1
|
Dai Y, Zhang Q, Gu R, Chen J, Ye P, Zhu H, Tang M, Nie X. Metal ion formulations for diabetic wound healing: Mechanisms and therapeutic potential. Int J Pharm 2024; 667:124889. [PMID: 39481815 DOI: 10.1016/j.ijpharm.2024.124889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/09/2024] [Accepted: 10/28/2024] [Indexed: 11/03/2024]
Abstract
Metals are vital in human physiology, which not only act as enzyme catalysts in the processes of superoxide dismutase and glucose phosphorylation, but also affect the redox process, osmotic adjustment, metabolism and neural signals. However, metal imbalances can lead to diseases such as diabetes, which is marked by chronic hyperglycemia and affects wound healing. The hyperglycemic milieu of diabetes impairs wound healing, posing significant challenges to patient quality of life. Wound healing encompasses a complex cascade of hemostasis, inflammation, proliferation, and remodeling phases, which are susceptible to disruption in hyperglycemic conditions. In recent decades, metals have emerged as critical facilitators of wound repair by enhancing antimicrobial properties (e.g., iron and silver), providing angiogenic stimulation (copper), promoting antioxidant activity and growth factor synthesis (zinc), and supporting wound closure (calcium and magnesium). Consequently, research has pivoted towards the development of metal ion-based therapeutics, including innovative formulations such as nano-hydrogels, nano-microneedle dressings, and microneedle patches. Prepared by combining macromolecular materials such as chitosan, hyaluronic acid and sodium alginate with metals, aiming at improving the management of diabetic wounds. This review delineates the roles of key metals in human physiology and evaluates the application of metal ions in diabetic wound management strategies.
Collapse
Affiliation(s)
- Yuhe Dai
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Qianbo Zhang
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Rifang Gu
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; School Medical Office, Zunyi Medical University, Zunyi 563006, China.
| | - Jitao Chen
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Penghui Ye
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Huan Zhu
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Ming Tang
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Xuqiang Nie
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| |
Collapse
|
2
|
Qian Q, Chen J, Qin M, Pei Y, Chen C, Tang D, Makvandi P, Du W, Yang G, Fang H, Zhou Y. Enhancing antibacterial properties by regulating valence configurations of copper: a focus on Cu-carboxyl chelates. J Mater Chem B 2024; 12:5128-5139. [PMID: 38699827 DOI: 10.1039/d4tb00370e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Optimizing the antibacterial effectiveness of copper ions while reducing environmental and cellular toxicity is essential for public health. A copper chelate, named PAI-Cu, is skillfully created using a specially designed carboxyl copolymer (a combination of acrylic and itaconic acids) with copper ions. PAI-Cu demonstrates a broad-spectrum antibacterial capability both in vitro and in vivo, without causing obvious cytotoxic effects. When compared to free copper ions, PAI-Cu displays markedly enhanced antibacterial potency, being about 35 times more effective against Escherichia coli and 16 times more effective against Staphylococcus aureus. Moreover, Gaussian and ab initio molecular dynamics (AIMD) analyses reveal that Cu+ ions can remain stable in the carboxyl compound's aqueous environment. Thus, the superior antibacterial performance of PAI-Cu largely stems from its modulation of copper ions between mono- and divalent states within the Cu-carboxyl chelates, especially via the carboxyl ligand. This modulation leads to the generation of reactive oxygen species (˙OH), which is pivotal in bacterial eradication. This research offers a cost-effective strategy for amplifying the antibacterial properties of Cu ions, paving new paths for utilizing copper ions in advanced antibacterial applications.
Collapse
Affiliation(s)
- Qiuping Qian
- Joint Center of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China.
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China.
| | - Jige Chen
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingming Qin
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China.
| | - Yu Pei
- Joint Center of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China.
| | - Chunxiu Chen
- Joint Center of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China.
| | - Dongping Tang
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China.
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital Quzhou, Zhejiang 324000, China
| | - Wei Du
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guoqiang Yang
- Joint Center of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China.
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiping Fang
- School of Physics and National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, 200237, China.
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Yunlong Zhou
- Joint Center of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China.
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China.
| |
Collapse
|
3
|
Wang D, Jin J, Zhang C, Ruan C, qin Y, Li D, Guan M, Lei P. Carbomer Hydrogel Composed of Cu 2O and Hematoporphyrin Monomethyl Ether Promotes the Healing of Infected Wounds. ACS OMEGA 2024; 9:4974-4985. [PMID: 38313474 PMCID: PMC10831829 DOI: 10.1021/acsomega.3c08718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/24/2023] [Accepted: 12/28/2023] [Indexed: 02/06/2024]
Abstract
Infectious wounds pose a significant challenge in the field of wound healing primarily due to persistent inflammation and the emergence of antibiotic-resistant bacteria. To combat these issues, the development of an effective wound dressing that can prevent infection and promote healing is of the utmost importance. Photodynamic therapy (PDT) has emerged as a promising noninvasive treatment strategy for tackling antibiotic-resistant bacteria. A biodegradable photosensitizer called hematoporphyrin monomethyl ether (HMME) has shown potential in generating reactive oxygen species (ROS) upon laser activation to combat bacteria. However, the insolubility of HMME limits its antibacterial efficacy and its ability to facilitate skin healing. To overcome these limitations, we have synthesized a compound hydrogel by combining carbomer, HMME, and Cu2O nanoparticles. This compound hydrogel exhibits enhanced antimicrobial ability and excellent biocompatibility and promotes angiogenesis, which is crucial for the healing of skin defects. By integrating the benefits of HMME, Cu2O nanoparticles, and the gel-forming properties of carbomer, this compound hydrogel shows great potential as an effective wound dressing material. In summary, the compound hydrogel developed in this study offers a promising solution for infectious wounds by addressing the challenges of infection prevention and promoting skin healing. This innovative approach utilizing PDT and the unique properties of the compound hydrogel could significantly improve the outcomes of wound healing in clinical settings.
Collapse
Affiliation(s)
- Dongyu Wang
- Department
of Orthopedic Surgery, Xiangya Hospital
Central South University, Changsha 410008, China
- Department
of Orthopedic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou310058, China
| | - Jiale Jin
- Department
of Orthopedic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou310058, China
| | - Chengran Zhang
- Department
of Orthopedic Surgery, Xiangya Hospital
Central South University, Changsha 410008, China
| | - Chengxin Ruan
- Department
of Orthopedic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou310058, China
| | - Yifang qin
- Department
of Endocrinology, The Children’s Hospital, School of Medicine, Zhejiang University, Zhejiang, Hangzhou 310052, China
| | - Dongdong Li
- Ningxia
Medical University, Yinchuan, Ningxia 750004, China
| | - Ming Guan
- Department
of Orthopedic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou310058, China
- Department
of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, United States
- Joslin-Beth
Israel Deaconess Foot Center and the Rongxiang Xu, MD, Center for
Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Pengfei Lei
- Department
of Orthopedic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou310058, China
| |
Collapse
|
4
|
Hong X, Tian G, Zhu Y, Ren T. Exogeneous metal ions as therapeutic agents in cardiovascular disease and their delivery strategies. Regen Biomater 2023; 11:rbad103. [PMID: 38173776 PMCID: PMC10761210 DOI: 10.1093/rb/rbad103] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/26/2023] [Accepted: 11/11/2023] [Indexed: 01/05/2024] Open
Abstract
Metal ions participate in many metabolic processes in the human body, and their homeostasis is crucial for life. In cardiovascular diseases (CVDs), the equilibriums of metal ions are frequently interrupted, which are related to a variety of disturbances of physiological processes leading to abnormal cardiac functions. Exogenous supplement of metal ions has the potential to work as therapeutic strategies for the treatment of CVDs. Compared with other therapeutic drugs, metal ions possess broad availability, good stability and safety and diverse drug delivery strategies. The delivery strategies of metal ions are important to exert their therapeutic effects and reduce the potential toxic side effects for cardiovascular applications, which are also receiving increasing attention. Controllable local delivery strategies for metal ions based on various biomaterials are constantly being designed. In this review, we comprehensively summarized the positive roles of metal ions in the treatment of CVDs from three aspects: protecting cells from oxidative stress, inducing angiogenesis, and adjusting the functions of ion channels. In addition, we introduced the transferability of metal ions in vascular reconstruction and cardiac tissue repair, as well as the currently available engineered strategies for the precise delivery of metal ions, such as integrated with nanoparticles, hydrogels and scaffolds.
Collapse
Affiliation(s)
- Xiaoqian Hong
- Department of Cardiology of the Second Affiliated Hospital and State Key Laboratory of Transvascular Implantation Devices, Cardiovascular Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Geer Tian
- Department of Cardiology of the Second Affiliated Hospital and State Key Laboratory of Transvascular Implantation Devices, Cardiovascular Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310009, China
- Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| | - Yang Zhu
- Binjiang Institute of Zhejiang University, Hangzhou 310053, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Tanchen Ren
- Department of Cardiology of the Second Affiliated Hospital and State Key Laboratory of Transvascular Implantation Devices, Cardiovascular Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|