Z, Nakanishi H, Xu X, Gao XD. Establishment of a Novel Cell Surface Display Platform Based on Natural "Chitosan Beads" of Yeast Spores. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7479-7489. [PMID: 35678723 DOI: 10.1021/acs.jafc.2c01983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cell surface display technology, which expresses and anchors proteins on the surface of microbial cells, has broad application prospects in many fields, such as protein library screening, biocatalysis, and biosensor development. However, traditional cell surface display systems have disadvantages: the molecular weight of phage display proteins cannot be too large; bacterial display lacks the post-translational modification process for eukaryotic proteins; yeast display is prone to excessive protein glycosylation and misfolding of multisubunit proteins; and the compatibility of Bacillus subtilis spore display needs to be further improved. Therefore, it is extremely valuable to develop an efficient surface display platform with strong universality and stress resistance properties. Although yeast surface display systems have been extensively investigated, the establishment of a surface display platform using yeast spores has rarely been reported. In this study, a novel cell surface display platform based on natural "chitosan beads" of yeast spores was developed. The target protein in fusion with the chitosan affinity protein (CAP) exhibited strong binding capability with "chitosan beads" of yeast spores in vitro and in vivo. Moreover, this protein display system showed highly preferable enzymatic properties and stability. As an example, the displayed LXYL-P1-2-CAP demonstrated high thermostability and reusability (60% of the initial activity after seven cycles of reuse), high storage stability (75% of original activity after 8 weeks), and excellent tolerance to a concentration up to 75% (v/v) organic reagents. To prove the practicability of this surface display system, the semisynthesis of paclitaxel intermediate was demonstrated and its highest conversion rate was 92% using 0.25 mM substrate. This study provides a novel and useful platform for the surface display of proteins, especially for multimeric macromolecular proteins of eukaryotic origin.
Collapse
Affiliation(s)
- Zijie Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Wanjie Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Yasen Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Zhou Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Hideki Nakanishi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Xiangyang Xu
- Zaozhuang Jienuo Enzyme Co., Ltd., Zaozhuang 277100, China
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| |
Collapse
|
4
|
Jarosinski MA, Chen YS, Varas N, Dhayalan B, Chatterjee D, Weiss MA. New Horizons: Next-Generation Insulin Analogues: Structural Principles and Clinical Goals. J Clin Endocrinol Metab 2022; 107:909-928. [PMID: 34850005 PMCID: PMC8947325 DOI: 10.1210/clinem/dgab849] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Indexed: 11/19/2022]
Abstract
Design of "first-generation" insulin analogues over the past 3 decades has provided pharmaceutical formulations with tailored pharmacokinetic (PK) and pharmacodynamic (PD) properties. Application of a molecular tool kit-integrating protein sequence, chemical modification, and formulation-has thus led to improved prandial and basal formulations for the treatment of diabetes mellitus. Although PK/PD changes were modest in relation to prior formulations of human and animal insulins, significant clinical advantages in efficacy (mean glycemia) and safety (rates of hypoglycemia) were obtained. Continuing innovation is providing further improvements to achieve ultrarapid and ultrabasal analogue formulations in an effort to reduce glycemic variability and optimize time in range. Beyond such PK/PD metrics, next-generation insulin analogues seek to exploit therapeutic mechanisms: glucose-responsive ("smart") analogues, pathway-specific ("biased") analogues, and organ-targeted analogues. Smart insulin analogues and delivery systems promise to mitigate hypoglycemic risk, a critical barrier to glycemic control, whereas biased and organ-targeted insulin analogues may better recapitulate physiologic hormonal regulation. In each therapeutic class considerations of cost and stability will affect use and global distribution. This review highlights structural principles underlying next-generation design efforts, their respective biological rationale, and potential clinical applications.
Collapse
Affiliation(s)
- Mark A Jarosinski
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Yen-Shan Chen
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Nicolás Varas
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Balamurugan Dhayalan
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Deepak Chatterjee
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Michael A Weiss
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
5
|
Wang EY, Dai Y, Rosen CE, Schmitt MM, Dong MX, Ferré EM, Liu F, Yang Y, González-Hernández JA, Meffre E, Hinchcliff M, Koumpouras F, Lionakis MS, Ring AM. High-throughput identification of autoantibodies that target the human exoproteome. CELL REPORTS METHODS 2022; 2:100172. [PMID: 35360706 PMCID: PMC8967185 DOI: 10.1016/j.crmeth.2022.100172] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/30/2021] [Accepted: 01/27/2022] [Indexed: 12/11/2022]
Abstract
Autoantibodies that recognize extracellular proteins (the exoproteome) exert potent biological effects but are challenging to detect. Here, we developed rapid extracellular antigen profiling (REAP), a high-throughput technique for the comprehensive discovery of exoproteome-targeting autoantibodies. Patient samples are applied to a genetically barcoded yeast surface display library containing 2,688 human extracellular proteins. Antibody-coated yeast are isolated, and sequencing of barcodes is used to identify displayed antigens. To benchmark REAP's performance, we screened 77 patients with autoimmune polyglandular syndrome type 1 (APS-1). REAP sensitively and specifically detected both known and previously unidentified autoantibodies in APS-1. We further screened 106 patients with systemic lupus erythematosus (SLE) and identified numerous autoantibodies, several of which were associated with disease severity or specific clinical manifestations and exerted functional effects on cell signaling ex vivo. These findings demonstrate the utility of REAP to atlas the expansive landscape of exoproteome-targeting autoantibodies and their impacts on patient health outcomes.
Collapse
Affiliation(s)
- Eric Y. Wang
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Yile Dai
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Connor E. Rosen
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Monica M. Schmitt
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mei X. Dong
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Elise M.N. Ferré
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Feimei Liu
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Yi Yang
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | | | - Eric Meffre
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Monique Hinchcliff
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Fotios Koumpouras
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA
| | - Michail S. Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aaron M. Ring
- Department of Immunobiology, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
6
|
Bacon K, Menegatti S, Rao BM. Discovery of Cyclic Peptide Binders from Chemically Constrained Yeast Display Libraries. Methods Mol Biol 2022; 2491:387-415. [PMID: 35482201 DOI: 10.1007/978-1-0716-2285-8_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cyclic peptides with engineered protein-binding activity have great potential as therapeutic and diagnostic reagents owing to their favorable properties, including high affinity and selectivity. Cyclic peptide binders have generally been isolated from phage display combinatorial libraries utilizing panning based selections. As an alternative, we have developed a yeast surface display platform to identify and characterize cyclic peptide binders from genetically encoded combinatorial libraries. Through a combination of magnetic selection and fluorescence-activated cell sorting (FACS), high-affinity cyclic peptide binders can be efficiently isolated from yeast display libraries. In this platform, linear peptide precursors are expressed as yeast surface fusions. To achieve cyclization of the linear precursors, the cells are incubated with disuccinimidyl glutarate, which crosslinks amine groups within the displayed linear peptide sequence. Here, we detail protocols for cyclizing linear peptides expressed as yeast surface fusions. We also discuss how to synthesize a yeast display library of linear peptide precursors. Subsequently, we provide suggestions on how to utilize magnetic selections and FACS to isolate cyclic peptide binders for target proteins of interest from a peptide combinatorial library. Lastly, we detail how yeast surface displayed cyclic peptides can be used to obtain efficient estimates of binding affinity, eliminating the need for chemically synthesized peptides when performing mutant characterization.
Collapse
Affiliation(s)
- Kaitlyn Bacon
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC, USA
| | - Balaji M Rao
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA.
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
7
|
Jarosinski MA, Dhayalan B, Chen YS, Chatterjee D, Varas N, Weiss MA. Structural principles of insulin formulation and analog design: A century of innovation. Mol Metab 2021; 52:101325. [PMID: 34428558 PMCID: PMC8513154 DOI: 10.1016/j.molmet.2021.101325] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The discovery of insulin in 1921 and its near-immediate clinical use initiated a century of innovation. Advances extended across a broad front, from the stabilization of animal insulin formulations to the frontiers of synthetic peptide chemistry, and in turn, from the advent of recombinant DNA manufacturing to structure-based protein analog design. In each case, a creative interplay was observed between pharmaceutical applications and then-emerging principles of protein science; indeed, translational objectives contributed to a growing molecular understanding of protein structure, aggregation and misfolding. SCOPE OF REVIEW Pioneering crystallographic analyses-beginning with Hodgkin's solving of the 2-Zn insulin hexamer-elucidated general features of protein self-assembly, including zinc coordination and the allosteric transmission of conformational change. Crystallization of insulin was exploited both as a step in manufacturing and as a means of obtaining protracted action. Forty years ago, the confluence of recombinant human insulin with techniques for site-directed mutagenesis initiated the present era of insulin analogs. Variant or modified insulins were developed that exhibit improved prandial or basal pharmacokinetic (PK) properties. Encouraged by clinical trials demonstrating the long-term importance of glycemic control, regimens based on such analogs sought to resemble daily patterns of endogenous β-cell secretion more closely, ideally with reduced risk of hypoglycemia. MAJOR CONCLUSIONS Next-generation insulin analog design seeks to explore new frontiers, including glucose-responsive insulins, organ-selective analogs and biased agonists tailored to address yet-unmet clinical needs. In the coming decade, we envision ever more powerful scientific synergies at the interface of structural biology, molecular physiology and therapeutics.
Collapse
Affiliation(s)
- Mark A Jarosinski
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, 46202, IN, USA
| | - Balamurugan Dhayalan
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, 46202, IN, USA
| | - Yen-Shan Chen
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, 46202, IN, USA
| | - Deepak Chatterjee
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, 46202, IN, USA
| | - Nicolás Varas
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, 46202, IN, USA
| | - Michael A Weiss
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, 46202, IN, USA; Department of Chemistry, Indiana University, Bloomington, 47405, IN, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, 47907, IN, USA.
| |
Collapse
|
8
|
Piraine REA, Gonçalves VS, Dos Santos Junior AG, Cunha RC, de Albuquerque PMM, Conrad NL, Leite FPL. Expression cassette and plasmid construction for Yeast Surface Display in Saccharomyces cerevisiae. Biotechnol Lett 2021; 43:1649-1657. [PMID: 33934257 DOI: 10.1007/s10529-021-03142-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/23/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Develop a Cell Surface Display system in Saccharomyces cerevisiae, based on the construction of an expression cassette for pYES2 plasmid. RESULTS The construction of an expression cassette containing the α-factor signal peptide and the C-terminal portion of the α-agglutinin protein was made and its sequence inserted into a plasmid named pYES2/gDαAgglutinin. The construction allows surface display of bovine herpesvirus type 5 (BoHV-5) glycoprotein D (gD) on S. cerevisiae BY4741 strain. Recombinant protein expression was confirmed by dot blot, and indirect immunofluorescence using monoclonal anti-histidine antibodies and polyclonal antibodies from mice experimentally vaccinated with a recombinant gD. CONCLUSIONS These results demonstrate that the approach and plasmid used represent not only an effective system for immobilizing proteins on the yeast cell surface, as well as a platform for immunobiologicals development.
Collapse
Affiliation(s)
- Renan Eugênio Araujo Piraine
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Vitória Sequeira Gonçalves
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | | | - Rodrigo Casquero Cunha
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil.,Programa de Pós-Graduação em Veterinária, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | | | - Neida Lucia Conrad
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Fábio Pereira Leivas Leite
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil. .,Programa de Pós-Graduação em Veterinária, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
9
|
Bacon K, Blain A, Burroughs M, McArthur N, Rao BM, Menegatti S. Isolation of Chemically Cyclized Peptide Binders Using Yeast Surface Display. ACS COMBINATORIAL SCIENCE 2020; 22:519-532. [PMID: 32786323 DOI: 10.1021/acscombsci.0c00076] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cyclic peptides with engineered protein-binding activity have gained increasing attention for use in therapeutic and biotechnology applications. We describe the efficient isolation and characterization of cyclic peptide binders from genetically encoded combinatorial libraries using yeast surface display. Here, peptide cyclization is achieved by disuccinimidyl glutarate-mediated cross-linking of amine groups within a linear peptide sequence that is expressed as a yeast cell surface fusion. Using this approach, we first screened a library of cyclic heptapeptides using magnetic selection, followed by fluorescence activated cell sorting (FACS) to isolate binders for a model target (lysozyme) with low micromolar binding affinity (KD ∼ 1.2-3.7 μM). The isolated peptides bind lysozyme selectively and only when cyclized. Importantly, we showed that yeast surface displayed cyclic peptides can be used to efficiently obtain quantitative estimates of binding affinity, circumventing the need for chemical synthesis of the selected peptides. Subsequently, to demonstrate broader applicability of our approach, we isolated cyclic heptapeptides that bind human interleukin-17 (IL-17) using yeast-displayed IL-17 as a target for magnetic selection, followed by FACS using recombinant IL-17. Molecular docking simulations and follow-up experimental analyses identified a candidate cyclic peptide that likely binds IL-17 in its receptor binding region with moderate apparent affinity (KD ∼ 300 nM). Taken together, our results show that yeast surface display can be used to efficiently isolate and characterize cyclic peptides generated by chemical modification from combinatorial libraries.
Collapse
Affiliation(s)
- Kaitlyn Bacon
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Box 7905, Engineering Building I, Raleigh, North Carolina 27695, United States
| | - Abigail Blain
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Box 7905, Engineering Building I, Raleigh, North Carolina 27695, United States
| | - Matthew Burroughs
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Box 7905, Engineering Building I, Raleigh, North Carolina 27695, United States
| | - Nikki McArthur
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Box 7905, Engineering Building I, Raleigh, North Carolina 27695, United States
| | - Balaji M Rao
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Box 7905, Engineering Building I, Raleigh, North Carolina 27695, United States
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Box 7905, Engineering Building I, Raleigh, North Carolina 27695, United States
- Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
10
|
Xiong X, Blakely A, Karra P, VandenBerg MA, Ghabash G, Whitby F, Zhang YW, Webber MJ, Holland WL, Hill CP, Chou DHC. Novel four-disulfide insulin analog with high aggregation stability and potency. Chem Sci 2019; 11:195-200. [PMID: 32110371 PMCID: PMC7012051 DOI: 10.1039/c9sc04555d] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/05/2019] [Indexed: 12/15/2022] Open
Abstract
A novel four-disulfide insulin analog was designed with retained bioactivity and increased fibrillation stability.
Although insulin was first purified and used therapeutically almost a century ago, there is still a need to improve therapeutic efficacy and patient convenience. A key challenge is the requirement for refrigeration to avoid inactivation of insulin by aggregation/fibrillation. Here, in an effort to mitigate this problem, we introduced a 4th disulfide bond between a C-terminal extended insulin A chain and residues near the C-terminus of the B chain. Insulin activity was retained by an analog with an additional disulfide bond between residues A22 and B22, while other linkages tested resulted in much reduced potency. Furthermore, the A22-B22 analog maintains the native insulin tertiary structure as demonstrated by X-ray crystal structure determination. We further demonstrate that this four-disulfide analog has similar in vivo potency in mice compared to native insulin and demonstrates higher aggregation stability. In conclusion, we have discovered a novel four-disulfide insulin analog with high aggregation stability and potency.
Collapse
Affiliation(s)
- Xiaochun Xiong
- Department of Biochemistry , University of Utah , Salt Lake City UT 84112 , USA . ;
| | - Alan Blakely
- Department of Biochemistry , University of Utah , Salt Lake City UT 84112 , USA . ;
| | - Prasoona Karra
- Department of Nutrition and Integrative Physiology , University of Utah , Salt Lake City UT 84112 , USA
| | - Michael A VandenBerg
- Department of Chemical & Biomolecular Engineering , University of Notre Dame , IN 46556 , USA
| | - Gabrielle Ghabash
- Department of Biochemistry , University of Utah , Salt Lake City UT 84112 , USA . ;
| | - Frank Whitby
- Department of Biochemistry , University of Utah , Salt Lake City UT 84112 , USA . ;
| | - Yi Wolf Zhang
- Department of Biochemistry , University of Utah , Salt Lake City UT 84112 , USA . ;
| | - Matthew J Webber
- Department of Chemical & Biomolecular Engineering , University of Notre Dame , IN 46556 , USA
| | - William L Holland
- Department of Nutrition and Integrative Physiology , University of Utah , Salt Lake City UT 84112 , USA
| | - Christopher P Hill
- Department of Biochemistry , University of Utah , Salt Lake City UT 84112 , USA . ;
| | | |
Collapse
|
11
|
Linciano S, Pluda S, Bacchin A, Angelini A. Molecular evolution of peptides by yeast surface display technology. MEDCHEMCOMM 2019; 10:1569-1580. [PMID: 31803399 PMCID: PMC6836575 DOI: 10.1039/c9md00252a] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/28/2019] [Indexed: 12/12/2022]
Abstract
Genetically encoded peptides possess unique properties, such as a small molecular weight and ease of synthesis and modification, that make them suitable to a large variety of applications. However, despite these favorable qualities, naturally occurring peptides are often limited by intrinsic weak binding affinities, poor selectivity and low stability that ultimately restrain their final use. To overcome these limitations, a large variety of in vitro display methodologies have been developed over the past few decades to evolve genetically encoded peptide molecules with superior properties. Phage display, mRNA display, ribosome display, bacteria display, and yeast display are among the most commonly used methods to engineer peptides. While most of these in vitro methodologies have already been described in detail elsewhere, this review describes solely the yeast surface display technology and its valuable use for the evolution of a wide range of peptide formats.
Collapse
Affiliation(s)
- Sara Linciano
- Department of Molecular Sciences and Nanosystems , Ca' Foscari University of Venice , Via Torino 155 , Venezia Mestre 30172 , Italy
| | - Stefano Pluda
- Department of Molecular Sciences and Nanosystems , Ca' Foscari University of Venice , Via Torino 155 , Venezia Mestre 30172 , Italy
- Fidia Farmaceutici S.p.A , Via Ponte della Fabbrica 3/A , Abano Terme 35031 , Italy
| | - Arianna Bacchin
- Department of Molecular Sciences and Nanosystems , Ca' Foscari University of Venice , Via Torino 155 , Venezia Mestre 30172 , Italy
| | - Alessandro Angelini
- Department of Molecular Sciences and Nanosystems , Ca' Foscari University of Venice , Via Torino 155 , Venezia Mestre 30172 , Italy
- European Centre for Living Technology (ECLT) , Ca' Bottacin, Dorsoduro 3911, Calle Crosera , Venice 30123 , Italy .
| |
Collapse
|
12
|
Jia Y, Ren P, Duan S, Zeng P, Xie D, Zeng F. An optimized yeast display strategy for efficient scFv antibody selection using ribosomal skipping system and thermo resistant yeast. Biotechnol Lett 2019; 41:1067-1076. [PMID: 31300936 DOI: 10.1007/s10529-019-02710-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/09/2019] [Indexed: 01/22/2023]
Abstract
OBJECTIVES Establish a method to restrict unexpected fragments including stop codons in scFv library and generate a thermo resistant strain for screening of thermal stable scFv sequences. RESULTS Here, we have constructed a T2A-Leu2 system for selection of yeast surface display libraries that blocks amplification of "stop codon" plasmids within the library, thereby increasing the quality of the library and efficiency of the selection screen. Also, we generated a temperature-resistant yeast strain, TR1, and validated its combined use with T2A-Leu2 for efficient screening. Thus, we developed a general approach for a fast and efficient screening of scFv libraries using a ribosomal skipping system and thermo-resistant yeast. CONCLUSIONS The method highlights the utility of the T2A-Leu2-based ribosomal skipping strategy for increasing the quality of the input library for selection, along with an optimized selection protocol based on thermo-resistant yeast cells.
Collapse
Affiliation(s)
- Yanrong Jia
- College of Life Sciences, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Ping Ren
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, 201210, China
| | - Shixin Duan
- College of Life Sciences, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Pei Zeng
- College of Life Sciences, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Debao Xie
- College of Life Sciences, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Fanli Zeng
- College of Life Sciences, Hebei Agricultural University, Baoding, 071001, Hebei, China.
| |
Collapse
|