1
|
Zhou L, Wang J, Xiong Z, Fan Y, Wang Y. Chirality-Selected Coacervate by Chiral Gemini Surfactant. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:17488-17497. [PMID: 37990365 DOI: 10.1021/acs.langmuir.3c02774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Chiral surfactants present opportunities to self-assemble into supramolecules with a chiral trait; however, the effects of stereochemistry on the formation of simple coacervates remain unclear. Here, we investigate the chirality-selected phase behavior in mixtures of chiral gemini surfactant 1,4-bis(dodecyl-N,N-dimethylammonium bromide)-2,3-butanediol (12-4(OH)2-12) with an oppositely charged chiral mandelic acid (MA). It demonstrates that altering the chirality of surfactants yields a heightened ability to regulate the phase behavior, leading to the formation of three different network-like structures, i.e., wormlike micelle, coacervate, and hydrogel, in the racemate, enantiomer, and mesomer, respectively. The different aggregate structures arise from the intermolecular and intramolecular hydrogen-bond interactions of the two hydroxyl groups located at stereogenic centers. Intriguingly, although they contain similar microstructures, the solid-like hydrogel and liquid-like wormlike micelle show similar low hydration ability and have no encapsulation capability, whereas only coacervate formed by the enantiomers of 12-4(OH)2-12 displays liquid-like characteristics, strong capacity to sequester diverse solutes, and high affinity for tightly bound water simultaneously. These findings further highlight the unique and advantageous properties of coacervates as a promising model for exploring the biological process and understanding how chirality plays a crucial role in early life scenarios and cell evolution at the molecular level.
Collapse
Affiliation(s)
- Lili Zhou
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, and Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, P. R. China
| | - Jie Wang
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, and Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhichen Xiong
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, Jiangsu, P. R. China
- University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Yaxun Fan
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, and Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, Jiangsu, P. R. China
- University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Yilin Wang
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, and Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, Jiangsu, P. R. China
- University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
2
|
Douliez JP. Double Emulsion Droplets as a Plausible Step to Fatty Acid Protocells. SMALL METHODS 2023; 7:e2300530. [PMID: 37574259 DOI: 10.1002/smtd.202300530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/07/2023] [Indexed: 08/15/2023]
Abstract
It is assumed that life originated on the Earth from vesicles made of fatty acids. These amphiphiles are the simplest chemicals, which can be present in the prebiotic soup, capable of self-assembling into compartments mimicking modern cells. Production of fatty acid vesicles is widely studied, as their growing and division. However, how prebiotic chemicals require to further yield living cells encapsulated within protocells remains unclear. Here, one suggests a scenario based on recent studies, which shows that phospholipid vesicles can form from double emulsions affording facile encapsulation of cargos. In these works, water-in-oil-in-water droplets are produced by microfluidics, having dispersed lipids in the oil. Dewetting of the oil droplet leaves the internal aqueous droplet covered by a lipid bilayer, entrapping cargos. In this review, formation of fatty acid protocells is briefly reviewed, together with the procedure for preparing double emulsions and vesicles from double emulsion and finally, it is proposed that double emulsion droplets formed in the deep ocean where undersea volcano expulsed materials, with fatty acids (under their carboxylic form) and alkanols as the oily phase, entrapping hydrosoluble prebiotic chemicals in a double emulsion droplet core. Once formed, double emulsion droplets can move up to the surface, where an increase of pH, variation of pressure and/or temperature may have allowed dewetting of the oily droplet, leaving a fatty acid vesicular protocell with encapsulated prebiotic materials.
Collapse
Affiliation(s)
- Jean-Paul Douliez
- Biologie du Fruit et Pathologie, UMR 1332, Institut National de Recherche Agronomique (INRAE), Université De Bordeaux, Villenave d'Ornon, F-33140, France
| |
Collapse
|
3
|
Jobdeedamrong A, Cao S, Harley I, Crespy D, Landfester K, Caire da Silva L. Assembly of biomimetic microreactors using caged-coacervate droplets. NANOSCALE 2023; 15:2561-2566. [PMID: 36601867 DOI: 10.1039/d2nr05101j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Complex coacervates are liquid-like droplets that can be used to create adaptive cell-like compartments. These compartments offer a versatile platform for the construction of bioreactors inspired by living cells. However, the lack of a membrane significantly reduces the colloidal stability of coacervates in terms of fusion and surface wetting, which limits their suitability as compartments. Here, we describe the formation of caged-coacervates surrounded by a semipermeable shell of silica nanocapsules. We demonstrate that the silica nanocapsules create a protective shell that also regulates the molecular transport of water-soluble compounds as a function of nanocapasule size. The adjustable semipermeability and intrinsic affinity of enzymes for the interior of the caged-coacervates allowed us to assemble biomimetic microreactors with enhanced colloidal stability.
Collapse
Affiliation(s)
- Arjaree Jobdeedamrong
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
- Department of Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, 55128 Mainz, Germany.
| | - Shoupeng Cao
- Department of Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, 55128 Mainz, Germany.
| | - Iain Harley
- Department of Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, 55128 Mainz, Germany.
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Katharina Landfester
- Department of Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, 55128 Mainz, Germany.
| | - Lucas Caire da Silva
- Department of Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, 55128 Mainz, Germany.
| |
Collapse
|
4
|
Smokers IBA, van Haren MHI, Lu T, Spruijt E. Complex coacervation and compartmentalized conversion of prebiotically relevant metabolites. CHEMSYSTEMSCHEM 2022. [DOI: 10.1002/syst.202200004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Iris B. A. Smokers
- Radboud University Nijmegen: Radboud Universiteit Institute for Molecules and Materials NETHERLANDS
| | | | - Tiemei Lu
- Radboud University Nijmegen: Radboud Universiteit Institute for Molecules and Materials NETHERLANDS
| | | |
Collapse
|