1
|
Nervig CS, Rice M, Marelli M, Christie RJ, Owen SC. Modular Synthesis of Anti-HER2 Dual-Drug Antibody-Drug Conjugates Demonstrating Improved Toxicity. Bioconjug Chem 2025. [PMID: 39841105 DOI: 10.1021/acs.bioconjchem.4c00398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Antibodies have gained clinical success in the last two decades for the targeted delivery of highly toxic small molecule chemotherapeutics. Yet antibody-drug conjugates (ADCs) often fail in the clinic due to the development of resistance. The delivery of two mechanistically distinct small molecule drugs on one antibody is of increasing interest to overcome these challenges with single-drug ADCs. We have developed a modular synthetic strategy for the construction of a library of 19 dual-drug ADCs where drugs are conjugated through unnatural cyclopentadiene-containing amino acids and native cysteine residues on an anti-HER2 trastuzumab scaffold. Importantly, this strategy utilizes the same functional group on the linker-drug construct; this allows for the facile addition of drugs at either conjugation site and enables the evaluation of different drug-to-antibody ratios and combinations of drug pairs. We tested the library on high- and mid-HER2 expressing cell lines and observed increased toxicity in several dual-drug ADCs compared with single-drug constructs. The strategy developed herein provides a method for the facile synthesis, characterization, and evaluation of dual-payload ADCs. Simultaneous delivery of combinations of drugs with distinct mechanisms of action is critical for the next generation of targeted drug delivery.
Collapse
Affiliation(s)
- Christine S Nervig
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
| | - Megan Rice
- Biologics Engineering, AstraZeneca Oncology R&D, One MedImmune Way, Gaithersburg, Maryland 20878 United States
| | - Marcello Marelli
- Biologics Engineering, AstraZeneca Oncology R&D, One MedImmune Way, Gaithersburg, Maryland 20878 United States
| | - R James Christie
- Biologics Engineering, AstraZeneca Oncology R&D, One MedImmune Way, Gaithersburg, Maryland 20878 United States
| | - Shawn C Owen
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112 United States
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, Utah 84112, United States
- Department of Biomedical Engineering, University of Utah Salt Lake City, Utah 84112, United States
| |
Collapse
|
2
|
Tao J, Gu Y, Zhou W, Wang Y. Dual-payload antibody-drug conjugates: Taking a dual shot. Eur J Med Chem 2025; 281:116995. [PMID: 39481229 DOI: 10.1016/j.ejmech.2024.116995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024]
Abstract
Antibody-drug conjugates (ADCs) enable the precise delivery of cytotoxic agents by conjugating small-molecule drugs with monoclonal antibodies (mAbs). Over recent decades, ADCs have demonstrated substantial clinical efficacy. However, conventional ADCs often encounter various clinical challenges, including suboptimal efficacy, significant adverse effects, and the development of drug resistance, limiting their broader clinical application. Encouragingly, a next-generation approach-dual-payload ADCs-has emerged as a pioneering strategy to address these challenges. Dual-payload ADCs are characterized by the incorporation of two distinct therapeutic payloads on the same antibody, enhancing treatment efficacy by promoting synergistic effects and reducing the risk of drug resistance. However, the synthesis of dual-payload ADCs is complex due to the presence of multiple functional groups on antibodies. In this review, we comprehensively summarize the construction strategies for dual-payload ADCs, ranging from the design of ADC components to orthogonal chemistry. The subsequent sections explore current challenges and propose prospective strategies, highlighting recent advancements in dual-payload ADC research, thereby laying the foundation for the development of next-generation ADCs.
Collapse
Affiliation(s)
- Junjie Tao
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yilin Gu
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wei Zhou
- Mabwell (Shanghai) Bioscience Co., Ltd, Shanghai, 201210, China.
| | - Yuxi Wang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China.
| |
Collapse
|
3
|
Moore EJ, Rice M, Roy G, Zhang W, Marelli M. Emerging conjugation strategies and protein engineering technologies aim to improve ADCs in the fight against cancer. Xenobiotica 2024; 54:469-491. [PMID: 39329289 DOI: 10.1080/00498254.2024.2339993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/22/2024] [Accepted: 04/03/2024] [Indexed: 09/28/2024]
Abstract
Antibody drug conjugates are an exciting therapeutic modality that combines the targeting specificity of antibodies with potent cytotoxins to selectively kill cancer cells. The targeting component improves efficacy and protects non-target cells from the harmful effects of the payload. To date 15 ADCs have been approved by regulatory agencies for commercial use and shown to be valuable tools in the treatment of cancer.The assembly of an ADC requires the chemical ligation of a linker-payload to an antibody. Conventional conjugation methods targeting accessible lysines and cysteines have produced all the ADCs currently on the market. While successful, technologies aiming to improve the homogeneity and stability of ADCs are being developed and tested.Here we provide a review of developing methods for ADC construction. These include enzymatic methods, oligosaccharide remodelling, and technologies using genetic code expansion techniques. The virtues and limitations of each technology are discussed.Emerging conjugation technologies are being applied to produce new formats of ADCs with enhanced functionality including bispecific ADCs, dual-payload ADCs, and nanoparticles for targeted drug delivery. The benefits of these novel formats are highlighted.
Collapse
|
4
|
Jiang M, Li Q, Xu B. Spotlight on ideal target antigens and resistance in antibody-drug conjugates: Strategies for competitive advancement. Drug Resist Updat 2024; 75:101086. [PMID: 38677200 DOI: 10.1016/j.drup.2024.101086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024]
Abstract
Antibody-drug conjugates (ADCs) represent a novel and promising approach in targeted therapy, uniting the specificity of antibodies that recognize specific antigens with payloads, all connected by the stable linker. These conjugates combine the best targeted and cytotoxic therapies, offering the killing effect of precisely targeting specific antigens and the potent cell-killing power of small molecule drugs. The targeted approach minimizes the off-target toxicities associated with the payloads and broadens the therapeutic window, enhancing the efficacy and safety profile of cancer treatments. Within precision oncology, ADCs have garnered significant attention as a cutting-edge research area and have been approved to treat a range of malignant tumors. Correspondingly, the issue of resistance to ADCs has gradually come to the fore. Any dysfunction in the steps leading to the ADCs' action within tumor cells can lead to the development of resistance. A deeper understanding of resistance mechanisms may be crucial for developing novel ADCs and exploring combination therapy strategies, which could further enhance the clinical efficacy of ADCs in cancer treatment. This review outlines the brief historical development and mechanism of ADCs and discusses the impact of their key components on the activity of ADCs. Furthermore, it provides a detailed account of the application of ADCs with various target antigens in cancer therapy, the categorization of potential resistance mechanisms, and the current state of combination therapies. Looking forward, breakthroughs in overcoming technical barriers, selecting differentiated target antigens, and enhancing resistance management and combination therapy strategies will broaden the therapeutic indications for ADCs. These progresses are anticipated to advance cancer treatment and yield benefits for patients.
Collapse
Affiliation(s)
- Mingxia Jiang
- Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiao Li
- Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Binghe Xu
- Department of Medical Oncology, State Key Laboratory of Mocelular Oncology, National Cancer Center, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
5
|
Parit S, Manchare A, Gholap AD, Mundhe P, Hatvate N, Rojekar S, Patravale V. Antibody-Drug Conjugates: A promising breakthrough in cancer therapy. Int J Pharm 2024; 659:124211. [PMID: 38750981 DOI: 10.1016/j.ijpharm.2024.124211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 06/03/2024]
Abstract
Antibody-drug conjugates (ADCs) provide effective cancer treatment through the selective delivery of cytotoxic payloads to the cancer cells. They offer unparalleled precision and specificity in directing drugs to cancer cells while minimizing off-target effects. Despite several advantages, there is a requirement for innovations in the molecular design of ADC owing to drug resistance, cancer heterogeneity along the adverse effects of treatment. The review critically analyses ADC function mechanisms, unraveling the intricate interplay between antibodies, linkers, and payloads in facilitating targeted drug delivery to cancer cells. The article also highlights notable advancements in antibody engineering, which aid in creating highly selective and potent ADCs. Additionally, the review details significant progress in clinical ADC development with an in-depth examination of pivotal trials and approved formulations. Antibody Drug Conjugates (ADCs) are a ground-breaking approach to targeted drug delivery, especially in cancer treatment. They offer unparalleled precision and specificity in directing drugs to cancer cells while minimizing off-target effects. This review provides a comprehensive examination of the current state of ADC development, covering their design, mechanisms of action, and clinical applications. The article emphasizes the need for greater precision in drug delivery and explains why ADCs are necessary.
Collapse
Affiliation(s)
- Swapnali Parit
- Institute of Chemical Technology, Marathwada Campus, Jalna 431203, Maharashtra, India
| | - Ajit Manchare
- Institute of Chemical Technology, Marathwada Campus, Jalna 431203, Maharashtra, India
| | - Amol D Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India
| | - Prashant Mundhe
- Institute of Chemical Technology, Marathwada Campus, Jalna 431203, Maharashtra, India
| | - Navnath Hatvate
- Institute of Chemical Technology, Marathwada Campus, Jalna 431203, Maharashtra, India
| | - Satish Rojekar
- Institute of Chemical Technology, Marathwada Campus, Jalna 431203, Maharashtra, India; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India.
| |
Collapse
|
6
|
Ma S, Chen H, Liu S, Huang X, Mo T, Liu WQ, Zhang W, Ding W, Zhang Q. A gene-encoded aldehyde tag repurposed from RiPP cyclophane-forming pathway. Bioorg Med Chem Lett 2024; 101:129653. [PMID: 38360420 DOI: 10.1016/j.bmcl.2024.129653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/19/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
Gene-encoded aldehyde tag technology has been widely utilized in protein bioorthogonal chemistry and biotechnological application. Herein, we report utilization of the promiscuous rSAM cyclophane synthase SjiB involved in triceptide biosynthesis as a dedicated and highly efficient formylglycine synthase. The new aldehyde tag sequence in this system, YQSSI, is biosynthetically orthogonal to the known aldehyde tag (C/S)x(P/A)xR. The potential use of SjiB/YQSSI aldehyde tag system was further validated in fluorescent labelling of model proteins.
Collapse
Affiliation(s)
- Suze Ma
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Heng Chen
- Department of Chemistry, Fudan University, Shanghai 200433, China; State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shuxun Liu
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Xuedong Huang
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Tianlu Mo
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Wan-Qiu Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wei Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Wei Ding
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qi Zhang
- Department of Chemistry, Fudan University, Shanghai 200433, China.
| |
Collapse
|
7
|
Dudchak R, Podolak M, Holota S, Szewczyk-Roszczenko O, Roszczenko P, Bielawska A, Lesyk R, Bielawski K. Click chemistry in the synthesis of antibody-drug conjugates. Bioorg Chem 2024; 143:106982. [PMID: 37995642 DOI: 10.1016/j.bioorg.2023.106982] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/31/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Antibody-Drug Conjugates (ADC) are a new class of anticancer therapeutics with immense potential. They have been rapidly advancing in the last two decades. This fast speed of development has become possible due to several new technologies and methods. One of them is Click Chemistry, an approach that was created only two decades ago, but already is actively utilized for bioconjugation, material science and drug discovery. In this review, we researched the impact of Click Chemistry reactions on the synthesis and development of ADCs. The information about the most frequently utilized reactions, such as Michael's addition, Copper-catalyzed azide-alkyne [3+2] cycloaddition (CuAAC), Strain-promoted azide-alkyne [3+2] cycloaddition (SPAAC), oxime bond formation, hydrazine-iso-Pictet-Spengler Ligation (HIPS), Diels-Alder reactions have been summarized. The implementation of thiol-maleimide Click Chemistry reaction in the synthesis of numerous FDA-approved Antibody-Drug Conjugates has been reported. The data amassed in the present review provides better understanding of the importance of Click Chemistry in the synthesis, development and improvement of the Antibody-Drug Conjugates and it will be helpful for further researches related to ADCs.
Collapse
Affiliation(s)
- Rostyslav Dudchak
- Department of Synthesis and Technology of Drugs, Faculty of Pharmacy, Medical University of Bialystok, Jana Kilińskiego 1, Bialystok 15-089, Poland
| | - Magdalena Podolak
- Department of Biotechnology, Faculty of Pharmacy, Medical University of Bialystok, Jana Kilińskiego 1, Bialystok 15-089, Poland
| | - Serhii Holota
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv 79010, Ukraine
| | - Olga Szewczyk-Roszczenko
- Department of Synthesis and Technology of Drugs, Faculty of Pharmacy, Medical University of Bialystok, Jana Kilińskiego 1, Bialystok 15-089, Poland
| | - Piotr Roszczenko
- Department of Biotechnology, Faculty of Pharmacy, Medical University of Bialystok, Jana Kilińskiego 1, Bialystok 15-089, Poland
| | - Anna Bielawska
- Department of Biotechnology, Faculty of Pharmacy, Medical University of Bialystok, Jana Kilińskiego 1, Bialystok 15-089, Poland
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv 79010, Ukraine.
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Faculty of Pharmacy, Medical University of Bialystok, Jana Kilińskiego 1, Bialystok 15-089, Poland
| |
Collapse
|
8
|
Liu L, Gray JL, Tate EW, Yang A. Bacterial enzymes: powerful tools for protein labeling, cell signaling, and therapeutic discovery. Trends Biotechnol 2023; 41:1385-1399. [PMID: 37328400 DOI: 10.1016/j.tibtech.2023.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/01/2023] [Accepted: 05/16/2023] [Indexed: 06/18/2023]
Abstract
Bacteria have evolved a diverse set of enzymes that enable them to subvert host defense mechanisms as well as to form part of the prokaryotic immune system. Due to their unique and varied biochemical activities, these bacterial enzymes have emerged as key tools for understanding and investigating biological systems. In this review, we summarize and discuss some of the most prominent bacterial enzymes used for the site-specific modification of proteins, in vivo protein labeling, proximity labeling, interactome mapping, signaling pathway manipulation, and therapeutic discovery. Finally, we provide a perspective on the complementary advantages and limitations of using bacterial enzymes compared with chemical probes for exploring biological systems.
Collapse
Affiliation(s)
- Lu Liu
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Janine L Gray
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Edward W Tate
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK.
| | - Aimin Yang
- School of Life Sciences, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
9
|
Alexander AK, Elshahawi SI. Promiscuous Enzymes for Residue-Specific Peptide and Protein Late-Stage Functionalization. Chembiochem 2023; 24:e202300372. [PMID: 37338668 PMCID: PMC10496146 DOI: 10.1002/cbic.202300372] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 06/21/2023]
Abstract
The late-stage functionalization of peptides and proteins holds significant promise for drug discovery and facilitates bioorthogonal chemistry. This selective functionalization leads to innovative advances in in vitro and in vivo biological research. However, it is a challenging endeavor to selectively target a certain amino acid or position in the presence of other residues containing reactive groups. Biocatalysis has emerged as a powerful tool for selective, efficient, and economical modifications of molecules. Enzymes that have the ability to modify multiple complex substrates or selectively install nonnative handles have wide applications. Herein, we highlight enzymes with broad substrate tolerance that have been demonstrated to modify a specific amino acid residue in simple or complex peptides and/or proteins at late-stage. The different substrates accepted by these enzymes are mentioned together with the reported downstream bioorthogonal reactions that have benefited from the enzymatic selective modifications.
Collapse
Affiliation(s)
- Ashley K Alexander
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA 92618, USA
| | - Sherif I Elshahawi
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA 92618, USA
| |
Collapse
|
10
|
Debon A, Siirola E, Snajdrova R. Enzymatic Bioconjugation: A Perspective from the Pharmaceutical Industry. JACS AU 2023; 3:1267-1283. [PMID: 37234110 PMCID: PMC10207132 DOI: 10.1021/jacsau.2c00617] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 05/27/2023]
Abstract
Enzymes have firmly established themselves as bespoke catalysts for small molecule transformations in the pharmaceutical industry, from early research and development stages to large-scale production. In principle, their exquisite selectivity and rate acceleration can also be leveraged for modifying macromolecules to form bioconjugates. However, available catalysts face stiff competition from other bioorthogonal chemistries. In this Perspective, we seek to illuminate applications of enzymatic bioconjugation in the face of an expanding palette of new drug modalities. With these applications, we wish to highlight some examples of current successes and pitfalls of using enzymes for bioconjugation along the pipeline and try to illustrate opportunities for further development.
Collapse
Affiliation(s)
- Aaron Debon
- Global
Discovery Chemistry, Novartis Institute
for Biomedical Research, Basel 4108, Switzerland
| | - Elina Siirola
- Global
Discovery Chemistry, Novartis Institute
for Biomedical Research, Basel 4108, Switzerland
| | - Radka Snajdrova
- Global
Discovery Chemistry, Novartis Institute
for Biomedical Research, Basel 4108, Switzerland
| |
Collapse
|
11
|
André AS, Dias JNR, Aguiar S, Nogueira S, Bule P, Carvalho JI, António JPM, Cavaco M, Neves V, Oliveira S, Vicente G, Carrapiço B, Braz BS, Rütgen B, Gano L, Correia JDG, Castanho M, Goncalves J, Gois PMP, Gil S, Tavares L, Aires-da-Silva F. Rabbit derived VL single-domains as promising scaffolds to generate antibody-drug conjugates. Sci Rep 2023; 13:4837. [PMID: 36964198 PMCID: PMC10038998 DOI: 10.1038/s41598-023-31568-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/14/2023] [Indexed: 03/26/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are among the fastest-growing classes of therapeutics in oncology. Although ADCs are in the spotlight, they still present significant engineering challenges. Therefore, there is an urgent need to develop more stable and effective ADCs. Most rabbit light chains have an extra disulfide bridge, that links the variable and constant domains, between Cys80 and Cys171, which is not found in the human or mouse. Thus, to develop a new generation of ADCs, we explored the potential of rabbit-derived VL-single-domain antibody scaffolds (sdAbs) to selectively conjugate a payload to Cys80. Hence, a rabbit sdAb library directed towards canine non-Hodgkin lymphoma (cNHL) was subjected to in vitro and in vivo phage display. This allowed the identification of several highly specific VL-sdAbs, including C5, which specifically target cNHL cells in vitro and present promising in vivo tumor uptake. C5 was selected for SN-38 site-selective payload conjugation through its exposed free Cys80 to generate a stable and homogenous C5-DAB-SN-38. C5-DAB-SN-38 exhibited potent cytotoxicity activity against cNHL cells while inhibiting DNA-TopoI activity. Overall, our strategy validates a platform to develop a novel class of ADCs that combines the benefits of rabbit VL-sdAb scaffolds and the canine lymphoma model as a powerful framework for clinically translation of novel therapeutics for cancer.
Collapse
Affiliation(s)
- Ana S André
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477, Lisbon, Portugal
| | - Joana N R Dias
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477, Lisbon, Portugal
| | - Sandra Aguiar
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477, Lisbon, Portugal
| | - Sara Nogueira
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477, Lisbon, Portugal
| | - Pedro Bule
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477, Lisbon, Portugal
| | - Joana Inês Carvalho
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - João P M António
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Marco Cavaco
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
| | - Vera Neves
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
| | - Soraia Oliveira
- Technophage SA, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
| | - Gonçalo Vicente
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Universidade de Lisboa, Av. da Universidade Técnica, 1300-477, Lisboa, Portugal
| | - Belmira Carrapiço
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477, Lisbon, Portugal
| | - Berta São Braz
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477, Lisbon, Portugal
| | - Barbara Rütgen
- Department of Pathobiology, Clinical Pathology Unit, University of Veterinary Medicine, Vienna, Austria
| | - Lurdes Gano
- Centro de Ciências e Tecnologias Nucleares, Departamento de Engenharia e Ciências Nucleares, IST, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
| | - João D G Correia
- Centro de Ciências e Tecnologias Nucleares, Departamento de Engenharia e Ciências Nucleares, IST, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
| | - Miguel Castanho
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
| | - Joao Goncalves
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Pedro M P Gois
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Solange Gil
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477, Lisbon, Portugal
| | - Luís Tavares
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477, Lisbon, Portugal
| | - Frederico Aires-da-Silva
- CIISA-Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477, Lisbon, Portugal.
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477, Lisbon, Portugal.
| |
Collapse
|
12
|
Tiemann M, Nawrotzky E, Schmieder P, Wehrhan L, Bergemann S, Martos V, Song W, Arkona C, Keller BG, Rademann J. A Formylglycine-Peptide for the Site-Directed Identification of Phosphotyrosine-Mimetic Fragments. Chemistry 2022; 28:e202201282. [PMID: 35781901 PMCID: PMC9804470 DOI: 10.1002/chem.202201282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Indexed: 01/05/2023]
Abstract
Discovery of protein-binding fragments for precisely defined binding sites is an unmet challenge to date. Herein, formylglycine is investigated as a molecular probe for the sensitive detection of fragments binding to a spatially defined protein site . Formylglycine peptide 3 was derived from a phosphotyrosine-containing peptide substrate of protein tyrosine phosphatase PTP1B by replacing the phosphorylated amino acid with the reactive electrophile. Fragment ligation with formylglycine occurred in situ in aqueous physiological buffer. Structures and kinetics were validated by NMR spectroscopy. Screening and hit validation revealed fluorinated and non-fluorinated hit fragments being able to replace the native phosphotyrosine residue. The formylglycine probe identified low-affinity fragments with high spatial resolution as substantiated by molecular modelling. The best fragment hit, 4-amino-phenyl-acetic acid, was converted into a cellularly active, nanomolar inhibitor of the protein tyrosine phosphatase SHP2.
Collapse
Affiliation(s)
- Markus Tiemann
- Department of Biology, Chemistry, PharmacyInstitute of PharmacyFreie Universität BerlinKönigin-Luise-Strasse 2+414195BerlinGermany
| | - Eric Nawrotzky
- Department of Biology, Chemistry, PharmacyInstitute of PharmacyFreie Universität BerlinKönigin-Luise-Strasse 2+414195BerlinGermany
| | - Peter Schmieder
- Leibniz Institute of Molecular Pharmacology (FMP)Robert-Rössle-Strasse 1013125BerlinGermany
| | - Leon Wehrhan
- Department of Biology, Chemistry, PharmacyInstitute of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Silke Bergemann
- Department of Biology, Chemistry, PharmacyInstitute of PharmacyFreie Universität BerlinKönigin-Luise-Strasse 2+414195BerlinGermany
| | - Vera Martos
- Leibniz Institute of Molecular Pharmacology (FMP)Robert-Rössle-Strasse 1013125BerlinGermany
| | - Wei Song
- Department of Biology, Chemistry, PharmacyInstitute of PharmacyFreie Universität BerlinKönigin-Luise-Strasse 2+414195BerlinGermany
| | - Christoph Arkona
- Department of Biology, Chemistry, PharmacyInstitute of PharmacyFreie Universität BerlinKönigin-Luise-Strasse 2+414195BerlinGermany
| | - Bettina G. Keller
- Department of Biology, Chemistry, PharmacyInstitute of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Jörg Rademann
- Department of Biology, Chemistry, PharmacyInstitute of PharmacyFreie Universität BerlinKönigin-Luise-Strasse 2+414195BerlinGermany
| |
Collapse
|
13
|
Cheng-Sánchez I, Moya-Utrera F, Porras-Alcalá C, López-Romero JM, Sarabia F. Antibody-Drug Conjugates Containing Payloads from Marine Origin. Mar Drugs 2022; 20:md20080494. [PMID: 36005497 PMCID: PMC9410405 DOI: 10.3390/md20080494] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 12/10/2022] Open
Abstract
Antibody-drug conjugates (ADCs) are an important class of therapeutics for the treatment of cancer. Structurally, an ADC comprises an antibody, which serves as the delivery system, a payload drug that is a potent cytotoxin that kills cancer cells, and a chemical linker that connects the payload with the antibody. Unlike conventional chemotherapy methods, an ADC couples the selective targeting and pharmacokinetic characteristics related to the antibody with the potent cytotoxicity of the payload. This results in high specificity and potency by reducing off-target toxicities in patients by limiting the exposure of healthy tissues to the cytotoxic drug. As a consequence of these outstanding features, significant research efforts have been devoted to the design, synthesis, and development of ADCs, and several ADCs have been approved for clinical use. The ADC field not only relies upon biology and biochemistry (antibody) but also upon organic chemistry (linker and payload). In the latter, total synthesis of natural and designed cytotoxic compounds, together with the development of novel synthetic strategies, have been key aspects of the consecution of clinical ADCs. In the case of payloads from marine origin, impressive structural architectures and biological properties are observed, thus making them prime targets for chemical synthesis and the development of ADCs. In this review, we explore the molecular and biological diversity of ADCs, with particular emphasis on those containing marine cytotoxic drugs as the payload.
Collapse
Affiliation(s)
- Iván Cheng-Sánchez
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Correspondence:
| | - Federico Moya-Utrera
- Department of Organic Chemistry, Faculty of Sciences, University of Málaga, 29071 Málaga, Spain; (F.M.-U.); (C.P.-A.); (J.M.L.-R.); (F.S.)
| | - Cristina Porras-Alcalá
- Department of Organic Chemistry, Faculty of Sciences, University of Málaga, 29071 Málaga, Spain; (F.M.-U.); (C.P.-A.); (J.M.L.-R.); (F.S.)
| | - Juan M. López-Romero
- Department of Organic Chemistry, Faculty of Sciences, University of Málaga, 29071 Málaga, Spain; (F.M.-U.); (C.P.-A.); (J.M.L.-R.); (F.S.)
| | - Francisco Sarabia
- Department of Organic Chemistry, Faculty of Sciences, University of Málaga, 29071 Málaga, Spain; (F.M.-U.); (C.P.-A.); (J.M.L.-R.); (F.S.)
| |
Collapse
|
14
|
Karsten L, Goett-Zink L, Schmitz J, Hoffrogge R, Grünberger A, Kottke T, Müller KM. Genetically Encoded Ratiometric pH Sensors for the Measurement of Intra- and Extracellular pH and Internalization Rates. BIOSENSORS 2022; 12:bios12050271. [PMID: 35624572 PMCID: PMC9138566 DOI: 10.3390/bios12050271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 12/13/2022]
Abstract
pH-sensitive fluorescent proteins as genetically encoded pH sensors are promising tools for monitoring intra- and extracellular pH. However, there is a lack of ratiometric pH sensors, which offer a good dynamic range and can be purified and applied extracellularly to investigate uptake. In our study, the bright fluorescent protein CoGFP_V0 was C-terminally fused to the ligand epidermal growth factor (EGF) and retained its dual-excitation and dual-emission properties as a purified protein. The tandem fluorescent variants EGF-CoGFP-mTagBFP2 (pK′ = 6.6) and EGF-CoGFP-mCRISPRed (pK′ = 6.1) revealed high dynamic ranges between pH 4.0 and 7.5. Using live-cell fluorescence microscopy, both pH sensor molecules permitted the conversion of fluorescence intensity ratios to detailed intracellular pH maps, which revealed pH gradients within endocytic vesicles. Additionally, extracellular binding of the pH sensors to cells expressing the EGF receptor (EGFR) enabled the tracking of pH shifts inside cultivation chambers of a microfluidic device. Furthermore, the dual-emission properties of EGF-CoGFP-mCRISPRed upon 488 nm excitation make this pH sensor a valuable tool for ratiometric flow cytometry. This high-throughput method allowed for the determination of internalization rates, which represents a promising kinetic parameter for the in vitro characterization of protein–drug conjugates in cancer therapy.
Collapse
Affiliation(s)
- Lennard Karsten
- Cellular and Molecular Biotechnology, Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany;
| | - Lukas Goett-Zink
- Biophysical Chemistry and Diagnostics, Medical School OWL, Faculty of Chemistry, Bielefeld University, 33615 Bielefeld, Germany; (L.G.-Z.); (T.K.)
| | - Julian Schmitz
- Multiscale Bioengineering, Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany; (J.S.); (A.G.)
- Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | - Raimund Hoffrogge
- Cell Culture Technology, Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany;
| | - Alexander Grünberger
- Multiscale Bioengineering, Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany; (J.S.); (A.G.)
- Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | - Tilman Kottke
- Biophysical Chemistry and Diagnostics, Medical School OWL, Faculty of Chemistry, Bielefeld University, 33615 Bielefeld, Germany; (L.G.-Z.); (T.K.)
| | - Kristian M. Müller
- Cellular and Molecular Biotechnology, Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany;
- Correspondence:
| |
Collapse
|
15
|
Bivalent EGFR-Targeting DARPin-MMAE Conjugates. Int J Mol Sci 2022; 23:ijms23052468. [PMID: 35269611 PMCID: PMC8909960 DOI: 10.3390/ijms23052468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 02/04/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) is a validated tumor marker overexpressed in various cancers such as squamous cell carcinoma (SSC) of the head and neck and gliomas. We constructed protein-drug conjugates based on the anti-EGFR Designed Ankyrin Repeat Protein (DARPin) E01, and compared the bivalent DARPin dimer (DD1) and a DARPin-Fc (DFc) to the monomeric DARPin (DM) and the antibody derived scFv425-Fc (scFvFc) in cell culture and a mouse model. The modular conjugation system, which was successfully applied for the preparation of protein-drug and -dye conjugates, uses bio-orthogonal protein-aldehyde generation by the formylglycine-generating enzyme (FGE). The generated carbonyl moiety is addressed by a bifunctional linker with a pyrazolone for a tandem Knoevenagel reaction and an azide for strain-promoted azide-alkyne cycloaddition (SPAAC). The latter reaction with a PEGylated linker containing a dibenzocyclooctyne (DBCO) for SPAAC and monomethyl auristatin E (MMAE) as the toxin provided the stable conjugates DD1-MMAE (drug-antibody ratio, DAR = 2.0) and DFc-MMAE (DAR = 4.0) with sub-nanomolar cytotoxicity against the human squamous carcinoma derived A431 cells. In vivo imaging of Alexa Fluor 647-dye conjugates in A431-xenografted mice bearing subcutaneous tumors as the SCC model revealed unspecific binding of bivalent DARPins to the ubiquitously expressed EGFR. Tumor-targeting was verified 6 h post-injection solely for DD1 and scFvFc. The total of four administrations of 6.5 mg/kg DD1-MMAE or DFc-MMAE twice weekly did not cause any sequela in mice. MMAE conjugates showed no significant anti-tumor efficacy in vivo, but a trend towards increased necrotic areas (p = 0.2213) was observed for the DD1-MMAE (n = 5).
Collapse
|
16
|
Porębska N, Knapik A, Poźniak M, Krzyścik MA, Zakrzewska M, Otlewski J, Opaliński Ł. Intrinsically Fluorescent Oligomeric Cytotoxic Conjugates Toxic for FGFR1-Overproducing Cancers. Biomacromolecules 2021; 22:5349-5362. [PMID: 34855396 PMCID: PMC8672352 DOI: 10.1021/acs.biomac.1c01280] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
Fibroblast growth
factor receptor 1 (FGFR1) is an integral membrane
protein that transmits prolife signals through the plasma membrane.
Overexpression of FGFR1 has been reported in various tumor types,
and therefore, this receptor constitutes an attractive molecular target
for selective anticancer therapies. Here, we present a novel system
for generation of intrinsically fluorescent, self-assembling, oligomeric
cytotoxic conjugates with high affinity and efficient internalization
targeting FGFR1. In our approach, we employed FGF1 as an FGFR1 recognizing
molecule and genetically fused it to green fluorescent protein polygons
(GFPp), a fluorescent oligomerization scaffold, resulting in a set
of GFPp_FGF1 oligomers with largely improved receptor binding. To
validate the applicability of using GFPp_FGF1 oligomers as cancer
probes and drug carriers in targeted therapy of cancers with aberrant
FGFR1, we selected a trimeric variant from generated GFPp_FGF1 oligomers
and further engineered it by introducing FGF1-stabilizing mutations
and by incorporating the cytotoxic drug monomethyl auristatin E (MMAE)
in a site-specific manner. The resulting intrinsically fluorescent,
trimeric cytotoxic conjugate 3xGFPp_FGF1E_LPET_MMAE exhibits nanomolar
affinity for the receptor and very high stability. Notably, the intrinsic
fluorescence of 3xGFPp_FGF1E_LPET_MMAE allows for tracking the cellular
transport of the conjugate, demonstrating that 3xGFPp_FGF1E_LPET_MMAE
is efficiently and selectively internalized into cells expressing
FGFR1. Importantly, we show that 3xGFPp_FGF1E_LPET_MMAE displays very
high cytotoxicity against a panel of different cancer cells overproducing
FGFR1 while remaining neutral toward cells devoid of FGFR1 expression.
Our data implicate that the engineered fluorescent conjugates can
be used for imaging and targeted therapy of FGFR1-overproducing cancers.
Collapse
Affiliation(s)
- Natalia Porębska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Agata Knapik
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Marta Poźniak
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Mateusz Adam Krzyścik
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Małgorzata Zakrzewska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Jacek Otlewski
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| | - Łukasz Opaliński
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, Wroclaw 50-383, Poland
| |
Collapse
|
17
|
Janson N, Heinks T, Beuel T, Alam S, Höhne M, Bornscheuer UT, Fischer von Mollard G, Sewald N. Efficient Site‐Selective Immobilization of Aldehyde‐Tagged Peptides and Proteins by Knoevenagel Ligation. ChemCatChem 2021. [DOI: 10.1002/cctc.202101485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Nils Janson
- Faculty of Chemistry Organic and Bioorganic Chemistry Bielefeld University Universitätsstraße 25 33615 Bielefeld Germany
| | - Tobias Heinks
- TFaculty of Chemistry, Biochemistry Bielefeld University Universitätsstraße 25 33615 Bielefeld Germany
| | - Tobias Beuel
- TFaculty of Chemistry, Biochemistry Bielefeld University Universitätsstraße 25 33615 Bielefeld Germany
| | - Sarfaraz Alam
- TFaculty of Chemistry, Biochemistry Bielefeld University Universitätsstraße 25 33615 Bielefeld Germany
| | - Matthias Höhne
- Institute of Biochemistry Greifswald University Felix-Hausdorff-Straße 4 17487 Greifswald Germay
| | - Uwe T. Bornscheuer
- Institute of Biochemistry Greifswald University Felix-Hausdorff-Straße 4 17487 Greifswald Germay
| | | | - Norbert Sewald
- Faculty of Chemistry Organic and Bioorganic Chemistry Bielefeld University Universitätsstraße 25 33615 Bielefeld Germany
| |
Collapse
|