1
|
Shende VV, Bauman KD, Moore BS. The shikimate pathway: gateway to metabolic diversity. Nat Prod Rep 2024; 41:604-648. [PMID: 38170905 PMCID: PMC11043010 DOI: 10.1039/d3np00037k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Covering: 1997 to 2023The shikimate pathway is the metabolic process responsible for the biosynthesis of the aromatic amino acids phenylalanine, tyrosine, and tryptophan. Seven metabolic steps convert phosphoenolpyruvate (PEP) and erythrose 4-phosphate (E4P) into shikimate and ultimately chorismate, which serves as the branch point for dedicated aromatic amino acid biosynthesis. Bacteria, fungi, algae, and plants (yet not animals) biosynthesize chorismate and exploit its intermediates in their specialized metabolism. This review highlights the metabolic diversity derived from intermediates of the shikimate pathway along the seven steps from PEP and E4P to chorismate, as well as additional sections on compounds derived from prephenate, anthranilate and the synonymous aminoshikimate pathway. We discuss the genomic basis and biochemical support leading to shikimate-derived antibiotics, lipids, pigments, cofactors, and other metabolites across the tree of life.
Collapse
Affiliation(s)
- Vikram V Shende
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Katherine D Bauman
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Bradley S Moore
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093, USA.
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
2
|
Dong L, Liu Y. Exploring the Substrate-Assisted Dehydration of Chorismate Catalyzed by Dehydratase MqnA from QM/MM Calculations: The Role of Pocket Residues and the Hydrolysis Mechanism of N17D Mutant. J Chem Inf Model 2023; 63:7499-7507. [PMID: 37970731 DOI: 10.1021/acs.jcim.3c01074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
MqnA is the first enzyme on the futalosine pathway to menaquinone, which catalyzes the dehydration of chorismate to yield 3-enolpyruvyl-benzoate (3-EPB). MqnA is also the only chorismate dehydratase known so far. In this work, based on the recently determined crystal structures, we constructed the enzyme-substrate complex models and conducted quantum mechanics/molecular mechanics (QM/MM) calculations to elucidate the reaction details of MqnA and the critical roles of pocket residues. The calculation results confirm that the MqnA-catalyzed dehydration of chorismate follows the substrate-assisted E1cb mechanism, in which the enol carboxylate in the side chain of the substrate is responsible for deprotonating the C3 of chorismate. This proton transfer process is much slower than C4-OH departure. Calculations on different mutants reveal that S86 and N17 are important for anchoring the enol carboxylate of the substrate in a favorable conformation to extract the C3-proton. The strong H-bonds formed between the enol carboxylate of chorismate and S86/N17 play a key role in stabilizing the reaction intermediate. Consistent with the experimental observations, our calculations demonstrate that the MqnA N17D mutant also shows hydrolase activity and the typical enzyme-catalyzed hydrolysis mechanism is elucidated. The protonated D17 is responsible for saturating the methylene group of chorismate to start the hydrolysis reaction. The orientation of the carboxyl group of D17 is key in determining MqnA to be a dehydratase or hydrolase.
Collapse
Affiliation(s)
- Lihua Dong
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, Shandong 250013, China
| | - Yongjun Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
3
|
Wu Q, Bell BA, Yan JX, Chevrette MG, Brittin NJ, Zhu Y, Chanana S, Maity M, Braun DR, Wheaton AM, Guzei IA, Ge Y, Rajski SR, Thomas MG, Bugni TS. Metabolomics and Genomics Enable the Discovery of a New Class of Nonribosomal Peptidic Metallophores from a Marine Micromonospora. J Am Chem Soc 2023; 145:58-69. [PMID: 36535031 PMCID: PMC10570848 DOI: 10.1021/jacs.2c06410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Although microbial genomes harbor an abundance of biosynthetic gene clusters, there remain substantial technological gaps that impair the direct correlation of newly discovered gene clusters and their corresponding secondary metabolite products. As an example of one approach designed to minimize or bridge such gaps, we employed hierarchical clustering analysis and principal component analysis (hcapca, whose sole input is MS data) to prioritize 109 marine Micromonospora strains and ultimately identify novel strain WMMB482 as a candidate for in-depth "metabologenomics" analysis following its prioritization. Highlighting the power of current MS-based technologies, not only did hcapca enable the discovery of one new, nonribosomal peptide bearing an incredible diversity of unique functional groups, but metabolomics for WMMB482 unveiled 16 additional congeners via the application of Global Natural Product Social molecular networking (GNPS), herein named ecteinamines A-Q (1-17). The ecteinamines possess an unprecedented skeleton housing a host of uncommon functionalities including a menaquinone pathway-derived 2-naphthoate moiety, 4-methyloxazoline, the first example of a naturally occurring Ψ[CH2NH] "reduced amide", a methylsulfinyl moiety, and a d-cysteinyl residue that appears to derive from a unique noncanonical epimerase domain. Extensive in silico analysis of the ecteinamine (ect) biosynthetic gene cluster and stable isotope-feeding experiments helped illuminate the novel enzymology driving ecteinamine assembly as well the role of cluster collaborations or "duets" in producing such structurally complex agents. Finally, ecteinamines were found to bind nickel, cobalt, zinc, and copper, suggesting a possible biological role as broad-spectrum metallophores.
Collapse
Affiliation(s)
- Qihao Wu
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Bailey A Bell
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Jia-Xuan Yan
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Marc G Chevrette
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611, United States
| | - Nathan J Brittin
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Yanlong Zhu
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Shaurya Chanana
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Mitasree Maity
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Doug R Braun
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Amelia M Wheaton
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Ilia A Guzei
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Ying Ge
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, United States
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Scott R Rajski
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
| | - Michael G Thomas
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, Wisconsin 53706, United States
| | - Tim S Bugni
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin 53705, United States
- The Small Molecule Screening Facility, University of Wisconsin-Madison, 600 Highland Avenue, Madison, Wisconsin 53792, United States
| |
Collapse
|
4
|
Shi F, Almerick T Boncan D, Wan HT, Chan TF, Zhang EL, Lai KP, Wong CKC. Hepatic metabolism gene expression and gut microbes in offspring, subjected to in-utero PFOS exposure and postnatal diet challenges. CHEMOSPHERE 2022; 308:136196. [PMID: 36041519 DOI: 10.1016/j.chemosphere.2022.136196] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
We examined the changes in hepatic metabolic gene expression and gut microbiota of offspring exposed to PFOS in-utero. At GD17.5, our data showed that PFOS exposure decreased fetal bodyweights and hepatic metabolic gene expressions but increased relative liver mass and lipid accumulation. At PND21, in-utero high-dose PFOS-exposed offspring exhibited significantly greater bodyweight (catch-up-growth), associated with significant induction of hepatic metabolic gene expression. In addition, 16SrRNA-sequencing of the cecal samples revealed an increase in carbohydrate catabolism but a reduction in microbial polysaccharide synthesis and short-chain fatty acid (SCFA) metabolism. From PND21-80, a postnatal diet-challenge for the offspring was conducted. At PND80 under a normal diet, in-utero high-dose PFOS-exposed offspring maintained the growth "catch-up" effect. In contrast, in a high-fat-diet, the bodyweight of in-utero high-dose PFOS-exposed adult offspring were significantly lesser than the corresponding low-dose and control groups. Even though in the high-fat-diet, the in-utero PFOS-exposed adult offspring showed significant upregulation of hepatic metabolic genes, the lower bodyweight suggests that they had difficulty utilizing high-fat nutrients. Noteworthy, the metagenomic data showed a significant reduction in the biosynthesis of microbial polysaccharides, vitamin B, and SCFAs in the PFOS-exposed adult offspring. Furthermore, the observed effects were significantly reduced in the PFOS-exposed adult offspring with the high-fat diet but supplemented with sucrose. Our study demonstrated that in-utero PFOS exposure caused inefficient fat metabolism and increased the risk of hepatic steatosis in offspring.
Collapse
Affiliation(s)
- Feng Shi
- State Key Laboratory in Environmental and Biological Analysis, Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
| | - Delbert Almerick T Boncan
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hin Ting Wan
- State Key Laboratory in Environmental and Biological Analysis, Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
| | - Ting Fung Chan
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Eric L Zhang
- Department of Computer Science, Hong Kong Baptist University, Hong Kong SAR, China
| | - Keng Po Lai
- Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Guilin, PR China
| | - Chris Kong-Chu Wong
- State Key Laboratory in Environmental and Biological Analysis, Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
5
|
Prasad A, Breithaupt C, Nguyen DA, Lilie H, Ziegler J, Stubbs MT. Mechanism of chorismate dehydratase MqnA, the first enzyme of the futalosine pathway, proceeds via substrate-assisted catalysis. J Biol Chem 2022; 298:102601. [PMID: 36265588 PMCID: PMC9672406 DOI: 10.1016/j.jbc.2022.102601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022] Open
Abstract
MqnA, the only chorismate dehydratase known so far, catalyzes the initial step in the biosynthesis of menaquinone via the futalosine pathway. Details of the MqnA reaction mechanism remain unclear. Here, we present crystal structures of Streptomyces coelicolor MqnA and its active site mutants in complex with chorismate and the product 3-enolpyruvyl-benzoate, produced during heterologous expression in Escherichia coli. Together with activity studies, our data are in line with dehydration proceeding via substrate assisted catalysis, with the enol pyruvyl group of chorismate acting as catalytic base. Surprisingly, structures of the mutant Asn17Asp with copurified ligand suggest that the enzyme converts to a hydrolase by serendipitous positioning of the carboxyl group. All complex structures presented here exhibit a closed Venus flytrap fold, with the enzyme exploiting the characteristic ligand binding properties of the fold for specific substrate binding and catalysis. The conformational rearrangements that facilitate complete burial of substrate/product, with accompanying topological changes to the enzyme surface, could foster substrate channeling within the biosynthetic pathway.
Collapse
Affiliation(s)
- Archna Prasad
- Institut für Biochemie und Biotechnologie, Charles-Tanford-Proteinzentrum, Martin-Luther-Universität – Halle-Wittenberg, Halle/Saale, Germany
| | - Constanze Breithaupt
- Institut für Biochemie und Biotechnologie, Charles-Tanford-Proteinzentrum, Martin-Luther-Universität – Halle-Wittenberg, Halle/Saale, Germany
| | - Duc-Anh Nguyen
- Institut für Biochemie und Biotechnologie, Charles-Tanford-Proteinzentrum, Martin-Luther-Universität – Halle-Wittenberg, Halle/Saale, Germany
| | - Hauke Lilie
- Institut für Biochemie und Biotechnologie, Charles-Tanford-Proteinzentrum, Martin-Luther-Universität – Halle-Wittenberg, Halle/Saale, Germany
| | - Jörg Ziegler
- Abteilung Molekulare Signalverarbeitung, Leibniz-Institut für Pflanzenbiochemie, Halle/Saale, Germany
| | - Milton T. Stubbs
- Institut für Biochemie und Biotechnologie, Charles-Tanford-Proteinzentrum, Martin-Luther-Universität – Halle-Wittenberg, Halle/Saale, Germany,For correspondence: Milton T. Stubbs
| |
Collapse
|
6
|
Manion-Sommerhalter HR, Fedoseyenko D, Joshi S, Begley TP. Menaquinone Biosynthesis: The Mechanism of 5,8-Dihydroxy-2-naphthoate Synthase (MqnD). Biochemistry 2021; 60:1947-1951. [PMID: 34143602 DOI: 10.1021/acs.biochem.1c00257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
MqnD catalyzes the conversion of cyclic dehypoxanthine futalosine (6) to 5,8-dihydroxy-2-naphthoic acid (7) and an uncharacterized product. This study describes a chemoenzymatic synthesis of 6. This synthesis achieved a 2-fold yield enhancement by using titanium(III) citrate as the reducing agent and another 5-fold yield enhancement using a fluorinated analogue of dehypoxanthine futalosine (5) that was converted to 6 by an ipso substitution mechanism. This synthetic route enabled the synthesis of 6 in sufficient quantity to identify the second reaction product and to determine that the MqnD-catalyzed reaction proceeds by a hemiacetal ring opening-tautomerization-retroaldol sequence.
Collapse
Affiliation(s)
| | - Dmytro Fedoseyenko
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Sumedh Joshi
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Tadhg P Begley
- Department of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| |
Collapse
|
7
|
Zhang Z, Liu L, Liu C, Sun Y, Zhang D. New aspects of microbial vitamin K2 production by expanding the product spectrum. Microb Cell Fact 2021; 20:84. [PMID: 33849534 PMCID: PMC8042841 DOI: 10.1186/s12934-021-01574-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/02/2021] [Indexed: 12/21/2022] Open
Abstract
Vitamin K2 (menaquinone, MK) is an essential lipid-soluble vitamin with critical roles in blood coagulation and bone metabolism. Chemically, the term vitamin K2 encompasses a group of small molecules that contain a common naphthoquinone head group and a polyisoprenyl side chain of variable length. Among them, menaquinone-7 (MK-7) is the most potent form. Here, the biosynthetic pathways of vitamin K2 and different types of MK produced by microorganisms are briefly introduced. Further, we provide a new aspect of MK-7 production, which shares a common naphthoquinone ring and polyisoprene biosynthesis pathway, by analyzing strategies for expanding the product spectrum. We review the findings of metabolic engineering strategies targeting the shikimate pathway, polyisoprene pathway, and menaquinone pathway, as well as membrane engineering, which provide comprehensive insights for enhancing the yield of MK-7. Finally, the current limitations and perspectives of microbial menaquinone production are also discussed. This article provides in-depth information on metabolic engineering strategies for vitamin K2 production by expanding the product spectrum.
Collapse
Affiliation(s)
- Zimeng Zhang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Linxia Liu
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China
| | - Chuan Liu
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yumei Sun
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China.
| | - Dawei Zhang
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China. .,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China. .,National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
8
|
Hubrich F, Müller M, Andexer JN. Chorismate- and isochorismate converting enzymes: versatile catalysts acting on an important metabolic node. Chem Commun (Camb) 2021; 57:2441-2463. [PMID: 33605953 DOI: 10.1039/d0cc08078k] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chorismate and isochorismate represent an important branching point connecting primary and secondary metabolism in bacteria, fungi, archaea and plants. Chorismate- and isochorismate-converting enzymes are potential targets for new bioactive compounds, as well as valuable biocatalysts for the in vivo and in vitro synthesis of fine chemicals. The diversity of the products of chorismate- and isochorismate-converting enzymes is reflected in the enzymatic three-dimensional structures and molecular mechanisms. Due to the high reactivity of chorismate and its derivatives, these enzymes have evolved to be accurately tailored to their respective reaction; at the same time, many of them exhibit a fascinating flexibility regarding side reactions and acceptance of alternative substrates. Here, we give an overview of the different (sub)families of chorismate- and isochorismate-converting enzymes, their molecular mechanisms, and three-dimensional structures. In addition, we highlight important results of mutagenetic approaches that generate a broader understanding of the influence of distinct active site residues for product formation and the conversion of one subfamily into another. Based on this, we discuss to what extent the recent advances in the field might influence the general mechanistic understanding of chorismate- and isochorismate-converting enzymes. Recent discoveries of new chorismate-derived products and pathways, as well as biocatalytic conversions of non-physiological substrates, highlight how this vast field is expected to continue developing in the future.
Collapse
Affiliation(s)
- Florian Hubrich
- ETH Zurich, Institute of Microbiology, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland.
| | | | | |
Collapse
|