1
|
Xu W, Jia A, Lei Z, Wang J, Jiang H, Wang S, Wang Q. Stimuli-responsive prodrugs with self-immolative linker for improved cancer therapy. Eur J Med Chem 2024; 279:116928. [PMID: 39362023 DOI: 10.1016/j.ejmech.2024.116928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/19/2024] [Accepted: 09/29/2024] [Indexed: 10/05/2024]
Abstract
Self-immolative prodrugs have gained significant attention as an innovative approach for targeted cancer therapy. These prodrugs are engineered to release the active anticancer agents in response to specific triggers within the tumor microenvironment, thereby improving therapeutic precision while reducing systemic toxicity. This review focuses on the molecular architecture and design principles of self-immolative prodrugs, emphasizing the role of stimuli-responsive linkers and activation mechanisms that enable controlled drug release. Recent advancements in this field include the development of prodrugs that incorporate targeting moieties for enhanced site-specificity. Moreover, the review discusses the incorporation of targeting moieties to achieve site-specific drug delivery, thereby improving the selectivity of treatment. By summarizing key research from the past five years, this review highlights the potential of self-immolative prodrugs to revolutionize cancer treatment strategies and pave the way for their integration into clinical practice.
Collapse
Affiliation(s)
- Wenting Xu
- Department of Pediatric Intensive Care Medicine, Hainan Women and Children's Medical Center, Haikou, China
| | - Ang Jia
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, China
| | - Zhixian Lei
- Department of Pediatric Intensive Care Medicine, Hainan Women and Children's Medical Center, Haikou, China
| | - Jianing Wang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Hongfei Jiang
- School of Pharmacy, Qingdao University, Qingdao, 266071, China.
| | - Shuai Wang
- Department of Radiotherapy, School of Medical Imaging, Affiliated Hospital of Shandong Second Medical University, Shandong Second Medical University, Weifang, Shandong, China.
| | - Qi Wang
- Department of Pediatric Intensive Care Medicine, Hainan Women and Children's Medical Center, Haikou, China.
| |
Collapse
|
2
|
Ahangarpour M, Brimble MA, Kavianinia I. Late-Stage Desulfurization Enables Rapid and Efficient Solid-Phase Synthesis of Cathepsin-Cleavable Linkers for Antibody-Drug Conjugates. Bioconjug Chem 2024; 35:1007-1014. [PMID: 38874557 DOI: 10.1021/acs.bioconjchem.4c00199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
The synthesis of linker-payloads is a critical step in developing antibody-drug conjugates (ADCs), a rapidly advancing therapeutic approach in oncology. The conventional method for synthesizing cathepsin B-labile dipeptide linkers, which are commonly used in ADC development, involves the solution-phase assembly of cathepsin B-sensitive dipeptides, followed by the installation of self-immolative para-aminobenzyl carbonate to facilitate the attachment of potent cytotoxic payloads. However, this approach is often low yield and laborious, especially when extending the peptide chain with components like glutamic acid to improve mouse serum stability or charged amino acids or poly(ethylene glycol) moieties to enhance linker hydrophilicity. Here, we introduce a novel approach utilizing late-stage desulfurization chemistry, enabling safe, facile, and cost-effective access to the cathepsin B-cleavable linker, Val-Ala-PABC-MMAE, on resin for the first time.
Collapse
Affiliation(s)
- Marzieh Ahangarpour
- School of Chemical Sciences, The University of Auckland, 23 Symonds St., Auckland 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland, 23 Symonds St., Auckland 1010, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
| | - Iman Kavianinia
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
| |
Collapse
|
3
|
Chen P, Yang W, Mochida Y, Li S, Hong T, Kinoh H, Kataoka K, Cabral H. Selective Intracellular Delivery of Antibodies in Cancer Cells with Nanocarriers Sensing Endo/Lysosomal Enzymatic Activity. Angew Chem Int Ed Engl 2024; 63:e202317817. [PMID: 38342757 DOI: 10.1002/anie.202317817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/13/2024]
Abstract
The differential enzymatic activity in the endo/lysosomes of particular cells could trigger targeted endosomal escape functions, enabling selective intracellular protein delivery. However, this strategy may be jeopardized due to protein degradation during endosomal trafficking. Herein, using custom made fluorescent probes to assess the endosomal activity of cathepsin B (CTSB) and protein degradation, we found that certain cancer cells with hyperacidified endosomes grant a spatiotemporal window where CTSB activity surpass protein digestion. This inspired the engineering of antibody-loaded polymeric nanocarriers having CTSB-activatable endosomal escape ability. The nanocarriers selectively escaped from the endo/lysosomes in the cells with high endosomal CTSB activity and delivered active antibodies to intracellular targets. This study provides a viable strategy for cell-specific protein delivery using stimuli-responsive nanocarriers with controlled endosomal escape.
Collapse
Affiliation(s)
- Pengwen Chen
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Wenqian Yang
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yuki Mochida
- Innovation Center of Nanomedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki, 210-0821, Japan
- Department of Advanced Nanomedical Engineering, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Shangwei Li
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Taehun Hong
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroaki Kinoh
- Innovation Center of Nanomedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki, 210-0821, Japan
| | - Kazunori Kataoka
- Innovation Center of Nanomedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki, 210-0821, Japan
| | - Horacio Cabral
- Department of Bioengineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
4
|
Yin X, Zhuang Y, Song H, Xu Y, Zhang F, Cui J, Zhao L, Yu Y, Zhang Q, Ye J, Chen Y, Han Y. Antibody-platinum (IV) prodrugs conjugates for targeted treatment of cutaneous squamous cell carcinoma. J Pharm Anal 2024; 14:389-400. [PMID: 38618248 PMCID: PMC11010626 DOI: 10.1016/j.jpha.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/07/2023] [Accepted: 11/01/2023] [Indexed: 04/16/2024] Open
Abstract
Antibody-drug conjugates (ADCs) are a new type of targeting antibodies that conjugate with highly toxic anticancer drugs via chemical linkers to exert high specificity and efficient killing of tumor cells, thereby attracting considerable attention in precise oncology therapy. Cetuximab (Cet) is a typical antibody that offers the benefits of good targeting and safety for individuals with advanced and inoperable cutaneous squamous cell carcinoma (cSCC); however, its anti-tumor activity is limited to a single use. Cisplatin (CisPt) shows good curative effects; however, its adverse effects and non-tumor-targeting ability are major drawbacks. In this study, we designed and developed a new ADC based on a new cytotoxic platinum (IV) prodrug (C8Pt(IV)) and Cet. The so-called antibody-platinum (IV) prodrugs conjugates, named Cet-C8Pt(IV), showed excellent tumor targeting in cSCC. Specifically, it accurately delivered C8Pt(IV) into tumor cells to exert the combined anti-tumor effect of Cet and CisPt. Herein, metabolomic analysis showed that Cet-C8Pt(IV) promoted cellular apoptosis and increased DNA damage in cSCC cells by affecting the vitamin B6 metabolic pathway in tumor cells, thereby further enhancing the tumor-killing ability and providing a new strategy for clinical cancer treatment using antibody-platinum (IV) prodrugs conjugates.
Collapse
Affiliation(s)
- Xiangye Yin
- Department of Plastic and Reconstructive Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yingjie Zhuang
- Department of Plastic and Reconstructive Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Haiqin Song
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200023, China
| | - Yujian Xu
- Department of Plastic and Reconstructive Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Fan Zhang
- Department of Plastic and Reconstructive Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jianxin Cui
- Department of Plastic and Reconstructive Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Lei Zhao
- Department of Plastic and Reconstructive Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yingjie Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qixu Zhang
- Department of Plastic Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jun Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Youbai Chen
- Department of Plastic and Reconstructive Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yan Han
- Department of Plastic and Reconstructive Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| |
Collapse
|
5
|
Román T, Acosta G, de la Torre BG, Cárdenas C, Guzmán F, Albericio F. Improving 2-Chlorotrityl Chloride (2-CTC) Resin Activation. Methods Protoc 2023; 6:82. [PMID: 37736965 PMCID: PMC10514796 DOI: 10.3390/mps6050082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 09/23/2023] Open
Abstract
Used in solid-phase peptide synthesis (SPPS) for peptides with an acid termination, the 2-chlorotrityl chloride (2-CTC) resin is highly susceptible to moisture, leading to reduced resin loading and lower synthetic yields. It is therefore recommended that the resin be activated with thionyl chloride (SOCl2) before peptide assembly. Here we present an optimized procedure for resin activation that minimizes the use of SOCl2 as the activation reagent and reduces the activation time. Additionally, we demonstrate the feasibility of reusing the 2-CTC resin when following the activation protocol, achieving comparable results to the first usage of the resin. Moreover, we achieved different degrees of resin activation by varying the amount of SOCl2. For instance, the use of 2% SOCl2 in anhydrous dichloromethane (DCM) allowed up to 44% activation of the resin, thereby making it suitable for the synthesis of longer peptides. Alternatively, employing 25% SOCl2 in anhydrous DCM resulted in up to 80% activation with a reaction time of only 5 min in both cases.
Collapse
Affiliation(s)
- Tanya Román
- Núcleo Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile; (T.R.); (C.C.); (F.G.)
- Doctorado en Biotecnología, Pontificia Universidad Católica de Valparaíso, Universidad Técnica Federico Santa María, Valparaíso 2373223, Chile
- Department of Organic Chemistry and CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, University of Barcelona, 08028 Barcelona, Spain;
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Gerardo Acosta
- Department of Organic Chemistry and CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, University of Barcelona, 08028 Barcelona, Spain;
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Beatriz G. de la Torre
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa;
| | - Constanza Cárdenas
- Núcleo Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile; (T.R.); (C.C.); (F.G.)
| | - Fanny Guzmán
- Núcleo Biotecnología Curauma, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile; (T.R.); (C.C.); (F.G.)
| | - Fernando Albericio
- Department of Organic Chemistry and CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, University of Barcelona, 08028 Barcelona, Spain;
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Westville, Durban 4000, South Africa
| |
Collapse
|
6
|
Mthembu SN, Chakraborty A, Schönleber R, Albericio F, de la Torre BG. Solid-Phase Synthesis of C-Terminus Cysteine Peptide Acids. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Sinenhlanhla N. Mthembu
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Westville, Durban 4000, South Africa
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| | - Amit Chakraborty
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Westville, Durban 4000, South Africa
| | | | - Fernando Albericio
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Westville, Durban 4000, South Africa
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, and Department of Organic Chemistry, University of Barcelona, Barcelona 08028, Spain
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
| | - Beatriz G. de la Torre
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Westville, Durban 4000, South Africa
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4041, South Africa
| |
Collapse
|
7
|
Wang Y, Xie F, Liu L, Xu X, Fan S, Zhong W, Zhou X. Development of applicable thiol-linked antibody-drug conjugates with improved stability and therapeutic index. Drug Deliv 2022; 29:754-766. [PMID: 35244495 PMCID: PMC8933021 DOI: 10.1080/10717544.2022.2039807] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Maleimides are typically applicable for coupling with reactive thiol moieties of antibodies in antibody–drug conjugates (ADCs) via the thiol-Michael click chemistry. Even so, the thiosuccinimide group produced in ADCs is unstable under physiological conditions, which is a unresolved issue in the ADC industry that can cause serious off-target toxicity. Committed to solving the stability defects of traditional thiosuccinimide-containing ADCs, we explored a series of linkers based on the ring-opening hydrolysates of thiosuccinimide. Meanwhile, a type of linkers based on maleamic methyl ester were used to conjugate the popular monomethyl auristatin E to an anti-HER2 antibody to generate the target ADCs, which enhances the stability and do not need to change the structure of the ideal stable metabolite of traditional ADCs. In vivo studies demonstrate that our preferred ADC mil40-12b not only has better efficacy than traditional ADCs but also exhibits better safety parameters in mice. For example, complete tumor regression can still be achieved even when the dose is halved (2.5 mg/kg), and the maximum tolerable dose is increased by 40 mg/kg. This strategy is expected to provide an applicable tool for the construction of thiol-linked ADCs with improved therapeutic index.
Collapse
Affiliation(s)
- Yanming Wang
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Fei Xie
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Lianqi Liu
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xin Xu
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Shiyong Fan
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Wu Zhong
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xinbo Zhou
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
8
|
Pryyma A, Matinkhoo K, Bu YJ, Merkens H, Zhang Z, Bénard F, Perrin DM. Synthesis and preliminary evaluation of octreotate conjugates of bioactive synthetic amatoxins for targeting somatostatin receptor (sstr2) expressing cells. RSC Chem Biol 2022; 3:69-78. [PMID: 35128410 PMCID: PMC8729174 DOI: 10.1039/d1cb00036e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 09/27/2021] [Indexed: 11/28/2022] Open
Abstract
Targeted cancer therapy represents a paradigm-shifting approach that aims to deliver a toxic payload selectively to target-expressing cells thereby sparing normal tissues the off-target effects associated with traditional chemotherapeutics. Since most targeted constructs rely on standard microtubule inhibitors or DNA-reactive molecules as payloads, new toxins that inhibit other intracellular targets are needed to realize the full potential of targeted therapy. Among these new payloads, α-amanitin has gained attraction as a payload in targeted therapy. Here, we conjugate two synthetic amanitins at different sites to demonstrate their utility as payloads in peptide drug conjugates (PDCs). As an exemplary targeting agent, we chose octreotate, a well-studied somatostatin receptor (sstr2) peptide agonist for the conjugation to synthetic amatoxins via three tailor-built linkers. The linker chemistry permitted the evaluation of one non-cleavable and two cleavable self-immolative conjugates. The immolating linkers were chosen to take advantage of either the reducing potential of the intracellular environment or the high levels of lysosomal proteases in tumor cells to trigger toxin release. Cell-based assays on target-positive Ar42J cells revealed target-specific reduction in viability with up to 1000-fold enhancement in bioactivity compared to the untargeted amatoxins. Altogether, this preliminary study enabled the development of a highly modular synthetic platform for the construction of amanitin-based conjugates that can be readily extended to various targeting moieties.
Collapse
Affiliation(s)
- Alla Pryyma
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver BC V6T 1Z1 Canada
| | - Kaveh Matinkhoo
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver BC V6T 1Z1 Canada
| | - Yong Jia Bu
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver BC V6T 1Z1 Canada
| | - Helen Merkens
- Department of Molecular Oncology, BC Cancer Vancouver BC V5Z 1L3 Canada
| | - Zhengxing Zhang
- Department of Molecular Oncology, BC Cancer Vancouver BC V5Z 1L3 Canada
| | - Francois Bénard
- Department of Molecular Oncology, BC Cancer Vancouver BC V5Z 1L3 Canada
| | - David M Perrin
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver BC V6T 1Z1 Canada
| |
Collapse
|
9
|
Ponomariov M, Shabat D, Green O. Universal Access to Protease Chemiluminescent Probes through Solid-Phase Synthesis. Bioconjug Chem 2021; 32:2134-2140. [PMID: 34549945 PMCID: PMC8532118 DOI: 10.1021/acs.bioconjchem.1c00384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Indexed: 12/27/2022]
Abstract
Protease chemiluminescent probes exhibit extremely high detection sensitivity for monitoring activity of various proteolytic enzymes. However, their synthesis, performed in solution, involves multiple synthetic and purification steps, thereby generating a major limitation for rapid preparation of such probes with diverse substrate scope. To overcome this limitation, we developed a general solid-phase-synthetic approach to prepare chemiluminescent protease probes, by peptide elongation, performed on an immobilized chemiluminescent enol-ether precursor. The enol-ether precursor is immobilized on a 2-chlorotrityl-chloride resin through an acrylic acid substituent by an acid-labile ester linkage. Next, a stepwise elongation of the peptide is performed using standard Fmoc solid-phase peptide synthesis. After cleavage of the peptide-enol-ether precursor from the resin, by hexafluoro-iso-propanol, a simple oxidation of the enol-ether yields the final chemiluminescent dioxetane protease probe. To validate the applicability of the methodology, two chemiluminescent probes were efficiently prepared by solid-phase synthesis with dipeptidyl substrates designed for activation by aminopeptidase and cathepsin-B proteases. A more complex example was demonstrated by the synthesis of a chemiluminescent probe for detection of PSA, which includes a peptidyl substrate of six amino acids. We anticipate that the described methodology would be useful for rapid preparation of chemiluminescent protease probes with vast and diverse peptidyl substrates.
Collapse
Affiliation(s)
- Maria Ponomariov
- School
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Doron Shabat
- School
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Ori Green
- School
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|