1
|
Okamura H, Yao T, Nagatsugi F. Reversible Control of Gene Expression by Guest-Modified Adenosines in a Cell-Free System via Host-Guest Interaction. J Am Chem Soc 2024; 146:18513-18523. [PMID: 38941287 PMCID: PMC11240562 DOI: 10.1021/jacs.4c04262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 06/30/2024]
Abstract
Gene expression technology has become an indispensable tool for elucidating biological processes and developing biotechnology. Cell-free gene expression (CFE) systems offer a fundamental platform for gene expression-based technology, in which the reversible and programmable control of transcription can expand its use in synthetic biology and medicine. This study shows that CFE can be controlled via the host-guest interaction of cucurbit[7]uril (CB[7]) with N6-guest-modified adenosines. These adenosine derivatives were conveniently incorporated into the DNA strand using a post-synthetic approach and formed a selective and stable base pair with complementary thymidine in DNA. Meanwhile, alternate addition of CB[7] and the exchanging guest molecule induced the reversible formation of a duplex structure through the formation and dissociation of a bulky complex on DNA. The kinetics of the reversibility was fine-tuned by changing the size of the modified guest moieties. When incorporated into a specific region of the T7 promoter sequence, the guest-modified adenosines enabled tight and reversible control of in vitro transcription and protein expression in the CFE system. This study marks the first utility of the host-guest interaction for gene expression control in the CFE system, opening new avenues for developing DNA-based technology, particularly for precise gene therapy and DNA nanotechnology.
Collapse
Affiliation(s)
- Hidenori Okamura
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
- Department
of Chemistry, Graduate School of Science, Tohoku University, Miyagi 980-8578, Japan
| | - Takeyuki Yao
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
- Department
of Chemistry, Graduate School of Science, Tohoku University, Miyagi 980-8578, Japan
| | - Fumi Nagatsugi
- Institute
of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
- Department
of Chemistry, Graduate School of Science, Tohoku University, Miyagi 980-8578, Japan
| |
Collapse
|
2
|
Blanco-Gómez A, Díaz-Abellás M, Montes de Oca I, Peinador C, Pazos E, García MD. Host-Guest Stimuli-Responsive Click Chemistry. Chemistry 2024; 30:e202400743. [PMID: 38597381 DOI: 10.1002/chem.202400743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/11/2024]
Abstract
Click chemistry has reached its maturity as the weapon of choice for the irreversible ligation of molecular fragments, with over 20 years of research resulting in the development or improvement of highly efficient kinetically controlled conjugation reactions. Nevertheless, traditional click reactions can be disadvantageous not only in terms of efficiency (side products, slow kinetics, air/water tolerance, etc.), but also because they completely avoid the possibility to reversibly produce and control bound/unbound states. Recently, non-covalent click chemistry has appeared as a more efficient alternative, in particular by using host-guest self-assembled systems of high thermodynamic stability and kinetic lability. This review discusses the implementation of molecular switches in the development of such non-covalent ligation processes, resulting in what we have termed stimuli-responsive click chemistry, in which the bound/unbound constitutional states of the system can be favored by external stimulation, in particular using host-guest complexes. As we exemplify with handpicked selected examples, these supramolecular systems are well suited for the development of human-controlled molecular conjugation, by coupling thermodynamically regulated processes with appropriate temporally resolved extrinsic control mechanisms, thus mimicking nature and advancing our efforts to develop a more function-oriented chemical synthesis.
Collapse
Affiliation(s)
- Arturo Blanco-Gómez
- CICA - Centro Interdisciplinar de Química e Bioloxía and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña, 15071, A Coruña, Spain
| | - Mauro Díaz-Abellás
- CICA - Centro Interdisciplinar de Química e Bioloxía and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña, 15071, A Coruña, Spain
| | - Iván Montes de Oca
- CICA - Centro Interdisciplinar de Química e Bioloxía and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña, 15071, A Coruña, Spain
| | - Carlos Peinador
- CICA - Centro Interdisciplinar de Química e Bioloxía and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña, 15071, A Coruña, Spain
| | - Elena Pazos
- CICA - Centro Interdisciplinar de Química e Bioloxía and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña, 15071, A Coruña, Spain
| | - Marcos D García
- CICA - Centro Interdisciplinar de Química e Bioloxía and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña, 15071, A Coruña, Spain
| |
Collapse
|
3
|
Zaorska E, Malinska M. Cucurbit[7]uril-mediated Histidine Dimerization: Exploring the Structure and Binding Mechanism. Chemistry 2024; 30:e202302250. [PMID: 38055216 DOI: 10.1002/chem.202302250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 12/07/2023]
Abstract
Cucurbit[7,8]urils are known to form inclusion complexes with hydrophobic amino acids such as Trp, Tyr, Phe, and Met, as well as peptides containing these residues at the N-terminus. Despite their widespread use in protein purification, the affinity of histidine (His) for cucurbit[7,8]urils has not been extensively explored. In this study, X-ray diffraction experiments were conducted to investigate the binding of two histidine moieties to the cucurbit[7]uril (CB7) cavity, resulting in a network of π-π and hydrogen bonds. This assembly was found to induce a His pKa shift of ΔpKa=-4. Histidine weakly bound to CB7 or CB8; however, isothermal titration calorimetry revealed micromolar equilibrium dissociation constant values for CB7 and CB8 when bound to dipeptides containing His at the C-terminus. Conversely, dipeptides with His at the N-terminus exhibited millimolar values. Additionally, the His-Gly-Gly tripeptide formed a 2 : 1 complex with CB7. These findings suggest the potential use of histidine and histidine-containing tags in conjunction with CB7 for various biological applications.
Collapse
Affiliation(s)
- Ewelina Zaorska
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| | - Maura Malinska
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland
| |
Collapse
|
4
|
Matsuura K, Inaba H. Photoresponsive peptide materials: Spatiotemporal control of self-assembly and biological functions. BIOPHYSICS REVIEWS 2023; 4:041303. [PMID: 38505425 PMCID: PMC10903425 DOI: 10.1063/5.0179171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/27/2023] [Indexed: 03/21/2024]
Abstract
Peptides work as both functional molecules to modulate various biological phenomena and self-assembling artificial materials. The introduction of photoresponsive units to peptides allows the spatiotemporal remote control of their structure and function upon light irradiation. This article overviews the photoresponsive peptide design, interaction with biomolecules, and applications in self-assembling materials over the last 30 years. Peptides modified with photochromic (photoisomerizable) molecules, such as azobenzene and spiropyran, reversibly photo-controlled the binding to biomolecules and nanostructure formation through self-assembly. Photocleavable molecular units irreversibly control the functions of peptides through cleavage of the main chain and deprotection by light. Photocrosslinking between peptides or between peptides and other biomolecules enhances the structural stability of peptide assemblies and complexes. These photoresponsive peptides spatiotemporally controlled the formation and dissociation of peptide assemblies, gene expressions, protein-drug interactions, protein-protein interactions, liposome deformation and motility, cytoskeleton structure and stability, and cell functions by appropriate light irradiation. These molecular systems can be applied to photo-control biological functions, molecular robots, artificial cells, and next-generation smart drug delivery materials.
Collapse
|
5
|
Xu M, Zhou B, Ding Y, Du S, Su M, Liu H. Programmable Oligonucleotide-Peptide Complexes: Synthesis and Applications. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-021-1265-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Neira I, Peinador C, García MD. CB[7]- and CB[8]-Based [2]-(Pseudo)rotaxanes with Triphenylphosphonium-Capped Threads: Serendipitous Discovery of a New High-Affinity Binding Motif. Org Lett 2022; 24:4491-4495. [PMID: 35514222 PMCID: PMC9251766 DOI: 10.1021/acs.orglett.2c01028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
The synthesis of
new triphenylphosphonium-capped cucurbit[7]uril
(CB[7])- and cucurbit[8]uril (CB[8])-based [2]rotaxanes was achieved
by a simultaneous threading-capping strategy. While the use of CB[7]
produced the designed [2]rotaxane, attempts to obtain the CB[8] analogue
were unsuccessful due to the unexpected strong interaction found between
the host and the phosphonium caps leading to pseudo-heteroternary
host–guest complexes. This unusual binding motif has been extensively
studied experimentally, with results in good agreement with those
obtained by dispersion-corrected DFT methods.
Collapse
Affiliation(s)
- Iago Neira
- Departamento de Química and Centro de Investigaciones Científicas Avanzadas (CICA). Facultad de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Carlos Peinador
- Departamento de Química and Centro de Investigaciones Científicas Avanzadas (CICA). Facultad de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Marcos D García
- Departamento de Química and Centro de Investigaciones Científicas Avanzadas (CICA). Facultad de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| |
Collapse
|
7
|
Dang DT. Molecular Approaches to Protein Dimerization: Opportunities for Supramolecular Chemistry. Front Chem 2022; 10:829312. [PMID: 35211456 PMCID: PMC8861298 DOI: 10.3389/fchem.2022.829312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/14/2022] [Indexed: 11/17/2022] Open
Abstract
Protein dimerization plays a key role in many biological processes. Most cellular events such as enzyme activation, transcriptional cofactor recruitment, signal transduction, and even pathogenic pathways are significantly regulated via protein-protein interactions. Understanding and controlling the molecular mechanisms that regulate protein dimerization is crucial for biomedical applications. The limitations of engineered protein dimerization provide an opportunity for molecular chemistry to induce dimerization of protein in biological events. In this review, molecular control over dimerization of protein and activation in this respect are discussed. The well known molecule glue-based approaches to induced protein dimerization provide powerful tools to modulate the functionality of dimerized proteins and are shortly highlighted. Subsequently metal ion, nucleic acid and host-guest chemistry are brought forward as novel approaches for orthogonal control over dimerization of protein. The specific focus of the review will be on host-guest systems as novel, robust and versatile supramolecular approaches to modulate the dimerization of proteins, using functional proteins as model systems.
Collapse
Affiliation(s)
- Dung Thanh Dang
- Faculty of Biotechnology, Ho Chi Minh City Open University, Ho Chi Minh City, Vietnam
| |
Collapse
|
8
|
Reiss GJ, van Megen M. The twinned crystal structure of [4,4′-bipyridine]-1,1′-diium hexachloridostannate(IV), C10H10N2SnCl6. Z KRIST-NEW CRYST ST 2022. [DOI: 10.1515/ncrs-2021-0443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C10H10N2SnCl6, monoclinic, I2/a (no. 15), a = 7.4941(3) Å, b = 12.8731(4) Å, c = 15.8688(5) Å, β = 93.042(3)°, Z = 4, V = 1528.73(9) Å3, R
gt
(F) = 0.0264, wR
ref = 0.0485, T = 100 K.
Collapse
Affiliation(s)
- Guido J. Reiss
- Institut für Anorganische Chemie und Strukturchemie, Lehrstuhl II: Material- und Strukturforschung, Heinrich-Heine-Universität Düsseldorf , Universitätsstrasse 1, D-40225 Düsseldorf , Germany
| | - Martin van Megen
- Institut für Anorganische Chemie und Strukturchemie, Lehrstuhl II: Material- und Strukturforschung, Heinrich-Heine-Universität Düsseldorf , Universitätsstrasse 1, D-40225 Düsseldorf , Germany
| |
Collapse
|
9
|
Barravecchia L, Neira I, Pazos E, Peinador C, García MD. Amino Acid-Viologen Hybrids: Synthesis, Cucurbituril Host-Guest Chemistry, and Implementation on the Production of Peptides. J Org Chem 2021; 87:760-764. [PMID: 34889610 PMCID: PMC8749954 DOI: 10.1021/acs.joc.1c02040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
We present herein
the development of a series of viologen–amino
acid hybrids, obtained in good yields either by successive alkylations
of 4,4′-bipyridine, or by Zincke reactions followed by a second
alkylation step. The potential of the obtained amino acids has been
exemplified, either as typical guests of the curcubituril family of
hosts (particularly CB[7]/[8]) or as suitable building blocks for
the solution/solid-phase synthesis of two model tripeptides with the
viologen core inserted within their sequences.
Collapse
Affiliation(s)
- Liliana Barravecchia
- Universidade da Coruña, Centro de Investigacións Científicas Avanzadas (CICA), Elviña, 15071 A Coruña, Spain.,Universidade da Coruña, Departamento de Química, Facultade de Ciencias, Zapateira, 15071 A Coruña, Spain
| | - Iago Neira
- Universidade da Coruña, Centro de Investigacións Científicas Avanzadas (CICA), Elviña, 15071 A Coruña, Spain.,Universidade da Coruña, Departamento de Química, Facultade de Ciencias, Zapateira, 15071 A Coruña, Spain
| | - Elena Pazos
- Universidade da Coruña, Centro de Investigacións Científicas Avanzadas (CICA), Elviña, 15071 A Coruña, Spain.,Universidade da Coruña, Departamento de Química, Facultade de Ciencias, Zapateira, 15071 A Coruña, Spain
| | - Carlos Peinador
- Universidade da Coruña, Centro de Investigacións Científicas Avanzadas (CICA), Elviña, 15071 A Coruña, Spain.,Universidade da Coruña, Departamento de Química, Facultade de Ciencias, Zapateira, 15071 A Coruña, Spain
| | - Marcos D García
- Universidade da Coruña, Centro de Investigacións Científicas Avanzadas (CICA), Elviña, 15071 A Coruña, Spain.,Universidade da Coruña, Departamento de Química, Facultade de Ciencias, Zapateira, 15071 A Coruña, Spain
| |
Collapse
|