1
|
Nakamura T, Shinozaki Y, Otomo A, Urui T, Mizuno M, Abe-Yoshizumi R, Hashimoto M, Kojima K, Sudo Y, Kandori H, Mizutani Y. Unusual Vibrational Coupling of the Schiff Base in the Retinal Chromophore of Sodium Ion-Pumping Rhodopsins. J Phys Chem B 2024; 128:7813-7821. [PMID: 39090991 DOI: 10.1021/acs.jpcb.4c04466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
A Schiff base in the retinal chromophore of microbial rhodopsin is crucial to its ion transport mechanism. Here, we discovered an unprecedented isotope effect on the C═N stretching frequency of the Schiff base in sodium ion-pumping rhodopsins, showing an unusual interaction of the Schiff base. No amino acid residue attributable to the unprecedented isotope effect was identified, suggesting that the H-O-H bending vibration of a water molecule near the Schiff base was coupled with the C═N stretching vibration. A twist in the polyene chain in the chromophore for the sodium ion-pumping rhodopsins enabled this unusual interaction of the Schiff base. The present discovery provides new insights into the interaction network of the retinal chromophore in microbial rhodopsins.
Collapse
Affiliation(s)
- Taiki Nakamura
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Yuka Shinozaki
- Department of Chemistry, School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Akihiro Otomo
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Taito Urui
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Misao Mizuno
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Department of Chemistry, School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Rei Abe-Yoshizumi
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Manami Hashimoto
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-Naka, Okayama 700-8530, Japan
| | - Keiichi Kojima
- Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-Naka, Okayama 700-8530, Japan
| | - Yuki Sudo
- Faculty of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-Naka, Okayama 700-8530, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Yasuhisa Mizutani
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Department of Chemistry, School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
2
|
Urui T, Shionoya T, Mizuno M, Inoue K, Kandori H, Mizutani Y. Chromophore-Protein Interactions Affecting the Polyene Twist and π-π* Energy Gap of the Retinal Chromophore in Schizorhodopsins. J Phys Chem B 2024; 128:2389-2397. [PMID: 38433395 DOI: 10.1021/acs.jpcb.3c08465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
The properties of a prosthetic group are broadened by interactions with its neighboring residues in proteins. The retinal chromophore in rhodopsins absorbs light, undergoes structural changes, and drives functionally important structural changes in proteins during the photocycle. It is therefore crucial to understand how chromophore-protein interactions regulate the molecular structure and electronic state of chromophores in rhodopsins. Schizorhodopsin is a newly discovered subfamily of rhodopsins found in the genomes of Asgard archaea, which are extant prokaryotes closest to the last common ancestor of eukaryotes and of other microbial species. Here, we report the effects of a hydrogen bond between a retinal Schiff base and its counterion on the twist of the polyene chain and the color of the retinal chromophore. Correlations between spectral features revealed the unexpected fact that the twist of the polyene chain is reduced as the hydrogen bond becomes stronger, suggesting that the twist is caused by tight atomic contacts between the chromophore and nearby residues. In addition, the strength of the hydrogen bond is the primary factor affecting the color-tuning of the retinal chromophore in schizorhodopsins. The findings of this study are valuable for manipulating the molecular structure and electronic state of the chromophore by controlling chromophore-protein interactions.
Collapse
Affiliation(s)
- Taito Urui
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Tomomi Shionoya
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Misao Mizuno
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Keiichi Inoue
- The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Yasuhisa Mizutani
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
3
|
Li Z, Mizuno M, Ejiri T, Hayashi S, Kandori H, Mizutani Y. Unique Vibrational Characteristics and Structures of the Photoexcited Retinal Chromophore in Ion-Pumping Rhodopsins. J Phys Chem B 2023; 127:9873-9886. [PMID: 37940604 DOI: 10.1021/acs.jpcb.3c02146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Photoisomerization of an all-trans-retinal chromophore triggers ion transport in microbial ion-pumping rhodopsins. Understanding chromophore structures in the electronically excited (S1) state provides insights into the structural evolution on the potential energy surface of the photoexcited state. In this study, we examined the structure of the S1-state chromophore in Natronomonas pharaonis halorhodopsin (NpHR), a chloride ion-pumping rhodopsin, using time-resolved resonance Raman spectroscopy. The spectral patterns of the S1-state chromophore were completely different from those of the ground-state chromophore, resulting from unique vibrational characteristics and the structure of the S1 state. Mode assignments were based on a combination of deuteration shifts of the Raman bands and hybrid quantum mechanics-molecular mechanics calculations. The present observations suggest a weakened bond alternation in the π conjugation system. A strong hydrogen-out-of-plane bending band was observed in the Raman spectra of the S1-state chromophore in NpHR, indicating a twisted polyene structure. Similar frequency shifts for the C═N/C═C and C-C stretching modes of the S1-state chromophore in NpHR were observed in the Raman spectra of sodium ion-pumping and proton-pumping rhodopsins, suggesting that these unique features are common to the S1 states of ion-pumping rhodopsins.
Collapse
Affiliation(s)
- Zixuan Li
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Osaka, Toyonaka 560-0043, Japan
| | - Misao Mizuno
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Osaka, Toyonaka 560-0043, Japan
| | - Tomo Ejiri
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Shigehiko Hayashi
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Yasuhisa Mizutani
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Osaka, Toyonaka 560-0043, Japan
| |
Collapse
|
4
|
Tomida S, Wada A, Furutani Y. Protonation of Asp116 and distortion of the all-trans retinal chromophore in Krokinobacter eikastus rhodopsin 2 causes a redshift in absorption maximum upon dehydration. Photochem Photobiol Sci 2023; 22:2499-2517. [PMID: 37498510 DOI: 10.1007/s43630-023-00464-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023]
Abstract
Water is usually indispensable for protein function. For ion-pumping rhodopsins, water molecules inside the proteins play an important role in ion transportation. In addition to amino acid residues, water molecules regulate the colors of retinal proteins. It was reported that a sodium-pumping rhodopsin, Krokinobacter eikastus rhodopsin 2 (KR2), showed a color change from red to purple upon dehydration under crystalline conditions. Here, we applied comprehensive visible and IR absorption spectroscopy and resonance Raman spectroscopy to KR2 in liposomes under hydration-controlled conditions. A large increase in the hydrogen-out-of-plane (HOOP) vibration at 947 (H-C11=C12-H Au mode) and moderate increases at 893 (C7-H and C10-H) and 808 (C14-H) cm-1 were observed under dehydrated conditions, which were assigned by using systematically deuterated retinal. Moreover, the Asn variant at Asp116, which functions as a counter ion for the protonated retinal Schiff base (PRSB), caused a large redshift in the absorption maximum and constitutive increase in the HOOP modes under hydrated and dehydrated conditions. The protonation of a counter ion at Asp116 clearly causes a redshift in the absorption maximum as the all-trans retinal chromophore twists upon dehydration. Namely, the results strongly suggested that water molecules are important for maintaining the hydrogen-bonding network at the PRSB and deprotonation state of Asp116 in KR2.
Collapse
Affiliation(s)
- Sahoko Tomida
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan
| | - Akimori Wada
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, Higashinada-ku, Kobe, 658-8558, Japan
| | - Yuji Furutani
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan.
- OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan.
| |
Collapse
|
5
|
Yang Q, Chen D. Na + Binding and Transport: Insights from Light-Driven Na +-Pumping Rhodopsin. Molecules 2023; 28:7135. [PMID: 37894614 PMCID: PMC10608830 DOI: 10.3390/molecules28207135] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/07/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Na+ plays a vital role in numerous physiological processes across humans and animals, necessitating a comprehensive understanding of Na+ transmembrane transport. Among the various Na+ pumps and channels, light-driven Na+-pumping rhodopsin (NaR) has emerged as a noteworthy model in this field. This review offers a concise overview of the structural and functional studies conducted on NaR, encompassing ground/intermediate-state structures and photocycle kinetics. The primary focus lies in addressing key inquiries: (1) unraveling the translocation pathway of Na+; (2) examining the role of structural changes within the photocycle, particularly in the O state, in facilitating Na+ transport; and (3) investigating the timing of Na+ uptake/release. By delving into these unresolved issues and existing debates, this review aims to shed light on the future direction of Na+ pump research.
Collapse
Affiliation(s)
- Qifan Yang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Deliang Chen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
6
|
Kriebel CN, Asido M, Kaur J, Orth J, Braun P, Becker-Baldus J, Wachtveitl J, Glaubitz C. Structural and functional consequences of the H180A mutation of the light-driven sodium pump KR2. Biophys J 2023; 122:1003-1017. [PMID: 36528791 PMCID: PMC10111219 DOI: 10.1016/j.bpj.2022.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 12/04/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Krokinobacter eikastus rhodopsin 2 (KR2) is a light-driven pentameric sodium pump. Its ability to translocate cations other than protons and to create an electrochemical potential makes it an attractive optogenetic tool. Tailoring its ion-pumping characteristics by mutations is therefore of great interest. In addition, understanding the functional and structural consequences of certain mutations helps to derive a functional mechanism of ion selectivity and transfer of KR2. Based on solid-state NMR spectroscopy, we report an extensive chemical shift resonance assignment of KR2 within lipid bilayers. This data set was then used to probe site-resolved allosteric effects of sodium binding, which revealed multiple responsive sites including the Schiff base nitrogen and the NDQ motif. Based on this data set, the consequences of the H180A mutation are probed. The mutant is silenced in the presence of sodium while in its absence proton pumping is observed. Our data reveal specific long-range effects along the sodium transfer pathway. These experiments are complemented by time-resolved optical spectroscopy. Our data suggest a model in which sodium uptake by the mutant can still take place, while sodium release and backflow control are disturbed.
Collapse
Affiliation(s)
- Clara Nassrin Kriebel
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Marvin Asido
- Institute for Physical and Theoretical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jagdeep Kaur
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jennifer Orth
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Philipp Braun
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Johanna Becker-Baldus
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Josef Wachtveitl
- Institute for Physical and Theoretical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Clemens Glaubitz
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
7
|
Otomo A, Mizuno M, Inoue K, Kandori H, Mizutani Y. Protein dynamics of a light-driven Na + pump rhodopsin probed using a tryptophan residue near the retinal chromophore. Biophys Physicobiol 2023; 20:e201016. [PMID: 38362331 PMCID: PMC10865881 DOI: 10.2142/biophysico.bppb-v20.s016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 02/22/2023] [Indexed: 02/17/2024] Open
Abstract
Direct observation of protein structural changes during ion transport in ion pumps provides valuable insights into the mechanism of ion transport. In this study, we examined structural changes in the light-driven sodium ion (Na+) pump rhodopsin KR2 on the sub-millisecond time scale, corresponding with the uptake and release of Na+. We compared the ion-pumping activities and transient absorption spectra of WT and the W215F mutant, in which the Trp215 residue located near the retinal chromophore on the cytoplasmic side was replaced with a Phe residue. Our findings indicated that atomic contacts between the bulky side chain of Trp215 and the C20 methyl group of the retinal chromophore promote relaxation of the retinal chromophore from the 13-cis to the all-trans form. Since Trp215 is conserved in other ion-pumping rhodopsins, the present results suggest that this residue commonly acts as a mechanical transducer. In addition, we measured time-resolved ultraviolet resonance Raman (UVRR) spectra to show that the environment around Trp215 becomes less hydrophobic at 1 ms after photoirradiation and recovers to the unphotolyzed state with a time constant of around 10 ms. These time scales correspond to Na+ uptake and release, suggesting evolution of a transient ion channel at the cytoplasmic side for Na+ uptake, consistent with the alternating-access model of ion pumps. The time-resolved UVRR technique has potential for application to other ion-pumping rhodopsins and could provide further insights into the mechanism of ion transport.
Collapse
Affiliation(s)
- Akihiro Otomo
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
- Present address: Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, National Institutes of Natural Science, Okazaki, Aichi 444-8787, Japan
- Present address: Department of Functional Molecular Science, School of Physical Science, SOKENDAI, Hayama, Kanagawa 240-0193, Japan
| | - Misao Mizuno
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Keiichi Inoue
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan
| | - Hideki Kandori
- Department of Life Chemistry, Graduate School of Science, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan
| | - Yasuhisa Mizutani
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
8
|
Ghosh M, Misra R, Bhattacharya S, Majhi K, Jung KH, Sheves M. Retinal-Carotenoid Interactions in a Sodium-Ion-Pumping Rhodopsin: Implications on Oligomerization and Thermal Stability. J Phys Chem B 2023; 127:2128-2137. [PMID: 36857147 PMCID: PMC10026069 DOI: 10.1021/acs.jpcb.2c07502] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Microbial rhodopsin (also called retinal protein)-carotenoid conjugates represent a unique class of light-harvesting (LH) complexes, but their specific interactions and LH properties are not completely elucidated as only few rhodopsins are known to bind carotenoids. Here, we report a natural sodium-ion (Na+)-pumping Nonlabens (Donghaeana) dokdonensis rhodopsin (DDR2) binding with a carotenoid salinixanthin (Sal) to form a thermally stable rhodopsin-carotenoid complex. Different spectroscopic studies were employed to monitor the retinal-carotenoid interaction as well as the thermal stability of the protein, while size-exclusion chromatography (SEC) and homology modeling are performed to understand the protein oligomerization process. In analogy with that of another Na+-pumping protein Krokinobacter eikastus rhodopsin 2 (KR2), we propose that DDR2 (studied concentration range: 2 × 10-6 to 4 × 10-5 M) remains mainly as a pentamer at room temperature and neutral pH, while heating above 55 °C partially converted it into a thermally less stable oligomeric form of the protein. This process is affected by both the pH and concentration. At high concentrations (4 × 10-5 to 2 × 10-4 M), the protein adopts a pentamer form reflected in the excitonic circular dichroism (CD) spectrum. In the presence of Sal, the thermal stability of DDR2 is increased significantly, and the pigment is stable even at 85 °C. The results presented could have implications in designing stable rhodopsin-carotenoid antenna complexes.
Collapse
Affiliation(s)
- Mihir Ghosh
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ramprasad Misra
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sudeshna Bhattacharya
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Koushik Majhi
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Kwang-Hwan Jung
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul 04107, South Korea
| | - Mordechai Sheves
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
9
|
Astashkin R, Kovalev K, Bukhdruker S, Vaganova S, Kuzmin A, Alekseev A, Balandin T, Zabelskii D, Gushchin I, Royant A, Volkov D, Bourenkov G, Koonin E, Engelhard M, Bamberg E, Gordeliy V. Structural insights into light-driven anion pumping in cyanobacteria. Nat Commun 2022; 13:6460. [PMID: 36309497 PMCID: PMC9617919 DOI: 10.1038/s41467-022-34019-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 10/11/2022] [Indexed: 12/25/2022] Open
Abstract
Transmembrane ion transport is a key process in living cells. Active transport of ions is carried out by various ion transporters including microbial rhodopsins (MRs). MRs perform diverse functions such as active and passive ion transport, photo-sensing, and others. In particular, MRs can pump various monovalent ions like Na+, K+, Cl-, I-, NO3-. The only characterized MR proposed to pump sulfate in addition to halides belongs to the cyanobacterium Synechocystis sp. PCC 7509 and is named Synechocystis halorhodopsin (SyHR). The structural study of SyHR may help to understand what makes an MR pump divalent ions. Here we present the crystal structure of SyHR in the ground state, the structure of its sulfate-bound form as well as two photoreaction intermediates, the K and O states. These data reveal the molecular origin of the unique properties of the protein (exceptionally strong chloride binding and proposed pumping of divalent anions) and sheds light on the mechanism of anion release and uptake in cyanobacterial halorhodopsins. The unique properties of SyHR highlight its potential as an optogenetics tool and may help engineer different types of anion pumps with applications in optogenetics.
Collapse
Affiliation(s)
- R Astashkin
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| | - K Kovalev
- European Molecular Biology Laboratory, Hamburg unit c/o DESY, Hamburg, Germany
| | - S Bukhdruker
- European Synchrotron Radiation Facility Grenoble, Grenoble, France
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| | - S Vaganova
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| | - A Kuzmin
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - A Alekseev
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - T Balandin
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| | | | - I Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - A Royant
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
- European Synchrotron Radiation Facility Grenoble, Grenoble, France
| | - D Volkov
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| | - G Bourenkov
- European Molecular Biology Laboratory, Hamburg unit c/o DESY, Hamburg, Germany
| | - E Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - M Engelhard
- Department Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227, Dortmund, Germany
| | - E Bamberg
- Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - V Gordeliy
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France.
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany.
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|
10
|
Shionoya T, Mizuno M, Kandori H, Mizutani Y. Contact-Mediated Retinal-Opsin Coupling Enables Proton Pumping in Gloeobacter Rhodopsin. J Phys Chem B 2022; 126:7857-7869. [PMID: 36173382 DOI: 10.1021/acs.jpcb.2c04208] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
When a chromophore embedded in a photoreceptive protein undergoes a reaction upon photoexcitation, the photoreaction triggers structural changes in the protein moiety that are necessary for the function of the protein. It is thus essential to elucidate the coupling between the chromophore and protein moiety to understand the functional mechanism for photoreceptive proteins, but the mechanism by which this coupling occurs remains poorly understood. Here, we show that nonbonded atomic contacts play an essential role in driving functionally important structural changes following photoisomerization of the chromophore in Gloeobacter rhodopsin (GR). Time-resolved ultraviolet resonance Raman spectroscopy revealed that the substitution of Trp222, which contacts with methyl groups of the retinal chromophore, with a Phe residue reduced the extent of structural change. The proton-pumping activity of the GR mutant was as small as 9% of that of the wild type. Time-resolved visible absorption and resonance Raman spectra showed that the photocycle of the mutant proceeded to the L intermediate following the all-trans to 13-cis photoisomerization step but did not result in the deprotonation of the chromophore. The present results demonstrate that the atomic contacts between the chromophore and the Trp222 side chain induce the structural changes necessary for proton transfer. The requirement for dense atomic packing in a protein structure for the efficient propagation of structural changes through a coupling mechanism is discussed.
Collapse
Affiliation(s)
- Tomomi Shionoya
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Misao Mizuno
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Showa-ku, Nagoya, Aichi 466-8555, Japan
| | - Yasuhisa Mizutani
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
11
|
Bogachev AV, Baykov AA, Bertsova YV, Mamedov MD. Mechanism of Ion Translocation by Na+-Rhodopsin. BIOCHEMISTRY (MOSCOW) 2022; 87:731-741. [DOI: 10.1134/s0006297922080053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Hacisuleyman A, Erman B. Information Flow and Allosteric Communication in Proteins. J Chem Phys 2022; 156:185101. [DOI: 10.1063/5.0088522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Based on Schreiber's work on transfer entropy, a molecular theory of nonlinear information transfer in proteins is developed. The joint distribution function for residue fluctuations is expressed in terms of tensor Hermite polynomials which conveniently separate harmonic and nonlinear contributions to information transfer. The harmonic part of information transfer is expressed as the difference between time dependent and independent mutual information. Third order nonlinearities are discussed in detail. Amount and speed of information transfer between residues, important for understanding allosteric activity in proteins, are discussed. While mutual information shows the maximum amount of information that may be transferred between two residues, it does not explain the actual amount of transfer nor the transfer rate of information. For this, dynamic equations of the system are needed. The solution of the Langevin equation and molecular dynamics trajectories are used in the present work for this purpose. Allosteric communication in Human NAD-dependent isocitrate dehydrogenase is studied as an example. Calculations show that several paths contribute collectively to information transfer. Important residues on these paths are identified. Time resolved information transfer between these residues, their amplitudes and transfer rates, which are in agreement with time resolved ultraviolet resonance Raman measurements in general, are estimated. Estimated transfer rates are in the order of 1-20 megabits per second. Information transfer from third order contributions are one to two orders of magnitude smaller than the harmonic terms, showing that harmonic analysis is a good approximation to information transfer.
Collapse
Affiliation(s)
- Aysima Hacisuleyman
- Chemical and Biological Engineering, Koc University College of Engineering, Turkey
| | - Burak Erman
- College of Engineering, Koc University, Turkey
| |
Collapse
|
13
|
Mizutani Y. Concerted Motions and Molecular Function: What Physical Chemistry We Can Learn from Light-Driven Ion-Pumping Rhodopsins. J Phys Chem B 2021; 125:11812-11819. [PMID: 34672596 DOI: 10.1021/acs.jpcb.1c06698] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transmembrane ion gradients are generated and maintained by ion-pumping proteins in cells. Light-driven ion-pumping rhodopsins are retinal-containing proteins found in archaea, bacteria, and eukarya. Photoisomerization of the retinal chromophore induces structural changes in the protein, allowing the transport of ions in a particular direction. Understanding unidirectional ion transport by ion-pumping rhodopsins is an exciting challenge for biophysical chemistry. Concerted changes in ion-binding affinities of the ion-binding sites in proteins are key to unidirectional ion transport, as is the coupling between the chromophore and the protein moiety to drive the concerted motions regulating ion-binding affinities. The commonality of ion-pumping rhodopsin protein structures and the diversity of their ion-pumping functions suggest universal principles governing ion transport, which would be widely applicable to molecular systems. In this Perspective, I review the insights obtained from previous studies on rhodopsins and discuss future perspectives.
Collapse
Affiliation(s)
- Yasuhisa Mizutani
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
14
|
Kato T, Tsukamoto T, Demura M, Kikukawa T. Real-time identification of two substrate-binding intermediates for the light-driven sodium pump rhodopsin. J Biol Chem 2021; 296:100792. [PMID: 34019877 PMCID: PMC8219890 DOI: 10.1016/j.jbc.2021.100792] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 11/29/2022] Open
Abstract
Membrane transport proteins undergo critical conformational changes during substrate uptake and release, as the substrate-binding site is believed to switch its accessibility from one side of the membrane to the other. Thus, at least two substrate-binding intermediates should appear during the process, that is, after uptake and before the release of the substrate. However, this view has not been verified for most transporters because of the difficulty in detecting short-lived intermediates. Here, we report real-time identification of these intermediates for the light-driven outward current-generating Na+-pump rhodopsin. We triggered the transport cycle of Na+-pump rhodopsin using a short laser pulse, and subsequent formation and decay of various intermediates was detected by time-resolved measurements of absorption changes. We used this method to analyze transport reactions and elucidated the sequential formation of the Na+-binding intermediates O1 and O2. Both intermediates exhibited red-shifted absorption spectra and generated transient equilibria with short-wavelength intermediates. The equilibria commonly shifted toward O1 and O2 with increasing Na+ concentration, indicating that Na+ is bound to these intermediates. However, these equilibria were formed independently; O1 reached equilibrium with preceding intermediates, indicating Na+ uptake on the cytoplasmic side. In contrast, O2 reached equilibrium with subsequent intermediates, indicating Na+ release on the extracellular side. Thus, there is an irreversible switch in “accessibility” during the O1 to O2 transition, which could represent one of the key processes governing unidirectional Na+ transport.
Collapse
Affiliation(s)
- Tomoya Kato
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Takashi Tsukamoto
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan; Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| | - Makoto Demura
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan; Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| | - Takashi Kikukawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan; Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
15
|
Nakamizo Y, Fujisawa T, Kikukawa T, Okamura A, Baba H, Unno M. Low-temperature Raman spectroscopy of sodium-pump rhodopsin from Indibacter alkaliphilus: insight of Na + binding for active Na + transport. Phys Chem Chem Phys 2021; 23:2072-2079. [PMID: 33433533 DOI: 10.1039/d0cp05652a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We carried out the low-temperature Raman measurement of a sodium pump rhodopsin from Indibacter alkaliphilus (IaNaR) and examined the primary structural change for the light-driven Na+ pump. We observed that photoexcitation of IaNaR produced the distorted 13-cis retinal chromophore in the presence of Na+, while the structural distortion was significantly relaxed in the absence of Na+. This structural difference of the chromophore with/without Na+ was attributed to the Na+ binding to the protein, which alters the active site. Using the spectral sensitivity to the ion binding, we found that IaNaR had a second Na+ binding site in addition to the one already specified on the extracellular surface. To date, the Na+ binding has not been considered as a prerequisite for Na+ transport. However, this study provides insight that the protein structural change induced by the ion binding involved the formation of an R108-D250 salt bridge, which has critical importance in the active transport of Na+.
Collapse
Affiliation(s)
- Yushi Nakamizo
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan.
| | | | | | | | | | | |
Collapse
|
16
|
Kovalev K, Astashkin R, Gushchin I, Orekhov P, Volkov D, Zinovev E, Marin E, Rulev M, Alekseev A, Royant A, Carpentier P, Vaganova S, Zabelskii D, Baeken C, Sergeev I, Balandin T, Bourenkov G, Carpena X, Boer R, Maliar N, Borshchevskiy V, Büldt G, Bamberg E, Gordeliy V. Molecular mechanism of light-driven sodium pumping. Nat Commun 2020; 11:2137. [PMID: 32358514 PMCID: PMC7195465 DOI: 10.1038/s41467-020-16032-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/03/2020] [Indexed: 11/13/2022] Open
Abstract
The light-driven sodium-pumping rhodopsin KR2 from Krokinobacter eikastus is the only non-proton cation active transporter with demonstrated potential for optogenetics. However, the existing structural data on KR2 correspond exclusively to its ground state, and show no sodium inside the protein, which hampers the understanding of sodium-pumping mechanism. Here we present crystal structure of the O-intermediate of the physiologically relevant pentameric form of KR2 at the resolution of 2.1 Å, revealing a sodium ion near the retinal Schiff base, coordinated by N112 and D116 of the characteristic NDQ triad. We also obtained crystal structures of D116N and H30A variants, conducted metadynamics simulations and measured pumping activities of putative pathway mutants to demonstrate that sodium release likely proceeds alongside Q78 towards the structural sodium ion bound between KR2 protomers. Our findings highlight the importance of pentameric assembly for sodium pump function, and may be used for rational engineering of enhanced optogenetic tools.
Collapse
Affiliation(s)
- Kirill Kovalev
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, France
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Institute of Crystallography, RWTH Aachen University, Aachen, Germany
| | - Roman Astashkin
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, France
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Ivan Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Philipp Orekhov
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Dmytro Volkov
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Egor Zinovev
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Egor Marin
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Maksim Rulev
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, Jülich, Germany
- European Synchrotron Radiation Facility Grenoble, Grenoble, France
| | - Alexey Alekseev
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Institute of Crystallography, RWTH Aachen University, Aachen, Germany
| | - Antoine Royant
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, France
- European Synchrotron Radiation Facility Grenoble, Grenoble, France
| | - Philippe Carpentier
- European Synchrotron Radiation Facility Grenoble, Grenoble, France
- Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Laboratoire Chimie et Biologie des Métaux (LCBM), Université Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Svetlana Vaganova
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Dmitrii Zabelskii
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Christian Baeken
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Ilya Sergeev
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Taras Balandin
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Gleb Bourenkov
- European Molecular Biology Laboratory, Hamburg unit c/o DESY, Hamburg, Germany
| | - Xavier Carpena
- XALOC beamline, ALBA synchrotron (CELLS), Cerdanyola del Valles, Catalunya, Spain
| | - Roeland Boer
- XALOC beamline, ALBA synchrotron (CELLS), Cerdanyola del Valles, Catalunya, Spain
| | - Nina Maliar
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Valentin Borshchevskiy
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Georg Büldt
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Ernst Bamberg
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Valentin Gordeliy
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, France.
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany.
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, Jülich, Germany.
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
| |
Collapse
|