1
|
Karami MH, Abdouss M, Kalaee M, Jazani OM, Zamanian A. Functionalized Carbon Quantum Dots for Nanobioimaging: a Comprehensive Review. BIONANOSCIENCE 2025; 15:67. [DOI: 10.1007/s12668-024-01663-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2024] [Indexed: 01/03/2025]
|
2
|
Girma WM, Zhu Z, Guo Y, Xiao X, Wang Z, Mekuria SL, Hameed MMA, El-Newehy M, Guo R, Shen M, Shi X. Synthesis and Characterization of Copper-Crosslinked Carbon Dot Nanoassemblies for Efficient Macrophage Manipulation. Macromol Rapid Commun 2024:e2400511. [PMID: 39154350 DOI: 10.1002/marc.202400511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/01/2024] [Indexed: 08/20/2024]
Abstract
Nanomedicines loaded in macrophages (MAs) can actively target tumors without dominantly relying on the enhanced permeability and retention (EPR) effect, making them effective for treating EPR-deficient malignancies. Herein, copper-crosslinked carbon dot clusters (CDCs) are synthesized with both photodynamic and chemodynamic functions to manipulate MAs, aiming to direct the MA-mediated tumor targeting. First, green fluorescent CDs (g-CDs) are prepared by a one-step hydrothermal method. Subsequently, the g-CDs are complexed with divalent copper ions to form copper-crosslinked CDCs (g-CDCs/Cu), which are incubated with MAs for their manipulation. Experimental results revealed that the prepared g-CDCs/Cu displayed good aqueous dispersibility and fluorescent emission properties. The nanoassemblies can be activated to deplete the overexpressed glutathione (GSH) and generate reactive oxygen species (ROS) in the presence of laser irradiation through the combined Cu-mediated chemodynamic therapy and CD-mediated photodynamic therapy. Furthermore, the ROS produced in MAs enabled polarization of MAs to antitumor M1 phenotype, suggesting the future potential use to reverse the immunosuppressive tumor microenvironment. These results obtained from the current study suggest a significant potential to develop g-CDCs/Cu for GSH depletion, ROS generation, and MA M1 polarization as a theransotic agent to tackle cancer.
Collapse
Affiliation(s)
- Wubshet Mekonnen Girma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
- Department of Chemistry, College of Natural Science, Wollo University, Dessie, 1000, Ethiopia
| | - Zewen Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Yunqi Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Xianghao Xiao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Zhiqiang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Shewaye Lakew Mekuria
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Meera Moydeen Abdul Hameed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mohamed El-Newehy
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Rui Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
3
|
Hossein Karami M, Abdouss M. Cutting-edge tumor nanotherapy: Advancements in 5-fluorouracil Drug-loaded chitosan nanoparticles. INORG CHEM COMMUN 2024; 164:112430. [DOI: 10.1016/j.inoche.2024.112430] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Kirbas Cilingir E, Besbinar O, Giro L, Bartoli M, Hueso JL, Mintz KJ, Aydogan Y, Garber JM, Turktas M, Ekim O, Ceylan A, Unal MA, Ensoy M, Arı F, Ozgenç Çinar O, Ozturk BI, Gokce C, Cansaran-Duman D, Braun M, Wachtveitl J, Santamaria J, Delogu LG, Tagliaferro A, Yilmazer A, Leblanc RM. Small Warriors of Nature: Novel Red Emissive Chlorophyllin Carbon Dots Harnessing Fenton-Fueled Ferroptosis for In Vitro and In Vivo Cancer Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309283. [PMID: 38230862 DOI: 10.1002/smll.202309283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/11/2023] [Indexed: 01/18/2024]
Abstract
The appeal of carbon dots (CDs) has grown recently, due to their established biocompatibility, adjustable photoluminescence properties, and excellent water solubility. For the first time in the literature, copper chlorophyllin-based carbon dots (Chl-D CDs) are successfully synthesized. Chl-D CDs exhibit unique spectroscopic traits and are found to induce a Fenton-like reaction, augmenting photodynamic therapy (PDT) efficacies via ferroptotic and apoptotic pathways. To bolster the therapeutic impact of Chl-D CDs, a widely used cancer drug, temozolomide, is linked to their surface, yielding a synergistic effect with PDT and chemotherapy. Chl-D CDs' biocompatibility in immune cells and in vivo models showed great clinical potential.Proteomic analysis was conducted to understand Chl-D CDs' underlying cancer treatment mechanism. The study underscores the role of reactive oxygen species formation and pointed toward various oxidative stress modulators like aldolase A (ALDOA), aldolase C (ALDOC), aldehyde dehydrogenase 1B1 (ALDH1B1), transaldolase 1 (TALDO1), and transketolase (TKT), offering a deeper understanding of the Chl-D CDs' anticancer activity. Notably, the Chl-D CDs' capacity to trigger a Fenton-like reaction leads to enhanced PDT efficiencies through ferroptotic and apoptotic pathways. Hence, it is firmly believed that the inherent attributes of Chl-CDs can lead to a secure and efficient combined cancer therapy.
Collapse
Affiliation(s)
- Emel Kirbas Cilingir
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146, USA
| | - Omur Besbinar
- Department of Biomedical Engineering, Faculty of Engineering, Ankara University, Ankara, 06830, Turkey
- Stem Cell Institute, Ankara University, Ankara, 06520, Turkey
- The Graduate School of Health Sciences of Ankara University, Ankara, 06110, Turkey
- Institute of Nanoscience and Materials of Aragon (INMA), CSIC-Universidad de Zaragoza, Campus Río Ebro, Edificio I+D, C/Poeta Mariano Esquillor, s/n, Zaragoza, 50018, Spain
| | - Linda Giro
- Department of Biomedical Sciences, University of Padua, Padua, 35129, Italy
| | - Mattia Bartoli
- Department of Applied Science and Technology, Politecnico di Torino, Torino, 10129, Italy
| | - Jose L Hueso
- Institute of Nanoscience and Materials of Aragon (INMA), CSIC-Universidad de Zaragoza, Campus Río Ebro, Edificio I+D, C/Poeta Mariano Esquillor, s/n, Zaragoza, 50018, Spain
- Networking Research Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, 28029, Spain
- Department of Chemical and Environmental Engineering, University of Zaragoza, Campus Rio Ebro, C/María de Luna, 3, Zaragoza, 50018, Spain
- Instituto de Investigación Sanitaria (IIS) Aragón, Avenida San Juan Bosco, 13, Zaragoza, 50009, Spain
| | - Keenan J Mintz
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146, USA
| | - Yagmur Aydogan
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, 60438, Frankfurt, Germany
| | - Jordan M Garber
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146, USA
| | - Mine Turktas
- Department of Biology, Faculty of Science, Gazi University, Ankara, 06560, Turkey
| | - Okan Ekim
- Department of Anatomy, Faculty of Veterinary Medicine, Ankara University, Ankara, 06110, Turkey
| | - Ahmet Ceylan
- Department of Histology Embryology, Faculty of Veterinary Medicine, Ankara University, Ankara, 06110, Turkey
| | | | - Mine Ensoy
- Biotechnology Institute, Ankara University, Ankara, 06135, Turkey
| | - Fikret Arı
- Department of Electrical Electronic Engineering, Faculty of Engineering, Ankara, 06830, Turkey
| | - Ozge Ozgenç Çinar
- Department of Histology Embryology, Faculty of Veterinary Medicine, Ankara University, Ankara, 06110, Turkey
| | - Berfin Ilayda Ozturk
- Department of Biomedical Engineering, Faculty of Engineering, Ankara University, Ankara, 06830, Turkey
| | - Cemile Gokce
- Department of Biomedical Engineering, Faculty of Engineering, Ankara University, Ankara, 06830, Turkey
| | | | - Markus Braun
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, 60438, Frankfurt, Germany
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, 60438, Frankfurt, Germany
| | - Jesus Santamaria
- Institute of Nanoscience and Materials of Aragon (INMA), CSIC-Universidad de Zaragoza, Campus Río Ebro, Edificio I+D, C/Poeta Mariano Esquillor, s/n, Zaragoza, 50018, Spain
- Networking Research Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, 28029, Spain
- Department of Chemical and Environmental Engineering, University of Zaragoza, Campus Rio Ebro, C/María de Luna, 3, Zaragoza, 50018, Spain
- Instituto de Investigación Sanitaria (IIS) Aragón, Avenida San Juan Bosco, 13, Zaragoza, 50009, Spain
| | - Lucia Gemma Delogu
- Department of Biomedical Sciences, University of Padua, Padua, 35129, Italy
- Department of Biology, College of Arts and Sciences, Khalifa University, Abu Dhabi, 127788, UAE
| | - Alberto Tagliaferro
- Department of Applied Science and Technology, Politecnico di Torino, Torino, 10129, Italy
| | - Açelya Yilmazer
- Department of Biomedical Engineering, Faculty of Engineering, Ankara University, Ankara, 06830, Turkey
- Stem Cell Institute, Ankara University, Ankara, 06520, Turkey
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146, USA
| |
Collapse
|
5
|
Sabol A, Zhou Y, Zhang W, Ferreira BCLB, Chen J, Leblanc RM, Catenazzi A. Carbon nitride dots do not impair the growth, development, and telomere length of tadpoles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170176. [PMID: 38244620 DOI: 10.1016/j.scitotenv.2024.170176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 12/29/2023] [Accepted: 01/13/2024] [Indexed: 01/22/2024]
Abstract
Carbon nanoparticles, or carbon dots, can have many beneficial uses. However, we must consider whether they may have any potential negative side effects on wildlife or the ecosystem when these particles end up in wastewater. Early development stages of amphibians are particularly sensitive to contaminants, and exposure to carbon dots could disrupt their development and cause morbidity or death. Past studies have investigated short-term exposure to certain types of nanoparticles, but if these particles get into wastewater exposure may not be short term. Therefore, we tested whether chronic exposure to different concentrations of carbon dots affects the growth, metamorphosis, and telomere length of Cuban tree frog (Osteopilus septentrionalis) tadpoles. We exposed 12 groups of five tadpoles each to different concentrations of carbon dots and a control for three months and tracked survival, growth and metamorphosis. We used carbon nitride dots approximately 2 nm in size at concentrations of 0.01 mg/ml and 0.02 mg/ml, known to interrupt development in zebrafish embryos. After three months, we measured telomere length from tissue samples. We found no difference in tadpole survivorship, growth, development rate, or telomere length among any of the groups, suggesting that carbon dots at these concentrations do not disrupt tadpole development.
Collapse
Affiliation(s)
- Anne Sabol
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA.
| | - Yiqun Zhou
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA; Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | - Wei Zhang
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | | | - Jiuyan Chen
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | - Alessandro Catenazzi
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
6
|
Kaurav H, Verma D, Bansal A, Kapoor DN, Sheth S. Progress in drug delivery and diagnostic applications of carbon dots: a systematic review. Front Chem 2023; 11:1227843. [PMID: 37521012 PMCID: PMC10375716 DOI: 10.3389/fchem.2023.1227843] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/05/2023] [Indexed: 08/01/2023] Open
Abstract
Carbon dots (CDs), which have particle size of less than 10 nm, are carbon-based nanomaterials that are used in a wide range of applications in the area of novel drug delivery in cancer, ocular diseases, infectious diseases, and brain disorders. CDs are biocompatible, eco-friendly, easy to synthesize, and less toxic with excellent chemical inertness, which makes them very good nanocarrier system to deliver multi-functional drugs effectively. A huge number of researchers worldwide are working on CDs-based drug delivery systems to evaluate their versatility and efficacy in the field of pharmaceuticals. As a result, there is a tremendous increase in our understanding of the physicochemical properties, diagnostic and drug delivery aspects of CDs, which consequently has led us to design and develop CDs-based theranostic system for the treatment of multiple disorders. In this review, we aim to summarize the advances in application of CDs as nanocarrier including gene delivery, vaccine delivery and antiviral delivery, that has been carried out in the last 5 years.
Collapse
Affiliation(s)
- Hemlata Kaurav
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Dhriti Verma
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Amit Bansal
- Formulation Research and Development, Perrigo Company Plc, Allegan, MI, United States
| | - Deepak N. Kapoor
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Sandeep Sheth
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL, United States
| |
Collapse
|
7
|
Vallejo FA, Sigdel G, Veliz EA, Leblanc RM, Vanni S, Graham RM. Carbon Dots in Treatment of Pediatric Brain Tumors: Past, Present, and Future Directions. Int J Mol Sci 2023; 24:ijms24119562. [PMID: 37298513 DOI: 10.3390/ijms24119562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
Pediatric brain tumors remain a significant source of morbidity and mortality. Though developments have been made in treating these malignancies, the blood-brain barrier, intra- and inter-tumoral heterogeneity, and therapeutic toxicity pose challenges to improving outcomes. Varying types of nanoparticles, including metallic, organic, and micellar molecules of varying structures and compositions, have been investigated as a potential therapy to circumvent some of these inherent challenges. Carbon dots (CDs) have recently gained popularity as a novel nanoparticle with theranostic properties. This carbon-based modality is highly modifiable, allowing for conjugation to drugs, as well as tumor-specific ligands in an effort to more effectively target cancerous cells and reduce peripheral toxicity. CDs are being studied pre-clinically. The ClinicalTrials.gov site was queried using the search terms: brain tumor and nanoparticle, liposome, micelle, dendrimer, quantum dot, or carbon dot. At the time of this review, 36 studies were found, 6 of which included pediatric patients. Two of the six studies investigated nanoparticle drug formulations, whereas the other four studies were on varying liposomal nanoparticle formulations for the treatment of pediatric brain tumors. Here, we reviewed the context of CDs within the broader realm of nanoparticles, their development, promising pre-clinical potential, and proposed future translational utility.
Collapse
Affiliation(s)
- Frederic A Vallejo
- Department of Neurosurgery, Miller School of Medicine, University of Miami, 1095 NW 14th Terrace, Miami, FL 33136, USA
| | - Ganesh Sigdel
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146, USA
| | - Eduardo A Veliz
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146, USA
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146, USA
| | - Steven Vanni
- Department of Neurosurgery, Miller School of Medicine, University of Miami, 1095 NW 14th Terrace, Miami, FL 33136, USA
- HCA Florida University Hospital, 3476 S University Dr., Davie, FL 33328, USA
- Department of Medicine, Dr. Kiran C. Patel College of Allopathic Medicine, Davie, FL 33328, USA
| | - Regina M Graham
- Department of Neurosurgery, Miller School of Medicine, University of Miami, 1095 NW 14th Terrace, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Health System, Miami, FL 33136, USA
| |
Collapse
|
8
|
Engineering and surface modification of carbon quantum dots for cancer bioimaging. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
9
|
The preparation, optical properties and applications of carbon dots derived from phenylenediamine. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Chang X, Zhao G, Liu C, Wang X, Abdulkhaleq AMA, Zhang J, Zhou X. One-step microwave synthesis of red-emissive carbon dots for cell imaging in extreme acidity and light emitting diodes. RSC Adv 2022; 12:28021-28033. [PMID: 36320228 PMCID: PMC9524442 DOI: 10.1039/d2ra04026c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/26/2022] [Indexed: 11/21/2022] Open
Abstract
Red emissive carbon dots (R-CDs) have received great attention in biological fields due to their deep tissue penetrability, great bioimaging capability, low interference from auto-fluorescence, and potential for optoelectronic applications. Herein, excitation-independent, highly acid-sensitive R-CDs were successfully obtained via one-step microwave treatment of o-phenylenediamine (o-PD) and phosphoric acid and carefully purified by column chromatography. The relationship between the fluorescence emission and surface groups of the R-CDs was studied in detail using XPS, NMR, and fluorescence spectroscopy, and the different mechanisms of action of the R-CDs and acid in H2O and ethanol were determined. The excellent anti-interference ability and biocompatibility of the R-CDs were confirmed, and the probes were successfully used for imaging A549 and Escherichia coli (E. coli) cells in extreme acidity. Finally, based on their relatively high quantum yield and long wavelength emission, the application potential of the R-CDs in the fabrication of red light-emitting diodes (LEDs) was investigated.
Collapse
Affiliation(s)
- Xiaojie Chang
- College of Pharmacy, Jinzhou Medical University Jinzhou Liaoning 121001 P. R. China
| | - Guizhi Zhao
- College of Pharmacy, Jinzhou Medical University Jinzhou Liaoning 121001 P. R. China
| | - Chang Liu
- College of Pharmacy, Jinzhou Medical University Jinzhou Liaoning 121001 P. R. China
| | - Xueshi Wang
- College of Pharmacy, Jinzhou Medical University Jinzhou Liaoning 121001 P. R. China
| | | | - Jie Zhang
- College of Pharmacy, Jinzhou Medical University Jinzhou Liaoning 121001 P. R. China
| | - Xibin Zhou
- College of Pharmacy, Jinzhou Medical University Jinzhou Liaoning 121001 P. R. China
| |
Collapse
|
11
|
Paul S, Bhattacharya A, Hazra N, Gayen K, Sen P, Banerjee A. Yellow-Emitting Carbon Dots for Selective Fluorescence Imaging of Lipid Droplets in Living Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8829-8836. [PMID: 35819238 DOI: 10.1021/acs.langmuir.2c00919] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This study shows a one-pot preparation of carbon dots by a solvothermal method in ethylene glycol. The carbon dots show yellow-colored fluorescence emission in water. The carbon dots showed distinct preference to be present in the hydrophobic environment which was evident from their efficient transfer from aqueous phase to organic phase. They were also found to locate themselves in the vesicle bilayer and micelle core. This inherent lipophilic character of these carbon dots has been successfully utilized for the selective imaging of lipid droplets inside the living cells. The selective imaging of lipid droplets was confirmed by similar staining patterns with other staining dyes and the starvation study.
Collapse
Affiliation(s)
- Subir Paul
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | | | - Niladri Hazra
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Kousik Gayen
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Prosenjit Sen
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Arindam Banerjee
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
12
|
Paudyal S, Vallejo FA, Cilingir EK, Zhou Y, Mintz KJ, Pressman Y, Gu J, Vanni S, Graham RM, Leblanc RM. DFMO Carbon Dots for Treatment of Neuroblastoma and Bioimaging. ACS APPLIED BIO MATERIALS 2022; 5:3300-3309. [PMID: 35771033 DOI: 10.1021/acsabm.2c00309] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neuroblastoma (NB) is a pediatric malignancy affecting the peripheral nervous system. Despite recent advancements in treatment, many children affected with NB continue to submit to this illness, and new therapeutic strategies are desperately needed. In recent years, studies of carbon dots (CDs) as nanocarriers have mostly focused on the delivery of anticancer agents because of their biocompatibility, good aqueous dissolution, and photostability. Their fluorescence properties, surface functionalities, and surface charges differ on the basis of the type of precursors used and the synthetic approach implemented. At present, most CDs are used as nanocarriers by directly linking them either covalently or electrostatically to drug molecules. Though most modern CDs are synthesized from large carbon macromolecules and conjugated to anticancerous drugs, constructing CDs from the anticancerous drugs and precursors themselves to increase antitumoral activity requires further investigation. Herein, CDs were synthesized using difluoromethylornithine (DFMO), an irreversible ornithine decarboxylase inhibitor commonly used in high-risk neuroblastoma treatment regiments. In this study, NB cell lines, SMS-KCNR and SK-N-AS, were treated with DFMO, the newly synthesized DFMO CDs, and conventional DFMO conjugated to black carbon dots. Bioimaging was done to determine the cellular localization of a fluorescent drug over time. The mobility of DNA mixed with DFMO CDs was evaluated by gel electrophoresis. DFMO CDs were effectively synthesized from DFMO precursor and characterized using spectroscopic methods. The DFMO CDs effectively reduced cell viability with increasing dose. The effects were dramatic in the N-MYC-amplified line SMS-KCNR at 500 μM, which is comparable to high doses of conventional DFMO at a 60-fold lower concentration. In vitro bioimaging as well as DNA electrophoresis showed that synthesized DFMO CDs were able to enter the nucleus of neuroblastoma cells and neuronal cells and interact with DNA. Our new DFMO CDs exhibit a robust advantage over conventional DFMO because they induce comparable reductions in viability at a dramatically lower concentration.
Collapse
Affiliation(s)
- Suraj Paudyal
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Frederic Anthony Vallejo
- Department of Neurosurgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, Florida 33136, United States.,University of Miami Brain Tumor Initiative, Department of Neurosurgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, Florida 33136, United States
| | - Emel Kirbas Cilingir
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Yiqun Zhou
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Keenan J Mintz
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Yelena Pressman
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, Florida 33136, United States
| | - Jun Gu
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Steven Vanni
- Department of Neurosurgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, Florida 33136, United States.,HCA Florida University Hospital, 3476 S University Dr., Davie, Florida 33328, United States.,Department of Medicine, Dr. Kiran C. Patel College of Allopathic Medicine, Davie, Florida 33328, United States
| | - Regina M Graham
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States.,University of Miami Brain Tumor Initiative, Department of Neurosurgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Miami, Florida 33136, United States.,Sylvester Comprehensive Cancer Center, University of Miami Health System, Miami, Florida 33136, United States
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| |
Collapse
|