1
|
Boulos I, Jabbour J, Khoury S, Mikhael N, Tishkova V, Candoni N, Ghadieh HE, Veesler S, Bassim Y, Azar S, Harb F. Exploring the World of Membrane Proteins: Techniques and Methods for Understanding Structure, Function, and Dynamics. Molecules 2023; 28:7176. [PMID: 37894653 PMCID: PMC10608922 DOI: 10.3390/molecules28207176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/13/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
In eukaryotic cells, membrane proteins play a crucial role. They fall into three categories: intrinsic proteins, extrinsic proteins, and proteins that are essential to the human genome (30% of which is devoted to encoding them). Hydrophobic interactions inside the membrane serve to stabilize integral proteins, which span the lipid bilayer. This review investigates a number of computational and experimental methods used to study membrane proteins. It encompasses a variety of technologies, including electrophoresis, X-ray crystallography, cryogenic electron microscopy (cryo-EM), nuclear magnetic resonance spectroscopy (NMR), biophysical methods, computational methods, and artificial intelligence. The link between structure and function of membrane proteins has been better understood thanks to these approaches, which also hold great promise for future study in the field. The significance of fusing artificial intelligence with experimental data to improve our comprehension of membrane protein biology is also covered in this paper. This effort aims to shed light on the complexity of membrane protein biology by investigating a variety of experimental and computational methods. Overall, the goal of this review is to emphasize how crucial it is to understand the functions of membrane proteins in eukaryotic cells. It gives a general review of the numerous methods used to look into these crucial elements and highlights the demand for multidisciplinary approaches to advance our understanding.
Collapse
Affiliation(s)
- Imad Boulos
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli P.O. Box 100, Lebanon; (I.B.); (J.J.); (S.K.); (N.M.); (H.E.G.); (Y.B.); (S.A.)
| | - Joy Jabbour
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli P.O. Box 100, Lebanon; (I.B.); (J.J.); (S.K.); (N.M.); (H.E.G.); (Y.B.); (S.A.)
| | - Serena Khoury
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli P.O. Box 100, Lebanon; (I.B.); (J.J.); (S.K.); (N.M.); (H.E.G.); (Y.B.); (S.A.)
| | - Nehme Mikhael
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli P.O. Box 100, Lebanon; (I.B.); (J.J.); (S.K.); (N.M.); (H.E.G.); (Y.B.); (S.A.)
| | - Victoria Tishkova
- CNRS, CINaM (Centre Interdisciplinaire de Nanosciences de Marseille), Campus de Luminy, Case 913, Aix-Marseille University, CEDEX 09, F-13288 Marseille, France; (V.T.); (N.C.); (S.V.)
| | - Nadine Candoni
- CNRS, CINaM (Centre Interdisciplinaire de Nanosciences de Marseille), Campus de Luminy, Case 913, Aix-Marseille University, CEDEX 09, F-13288 Marseille, France; (V.T.); (N.C.); (S.V.)
| | - Hilda E. Ghadieh
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli P.O. Box 100, Lebanon; (I.B.); (J.J.); (S.K.); (N.M.); (H.E.G.); (Y.B.); (S.A.)
| | - Stéphane Veesler
- CNRS, CINaM (Centre Interdisciplinaire de Nanosciences de Marseille), Campus de Luminy, Case 913, Aix-Marseille University, CEDEX 09, F-13288 Marseille, France; (V.T.); (N.C.); (S.V.)
| | - Youssef Bassim
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli P.O. Box 100, Lebanon; (I.B.); (J.J.); (S.K.); (N.M.); (H.E.G.); (Y.B.); (S.A.)
| | - Sami Azar
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli P.O. Box 100, Lebanon; (I.B.); (J.J.); (S.K.); (N.M.); (H.E.G.); (Y.B.); (S.A.)
| | - Frédéric Harb
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli P.O. Box 100, Lebanon; (I.B.); (J.J.); (S.K.); (N.M.); (H.E.G.); (Y.B.); (S.A.)
| |
Collapse
|
2
|
Wang G, Yu G, Gao D, Jiang G, Wang H, Yuwen T, Zhang X, Li C, Yang D, He L, Liu M. Protein Conformational Exchanges Modulated by the Environment of Outer Membrane Vesicles. J Phys Chem Lett 2023; 14:2772-2777. [PMID: 36897994 DOI: 10.1021/acs.jpclett.3c00152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Protein function, in many cases, is strongly coupled to the dynamics and conformational equilibria of the protein. The environment surrounding proteins is critical for their dynamics and can dramatically affect the conformational equilibria and subsequently the activities of proteins. However, it is unclear how protein conformational equilibria are modulated by their crowded native environments. Here we reveal that outer membrane vesicle (OMV) environments modulate the conformational exchanges of Im7 protein at its local frustrated sites and shift the conformation toward its ground state. Further experiments show both macromolecular crowding and quinary interactions with the periplasmic components stabilize the ground state of Im7. Our study highlights the key role that the OMV environment plays in the protein conformational equilibria and subsequently the conformation-related protein functions. Furthermore, the long-lasting nuclear magnetic resonance measurement time of proteins within OMVs indicates that they could serve as a promising system for investigating protein structures and dynamics in situ via nuclear magnetic spectroscopy.
Collapse
Affiliation(s)
- Guan Wang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gangjin Yu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dawei Gao
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao 066004, China
| | - Guosheng Jiang
- Department of Immunology, Binzhou Medical University, Yantai, Shandong 264000, China
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong 261053, China
| | - Huan Wang
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong 261053, China
| | - Tairan Yuwen
- Department of Pharmaceutical Analysis and State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xu Zhang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Conggang Li
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daiwen Yang
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| | - Lichun He
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Optics Valley Laboratory, Hubei 430074, China
| |
Collapse
|
3
|
Castegnaro F, Burmann BM, Thoma J. Preparation of Protein-Enriched Outer Membrane Vesicles from Escherichia Coli for In Situ Structural Biology of Outer Membrane Proteins. Methods Mol Biol 2023; 2652:247-257. [PMID: 37093480 DOI: 10.1007/978-1-0716-3147-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Bacterial outer membrane vesicles (OMVs) can be selectively enriched with one or more outer membrane proteins to allow the biophysical characterization of these membrane proteins embedded in the native cellular environment. Unlike reconstituted artificial membrane environments, OMVs maintain the native lipid composition as well as the lipid asymmetry of bacterial outer membranes. Here, we describe in detail the steps necessary to prepare OMVs, which contain high levels of a designated protein of interest, and which are of sufficient homogeneity and purity to perform biophysical characterizations using high-resolution methods such as atomic force microscopy, electron microscopy, or single-molecule force spectroscopy.
Collapse
Affiliation(s)
- Filippo Castegnaro
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Björn M Burmann
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Johannes Thoma
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
4
|
Mouhib M, Chi CN. Solution nuclear magnetic resonance spectroscopy of bacterial outer membrane proteins in natively excreted vesicles using engineered Escherichia coli. Microbiologyopen 2022; 11:e1302. [PMID: 35765189 PMCID: PMC9234478 DOI: 10.1002/mbo3.1302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/30/2022] [Indexed: 11/12/2022] Open
Abstract
Gaining structural information on membrane proteins in their native lipid environment is a long-standing challenge in molecular biology. Instead, it is common to employ membrane mimetics, which has been shown to affect protein structure, dynamics, and function severely. Here, we describe the incorporation of a bacterial outer membrane protein (OmpW) into natively excreted membrane vesicles for solution nuclear magnetic resonance (NMR) spectroscopy using a mutant Escherichia coli strain with a high outer membrane vesicle (OMV) production rate. We collected NMR spectra from both vesicles containing overexpressed OmpW and vesicles from a control strain to account for the presence of physiologically relevant outer membrane proteins in vesicles and observed distinct resonance signals from OmpW. Due to the increased production of OMVs and the use of non-uniform sampling techniques we were able to obtain high-resolution 2D (HSQC) and 3D (HNCO) NMR spectra of our target protein inside its native lipid environment. While this workflow is not yet sufficient to achieve in situ structure determination, our results pave the way for further research on vesicle-based solution NMR spectroscopy.
Collapse
Affiliation(s)
- Mohammed Mouhib
- Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsalaSweden
- Institute of Chemical Sciences and EngineeringÉcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Celestine N. Chi
- Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsalaSweden
| |
Collapse
|
5
|
Gopinath A, Joseph B. Conformational Flexibility of the Protein Insertase BamA in the Native Asymmetric Bilayer Elucidated by ESR Spectroscopy. Angew Chem Int Ed Engl 2022; 61:e202113448. [PMID: 34761852 PMCID: PMC9299766 DOI: 10.1002/anie.202113448] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Indexed: 12/15/2022]
Abstract
The β-barrel assembly machinery (BAM) consisting of the central β-barrel BamA and four other lipoproteins mediates the folding of the majority of the outer membrane proteins. BamA is placed in an asymmetric bilayer and its lateral gate is suggested to be the functional hotspot. Here we used in situ pulsed electron-electron double resonance spectroscopy to characterize BamA in the native outer membrane. In the detergent micelles, the data is consistent with mainly an inward-open conformation of BamA. The native membrane considerably enhanced the conformational heterogeneity. The lateral gate and the extracellular loop 3 exist in an equilibrium between different conformations. The outer membrane provides a favorable environment for occupying multiple conformational states independent of the lipoproteins. Our results reveal a highly dynamic behavior of the lateral gate and other key structural elements and provide direct evidence for the conformational modulation of a membrane protein in situ.
Collapse
Affiliation(s)
- Aathira Gopinath
- Institute of BiophysicsDepartment of PhysicsCenter for Biomolecular Magnetic Resonance (BMRZ)Goethe University FrankfurtMax-von-Laue-Str. 160438Frankfurt/MainGermany
| | - Benesh Joseph
- Institute of BiophysicsDepartment of PhysicsCenter for Biomolecular Magnetic Resonance (BMRZ)Goethe University FrankfurtMax-von-Laue-Str. 160438Frankfurt/MainGermany
| |
Collapse
|
6
|
Gopinath A, Joseph B. Conformational Flexibility of the Protein Insertase BamA in the Native Asymmetric Bilayer Elucidated by ESR Spectroscopy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202113448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Aathira Gopinath
- Institute of Biophysics Department of Physics Center for Biomolecular Magnetic Resonance (BMRZ) Goethe University Frankfurt Max-von-Laue-Str. 1 60438 Frankfurt/Main Germany
| | - Benesh Joseph
- Institute of Biophysics Department of Physics Center for Biomolecular Magnetic Resonance (BMRZ) Goethe University Frankfurt Max-von-Laue-Str. 1 60438 Frankfurt/Main Germany
| |
Collapse
|
7
|
Thoma J, Burmann BM. Architects of their own environment: How membrane proteins shape the Gram-negative cell envelope. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 128:1-34. [PMID: 35034716 DOI: 10.1016/bs.apcsb.2021.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Gram-negative bacteria are surrounded by a complex multilayered cell envelope, consisting of an inner and an outer membrane, and separated by the aqueous periplasm, which contains a thin peptidoglycan cell wall. These bacteria employ an arsenal of highly specialized membrane protein machineries to ensure the correct assembly and maintenance of the membranes forming the cell envelope. Here, we review the diverse protein systems, which perform these functions in Escherichia coli, such as the folding and insertion of membrane proteins, the transport of lipoproteins and lipopolysaccharide within the cell envelope, the targeting of phospholipids, and the regulation of mistargeted envelope components. Some of these protein machineries have been known for a long time, yet still hold surprises. Others have only recently been described and some are still missing pieces or yet remain to be discovered.
Collapse
Affiliation(s)
- Johannes Thoma
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Göteborg, Sweden; Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden.
| | - Björn M Burmann
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Göteborg, Sweden; Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden
| |
Collapse
|
8
|
Srivatsav AT, Kapoor S. The Emerging World of Membrane Vesicles: Functional Relevance, Theranostic Avenues and Tools for Investigating Membrane Function. Front Mol Biosci 2021; 8:640355. [PMID: 33968983 PMCID: PMC8101706 DOI: 10.3389/fmolb.2021.640355] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Lipids are essential components of cell membranes and govern various membrane functions. Lipid organization within membrane plane dictates recruitment of specific proteins and lipids into distinct nanoclusters that initiate cellular signaling while modulating protein and lipid functions. In addition, one of the most versatile function of lipids is the formation of diverse lipid membrane vesicles for regulating various cellular processes including intracellular trafficking of molecular cargo. In this review, we focus on the various kinds of membrane vesicles in eukaryotes and bacteria, their biogenesis, and their multifaceted functional roles in cellular communication, host-pathogen interactions and biotechnological applications. We elaborate on how their distinct lipid composition of membrane vesicles compared to parent cells enables early and non-invasive diagnosis of cancer and tuberculosis, while inspiring vaccine development and drug delivery platforms. Finally, we discuss the use of membrane vesicles as excellent tools for investigating membrane lateral organization and protein sorting, which is otherwise challenging but extremely crucial for normal cellular functioning. We present current limitations in this field and how the same could be addressed to propel a fundamental and technology-oriented future for extracellular membrane vesicles.
Collapse
Affiliation(s)
- Aswin T. Srivatsav
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
- Wadhwani Research Center of Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
9
|
Hu Y, Cheng K, He L, Zhang X, Jiang B, Jiang L, Li C, Wang G, Yang Y, Liu M. NMR-Based Methods for Protein Analysis. Anal Chem 2021; 93:1866-1879. [PMID: 33439619 DOI: 10.1021/acs.analchem.0c03830] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a well-established method for analyzing protein structure, interaction, and dynamics at atomic resolution and in various sample states including solution state, solid state, and membranous environment. Thanks to rapid NMR methodology development, the past decade has witnessed a growing number of protein NMR studies in complex systems ranging from membrane mimetics to living cells, which pushes the research frontier further toward physiological environments and offers unique insights in elucidating protein functional mechanisms. In particular, in-cell NMR has become a method of choice for bridging the huge gap between structural biology and cell biology. Herein, we review the recent developments and applications of NMR methods for protein analysis in close-to-physiological environments, with special emphasis on in-cell protein structural determination and the analysis of protein dynamics, both difficult to be accessed by traditional methods.
Collapse
Affiliation(s)
- Yunfei Hu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 10049, China
| | - Kai Cheng
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China
| | - Lichun He
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 10049, China
| | - Xu Zhang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 10049, China
| | - Bin Jiang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 10049, China
| | - Ling Jiang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 10049, China
| | - Conggang Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 10049, China
| | - Guan Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 10049, China
| | - Yunhuang Yang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 10049, China
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430071, China.,University of Chinese Academy of Sciences, Beijing 10049, China
| |
Collapse
|
10
|
Thoma J, Burmann BM. Preparation of Bacterial Outer Membrane Vesicles for Characterisation of Periplasmic Proteins in Their Native Environment. Bio Protoc 2020; 10:e3853. [PMID: 33659500 DOI: 10.21769/bioprotoc.3853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 11/02/2022] Open
Abstract
Bacterial outer membrane vesicles (OMVs) are naturally formed by budding from the outer membrane of Gram-negative bacteria. OMVs consist of a lipid bilayer identical in composition to the original outer membrane and contain periplasmic content within their lumen. Enriched with specific envelope proteins, OMVs make for an excellent native-like platform to study these proteins in-situ using biophysical methods. Here, we describe in detail the preparation of OMVs from Escherichia coli, which are luminally enriched with periplasmic proteins and uniformly labeled with stable isotopes (2H and 15N), suitable for the subsequent characterisation of proteins at atomic resolution in their native environment by solution-state NMR spectroscopy. The ability to perform structural studies of periplasmic components in-situ clears the way to reaching an in-depth understanding of the functional and mechanistic details of this unique cellular compartment.
Collapse
Affiliation(s)
- Johannes Thoma
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 405 30 Göteborg, Sweden.,Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Göteborg, Sweden
| | - Björn M Burmann
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 405 30 Göteborg, Sweden.,Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Göteborg, Sweden
| |
Collapse
|
11
|
Horne JE, Brockwell DJ, Radford SE. Role of the lipid bilayer in outer membrane protein folding in Gram-negative bacteria. J Biol Chem 2020; 295:10340-10367. [PMID: 32499369 PMCID: PMC7383365 DOI: 10.1074/jbc.rev120.011473] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/03/2020] [Indexed: 01/09/2023] Open
Abstract
β-Barrel outer membrane proteins (OMPs) represent the major proteinaceous component of the outer membrane (OM) of Gram-negative bacteria. These proteins perform key roles in cell structure and morphology, nutrient acquisition, colonization and invasion, and protection against external toxic threats such as antibiotics. To become functional, OMPs must fold and insert into a crowded and asymmetric OM that lacks much freely accessible lipid. This feat is accomplished in the absence of an external energy source and is thought to be driven by the high thermodynamic stability of folded OMPs in the OM. With such a stable fold, the challenge that bacteria face in assembling OMPs into the OM is how to overcome the initial energy barrier of membrane insertion. In this review, we highlight the roles of the lipid environment and the OM in modulating the OMP-folding landscape and discuss the factors that guide folding in vitro and in vivo We particularly focus on the composition, architecture, and physical properties of the OM and how an understanding of the folding properties of OMPs in vitro can help explain the challenges they encounter during folding in vivo Current models of OMP biogenesis in the cellular environment are still in flux, but the stakes for improving the accuracy of these models are high. OMP folding is an essential process in all Gram-negative bacteria, and considering the looming crisis of widespread microbial drug resistance it is an attractive target. To bring down this vital OMP-supported barrier to antibiotics, we must first understand how bacterial cells build it.
Collapse
Affiliation(s)
- Jim E Horne
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|