1
|
Chang C, Ramirez NA, Bhat AH, Nguyen MT, Kumari P, Ton-That H, Das A, Ton-That H. Biogenesis and Functionality of Sortase-Assembled Pili in Gram-Positive Bacteria. Annu Rev Microbiol 2024; 78:403-423. [PMID: 39141696 DOI: 10.1146/annurev-micro-112123-100908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
A unique class of multimeric proteins made of covalently linked subunits known as pili, or fimbriae, are assembled and displayed on the gram-positive bacterial cell surface by a conserved transpeptidase enzyme named pilus-specific sortase. Sortase-assembled pili are produced by a wide range of gram-positive commensal and pathogenic bacteria inhabiting diverse niches such as the human oral cavity, gut, urogenital tract, and skin. These surface appendages serve many functions, including as molecular adhesins, immuno-modulators, and virulence determinants, that significantly contribute to both the commensal and pathogenic attributes of producer microbes. Intensive genetic, biochemical, physiological, and structural studies have been devoted to unveiling the assembly mechanism and functions, as well as the utility of these proteins in vaccine development and other biotechnological applications. We provide a comprehensive review of these topics and discuss the current status and future prospects of the field.
Collapse
Affiliation(s)
- Chungyu Chang
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, California, USA;
| | - Nicholas A Ramirez
- Molecular Biology Institute, University of California, Los Angeles, California, USA
| | - Aadil H Bhat
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, California, USA;
| | - Minh T Nguyen
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, California, USA;
| | - Poonam Kumari
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, California, USA;
| | - HyLam Ton-That
- Department of Chemistry, University of California, Irvine, California, USA
| | - Asis Das
- Department of Medicine, Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Hung Ton-That
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, USA
- Molecular Biology Institute, University of California, Los Angeles, California, USA
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, California, USA;
| |
Collapse
|
2
|
Zou Z, Ji Y, Schwaneberg U. Empowering Site-Specific Bioconjugations In Vitro and In Vivo: Advances in Sortase Engineering and Sortase-Mediated Ligation. Angew Chem Int Ed Engl 2024; 63:e202310910. [PMID: 38081121 DOI: 10.1002/anie.202310910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Indexed: 12/23/2023]
Abstract
Sortase-mediated ligation (SML) has emerged as a powerful and versatile methodology for site-specific protein conjugation, functionalization/labeling, immobilization, and design of biohybrid molecules and systems. However, the broader application of SML faces several challenges, such as limited activity and stability, dependence on calcium ions, and reversible reactions caused by nucleophilic side-products. Over the past decade, protein engineering campaigns and particularly directed evolution, have been extensively employed to overcome sortase limitations, thereby expanding the potential application of SML in multiple directions, including therapeutics, biorthogonal chemistry, biomaterials, and biosensors. This review provides an overview of achieved advancements in sortase engineering and highlights recent progress in utilizing SML in combination with other state-of-the-art chemical and biological methodologies. The aim is to encourage scientists to employ sortases in their conjugation experiments.
Collapse
Affiliation(s)
- Zhi Zou
- DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstraβe 50, 52074, Aachen, Germany
- RWTH Aachen University, Institute of Biotechnology, Worringerweg 3, 52074, Aachen, Germany
| | - Yu Ji
- RWTH Aachen University, Institute of Biotechnology, Worringerweg 3, 52074, Aachen, Germany
| | - Ulrich Schwaneberg
- DWI - Leibniz-Institute for Interactive Materials, Forckenbeckstraβe 50, 52074, Aachen, Germany
- RWTH Aachen University, Institute of Biotechnology, Worringerweg 3, 52074, Aachen, Germany
| |
Collapse
|
3
|
Cheung NA, Song M, Sue CK, Clubb RT. Quantifying the Kinetics of Pilus-Specific Sortase-Catalyzed Crosslinking Using High-Performance Liquid Chromatography. Methods Mol Biol 2024; 2727:135-143. [PMID: 37815714 DOI: 10.1007/978-1-0716-3491-2_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Gram-positive bacteria display pili whose protein components (pilins) are covalently crosslinked by pilus-specific sortase enzymes. These cysteine transpeptidase enzymes catalyze a transpeptidation reaction that joins the pilins together via lysine isopeptide bonds. The crosslinking reaction that builds the SpaA pilus in Corynebacterium diphtheriae is mediated by the SrtA sortase (CdSrtA) and has been reconstituted in vitro. Here, we present a protocol that can be used to measure the kinetics of CdSrtA-catalyzed crosslinking using high-performance liquid chromatography (HPLC). In principle, this biochemical procedure can be used to measure the in vitro crosslinking activity of any pilus-specific sortase.
Collapse
Affiliation(s)
- Nicole A Cheung
- UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mabel Song
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Christopher K Sue
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
- UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Robert T Clubb
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA.
- UCLA-DOE Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Sue CK, Cheung NA, Mahoney BJ, McConnell SA, Scully JM, Fu JY, Chang C, Ton-That H, Loo JA, Clubb RT. The basal and major pilins in the Corynebacterium diphtheriae SpaA pilus adopt similar structures that competitively react with the pilin polymerase. Biopolymers 2024; 115:e23539. [PMID: 37227047 PMCID: PMC11164409 DOI: 10.1002/bip.23539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/12/2023] [Accepted: 04/24/2023] [Indexed: 05/26/2023]
Abstract
Many species of pathogenic gram-positive bacteria display covalently crosslinked protein polymers (called pili or fimbriae) that mediate microbial adhesion to host tissues. These structures are assembled by pilus-specific sortase enzymes that join the pilin components together via lysine-isopeptide bonds. The archetypal SpaA pilus from Corynebacterium diphtheriae is built by the Cd SrtA pilus-specific sortase, which crosslinks lysine residues within the SpaA and SpaB pilins to build the shaft and base of the pilus, respectively. Here, we show that Cd SrtA crosslinks SpaB to SpaA via a K139(SpaB)-T494(SpaA) lysine-isopeptide bond. Despite sharing only limited sequence homology, an NMR structure of SpaB reveals striking similarities with the N-terminal domain of SpaA (N SpaA) that is also crosslinked by Cd SrtA. In particular, both pilins contain similarly positioned reactive lysine residues and adjacent disordered AB loops that are predicted to be involved in the recently proposed "latch" mechanism of isopeptide bond formation. Competition experiments using an inactive SpaB variant and additional NMR studies suggest that SpaB terminates SpaA polymerization by outcompeting N SpaA for access to a shared thioester enzyme-substrate reaction intermediate.
Collapse
Affiliation(s)
- Christopher K. Sue
- Department of Chemistry and Biochemistry
- UCLA-DOE Institute for Genomics and Proteomics
| | - Nicole A. Cheung
- UCLA-DOE Institute for Genomics and Proteomics
- Molecular Biology Institute
| | - Brendan J. Mahoney
- Department of Chemistry and Biochemistry
- UCLA-DOE Institute for Genomics and Proteomics
| | - Scott A. McConnell
- Department of Chemistry and Biochemistry
- UCLA-DOE Institute for Genomics and Proteomics
| | - Jack M. Scully
- Department of Chemistry and Biochemistry
- UCLA-DOE Institute for Genomics and Proteomics
| | - Janine Y. Fu
- Department of Chemistry and Biochemistry
- UCLA-DOE Institute for Genomics and Proteomics
| | - Chungyu Chang
- Molecular Biology Institute
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
| | - Hung Ton-That
- Molecular Biology Institute
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA 90095
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry
- UCLA-DOE Institute for Genomics and Proteomics
- Molecular Biology Institute
| | - Robert T. Clubb
- Department of Chemistry and Biochemistry
- UCLA-DOE Institute for Genomics and Proteomics
- Molecular Biology Institute
| |
Collapse
|
5
|
Sue CK, Cheung NA, Mahoney BJ, McConnell SA, Scully JM, Fu JY, Chang C, Ton-That H, Loo JA, Clubb RT. The Basal and Major Pilins in the Corynebacterium diphtheriae SpaA Pilus Adopt Similar Structures that Competitively React with the Pilin Polymerase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.23.529612. [PMID: 36865106 PMCID: PMC9980135 DOI: 10.1101/2023.02.23.529612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Many species of pathogenic gram-positive bacteria display covalently crosslinked protein polymers (called pili or fimbriae) that mediate microbial adhesion to host tissues. These structures are assembled by pilus-specific sortase enzymes that join the pilin components together via lysine-isopeptide bonds. The archetypal SpaA pilus from Corynebacterium diphtheriae is built by the Cd SrtA pilus-specific sortase, which crosslinks lysine residues within the SpaA and SpaB pilins to build the shaft and base of the pilus, respectively. Here, we show that Cd SrtA crosslinks SpaB to SpaA via a K139(SpaB)-T494(SpaA) lysine-isopeptide bond. Despite sharing only limited sequence homology, an NMR structure of SpaB reveals striking similarities with the N-terminal domain of SpaA ( N SpaA) that is also crosslinked by Cd SrtA. In particular, both pilins contain similarly positioned reactive lysine residues and adjacent disordered AB loops that are predicted to be involved in the recently proposed "latch" mechanism of isopeptide bond formation. Competition experiments using an inactive SpaB variant and additional NMR studies suggest that SpaB terminates SpaA polymerization by outcompeting N SpaA for access to a shared thioester enzyme-substrate reaction intermediate.
Collapse
|
6
|
Haque M, Forte N, Baker JR. Site-selective lysine conjugation methods and applications towards antibody-drug conjugates. Chem Commun (Camb) 2021; 57:10689-10702. [PMID: 34570125 PMCID: PMC8516052 DOI: 10.1039/d1cc03976h] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Site-selective protein modification is of significant interest in chemical biology research, with lysine residues representing a particularly challenging target. Whilst lysines are popular for bioconjugation, due to their nucleophilicity, solvent accessibility and the stability of the resultant conjugates, their high abundance means site-selectivity is very difficult to achieve. Antibody-drug conjugates (ADCs) present a powerful therapeutic application of protein modification, and have often relied extensively upon lysine bioconjugation for their synthesis. Here we discuss advances in methodologies for achieving site-selective lysine modification, particularly within the context of antibody conjugate construction, including the cysteine-to-lysine transfer (CLT) protocol which we have recently reported.
Collapse
Affiliation(s)
- Muhammed Haque
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.
| | - Nafsika Forte
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.
| | - James R Baker
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.
| |
Collapse
|
7
|
Keeble AH, Yadav VK, Ferla MP, Bauer CC, Chuntharpursat-Bon E, Huang J, Bon RS, Howarth M. DogCatcher allows loop-friendly protein-protein ligation. Cell Chem Biol 2021; 29:339-350.e10. [PMID: 34324879 PMCID: PMC8878318 DOI: 10.1016/j.chembiol.2021.07.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/09/2021] [Accepted: 07/02/2021] [Indexed: 12/14/2022]
Abstract
There are many efficient ways to connect proteins at termini. However, connecting at a loop is difficult because of lower flexibility and variable environment. Here, we have developed DogCatcher, a protein that forms a spontaneous isopeptide bond with DogTag peptide. DogTag/DogCatcher was generated initially by splitting a Streptococcus pneumoniae adhesin. We optimized DogTag/DogCatcher through rational design and evolution, increasing reaction rate by 250-fold and establishing millimolar solubility of DogCatcher. When fused to a protein terminus, DogTag/DogCatcher reacts slower than SpyTag003/SpyCatcher003. However, inserted in loops of a fluorescent protein or enzyme, DogTag reacts much faster than SpyTag003. Like many membrane proteins, the ion channel TRPC5 has no surface-exposed termini. DogTag in a TRPC5 extracellular loop allowed normal calcium flux and specific covalent labeling on cells in 1 min. DogTag/DogCatcher reacts under diverse conditions, at nanomolar concentrations, and to 98% conversion. Loop-friendly ligation should expand the toolbox for creating protein architectures. Spontaneous transamidation at internal sites harnessing a DogTag/DogCatcher pair DogCatcher is designed and bred for high solubility and rapid reaction Within protein loops DogTag can clamp on its partner faster than SpyTag003 Fast and faithful fluorescent labeling of an ion channel at the cell surface via DogTag
Collapse
Affiliation(s)
- Anthony H Keeble
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Vikash K Yadav
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Matteo P Ferla
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Claudia C Bauer
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Eulashini Chuntharpursat-Bon
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Jin Huang
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Robin S Bon
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| | - Mark Howarth
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
8
|
Sortase-assembled pili in Corynebacterium diphtheriae are built using a latch mechanism. Proc Natl Acad Sci U S A 2021; 118:2019649118. [PMID: 33723052 DOI: 10.1073/pnas.2019649118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Gram-positive bacteria assemble pili (fimbriae) on their surfaces to adhere to host tissues and to promote polymicrobial interactions. These hair-like structures, although very thin (1 to 5 nm), exhibit impressive tensile strengths because their protein components (pilins) are covalently crosslinked together via lysine-isopeptide bonds by pilus-specific sortase enzymes. While atomic structures of isolated pilins have been determined, how they are joined together by sortases and how these interpilin crosslinks stabilize pilus structure are poorly understood. Using a reconstituted pilus assembly system and hybrid structural biology methods, we elucidated the solution structure and dynamics of the crosslinked interface that is repeated to build the prototypical SpaA pilus from Corynebacterium diphtheriae We show that sortase-catalyzed introduction of a K190-T494 isopeptide bond between adjacent SpaA pilins causes them to form a rigid interface in which the LPLTG sorting signal is inserted into a large binding groove. Cellular and quantitative kinetic measurements of the crosslinking reaction shed light onto the mechanism of pilus biogenesis. We propose that the pilus-specific sortase in C. diphtheriae uses a latch mechanism to select K190 on SpaA for crosslinking in which the sorting signal is partially transferred from the enzyme to a binding groove in SpaA in order to facilitate catalysis. This process is facilitated by a conserved loop in SpaA, which after crosslinking forms a stabilizing latch that covers the K190-T494 isopeptide bond. General features of the structure and sortase-catalyzed assembly mechanism of the SpaA pilus are likely conserved in Gram-positive bacteria.
Collapse
|
9
|
Anchoring surface proteins to the bacterial cell wall by sortase enzymes: how it started and what we know now. Curr Opin Microbiol 2021; 60:73-79. [PMID: 33611145 DOI: 10.1016/j.mib.2021.01.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/14/2021] [Accepted: 01/27/2021] [Indexed: 11/20/2022]
Abstract
In Gram-positive bacteria, the peptidoglycan serves as a placeholder for surface display of a unique class of monomeric and polymeric proteins, or pili - the precursors of which harbor a cell wall sorting signal with LPXTG motif that is recognized by a conserved transpeptidase enzyme called sortase. Since this original discovery over two decades ago, extensive genetic, biochemical and structural studies have illuminated the basic mechanisms of sortase-mediated cell wall anchoring of surface proteins and pili. We now know how LPXTG-containing surface proteins are folded post-translocationally, how sortase enzymes recognize substrates, and how a remnant of the cell wall sorting signal modulates intramembrane signaling. In this review, we will highlight new findings from a few model experimental paradigms and present future prospects for the field.
Collapse
|