1
|
Rajan S, Yoon HS. Covalent ligands of nuclear receptors. Eur J Med Chem 2023; 261:115869. [PMID: 37857142 DOI: 10.1016/j.ejmech.2023.115869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023]
Abstract
Nuclear receptors (NRs) are ligand-induced transcriptional factors implicated in several physiological pathways. Naïve ligands bind to their cognate receptors and modulate gene expression as agonists or antagonists. It has been observed that some ligands bind via covalent bonding with the NR Ligand Binding Domain (LBD) residues. While many such instances have been known since the 1980s, a consolidated account of these ligands and their interactions with NR-LBD is yet to be documented. To negate this, we have culled out the human NR-LBDs that form a covalent attachment with ligands. According to the study, 16 of the 48 human NRs have been targeted by covalent ligands. It was found that conserved cysteines prone to covalent attachment are predominantly located in NR-LBD helices 3 and 11. These conserved cysteines are also observed in many of the remaining NRs, which can be probed for their reactivity. Thus, the structural insights into NR-LBD interactions with covalent ligands presented here would aid drug discovery efforts targeting NRs.
Collapse
Affiliation(s)
- Sreekanth Rajan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Ho Sup Yoon
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore; College of Pharmacy, CHA University, 120 Haeryong-ro, Pocheon-si, Gyeonggi-do, 11160, Republic of Korea; CHA Advanced Research Institute, 335 Pangyo-ro, Bundang-gu, Seongnam-si, 13488, Republic of Korea.
| |
Collapse
|
2
|
Miyamae Y. Insights into Dynamic Mechanism of Ligand Binding to Peroxisome Proliferator-Activated Receptor γ toward Potential Pharmacological Applications. Biol Pharm Bull 2021; 44:1185-1195. [PMID: 34471046 DOI: 10.1248/bpb.b21-00263] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is a member of the nuclear receptor superfamily, which regulates the transcription of a variety of genes involved in lipid and glucose metabolism, inflammation, and cell proliferation. These functions correlate with the onset of type-2 diabetes, obesity, and immune disorders, which makes PPARγ a promising target for drug development. The majority of PPARγ functions are regulated by binding of small molecule ligands, which cause conformational changes of PPARγ followed by coregulator recruitment. The ligand-binding domain (LBD) of PPARγ contains a large Y-shaped cavity that can be occupied by various classes of compounds such as full agonists, partial agonists, natural lipids, and in some cases, a combination of multiple molecules. Several crystal structure studies have revealed the binding modes of these compounds in the LBD and insight into the resulting conformational changes. Notably, the apo form of the PPARγ LBD contains a highly mobile region that can be stabilized by ligand binding. Furthermore, recent biophysical investigations have shed light on the dynamic mechanism of how ligands induce conformational changes in PPARγ and result in functional output. This information may be useful for the design of new and repurposed structures of ligands that serve a different function from original compounds and more potent pharmacological effects with less undesirable clinical outcomes. This review provides an overview of the peculiar characteristics of the PPARγ LBD by examining a series of structural studies focused on the dynamic mechanism of binding and the potential applications of strategies for ligand screening and chemical labeling.
Collapse
Affiliation(s)
- Yusaku Miyamae
- Faculty of Life and Environmental Sciences, University of Tsukuba.,Alliance for Research on the Mediterranean and North Africa, University of Tsukuba
| |
Collapse
|
3
|
Egawa D, Ogiso T, Nishikata K, Yamamoto K, Itoh T. Structural Insights into the Loss-of-Function R288H Mutant of Human PPARγ. Biol Pharm Bull 2021; 44:1196-1201. [PMID: 34471047 DOI: 10.1248/bpb.b21-00253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) is a nuclear receptor and the molecular target of thiazolidinedione-class antidiabetic drugs. It has been reported that the loss of function R288H mutation in the human PPARγ ligand-binding domain (LBD) may be associated with the onset of colon cancer. A previous in vitro study showed that this mutation dampens 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2, a natural PPARγ agonist)-dependent transcriptional activation; however, it is poorly understood why the function of the R288H mutant is impaired and what role this arginine (Arg) residue plays. In this study, we found that the apo-form of R288H PPARγ mutant displays several altered conformational arrangements of the amino acid side chains in LBD: 1) the loss of a salt bridge between Arg288 and Glu295 leads to increased helix 3 movement; 2) closer proximity of Gln286 and His449 via a hydrogen bond, and closer proximity of Cys285 and Phe363 via hydrophobic interaction, stabilize the helix 3-helix 11 interaction; and 3) there is steric hindrance between Cys285/Gln286/Ser289/His449 and the flexible ligands 15d-PGJ2, 6-oxotetracosahexaenoic acid (6-oxoTHA), and 17-oxodocosahexaenoic acid (17-oxoDHA). These results suggest why Arg288 plays an important role in ligand binding and why the R288H mutation is disadvantageous for flexible ligand binding.
Collapse
Affiliation(s)
- Daichi Egawa
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University
| | - Taku Ogiso
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University
| | - Kimina Nishikata
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University
| | - Keiko Yamamoto
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University
| | - Toshimasa Itoh
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University
| |
Collapse
|
4
|
Kanamori S, Ohashi N, Ishida H, Yamamoto K, Itoh T. HNF4α Is a Covalent Bond-Forming Receptor. J Nutr Sci Vitaminol (Tokyo) 2021; 67:126-129. [PMID: 33952733 DOI: 10.3177/jnsv.67.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
HNF4α is a nuclear receptor whose ligands are fatty acids. HNF4α is a target molecule for drug discovery research and thus we tested its covalent binding ability to investigate the possible development of covalent modifiers of HNF4α. Oxidized polyunsaturated fatty acids (oxo-PUFAs) have moderate flexibility and possess a Michael acceptor that participates in conjugate addition reactions with nucleophilic amino acid residues. Thus, oxo-PUFAs were used as probes and their covalent binding abilities to HNF4α were verified. Several oxo-PUFAs, such as 4-oxoDHA, were shown to be covalent modifiers of HNF4α and therefore we concluded that HNF4α can form covalent bonds to ligands.
Collapse
|
5
|
Zhao H, Gao XM, Cao XX, Zhang L, Zhou DB, Li J. Revealing serum lipidomic characteristics and potential lipid biomarkers in patients with POEMS syndrome. J Cell Mol Med 2021; 25:4307-4315. [PMID: 33779058 PMCID: PMC8093959 DOI: 10.1111/jcmm.16486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 02/19/2021] [Accepted: 03/12/2021] [Indexed: 12/31/2022] Open
Abstract
POEMS syndrome is a rare plasma cell dyscrasia with distinct lipid metabolism abnormalities at disease onset. However, the serum lipidomic characteristics in patients with POEMS syndrome were not investigated. The study performed an untargeted lipidome screening by liquid chromatography‐tandem mass spectrometry (LS‐MS/MS) in the pre‐ and post‐treatment serum of 24 patients with POEMS syndrome, together with the serum of 24 paired healthy controls. Patients with POEMS syndrome had a distinct serum lipid composition compared with healthy controls, and a 3‐lipid model had a predictive accuracy of 93.5% in distinguishing patients and healthy controls consisting of fatty acyl 17‐oxo‐20Z‐hexacosenoic acid, phosphatidylcholine(16:0/18:1(9Z)) and sterol lipid 5b‐pregnanediol. Four lipids including 17‐oxo‐20Z‐hexacosenoic acid (r = 0.423, P = .040) were correlated with risk stratification, and 2 lipids including Cer(d18:0/13:0) were inversely related to serum vascular endothelial growth factor level (r=−0.465, P = .022). Eleven lipids were related to disease activity, including arachidonic acid which was inversely related and lysoPC(20:4) which was positively related. The study indicated a distinct lipid characteristic profile of patients with POEMS syndrome different from healthy controls and identified several lipids that may serve as potential diagnostic markers and monitors of therapeutic efficacy, as well as indicating potential metabolism pathways involved in the pathological process.
Collapse
Affiliation(s)
- Hao Zhao
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue-Min Gao
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin-Xin Cao
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lu Zhang
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dao-Bin Zhou
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian Li
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
Kaupang Å, Hansen TV. The PPAR Ω Pocket: Renewed Opportunities for Drug Development. PPAR Res 2020; 2020:9657380. [PMID: 32695150 PMCID: PMC7351019 DOI: 10.1155/2020/9657380] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/13/2020] [Indexed: 12/13/2022] Open
Abstract
The past decade of PPARγ research has dramatically improved our understanding of the structural and mechanistic bases for the diverging physiological effects of different classes of PPARγ ligands. The discoveries that lie at the heart of these developments have enabled the design of a new class of PPARγ ligands, capable of isolating central therapeutic effects of PPARγ modulation, while displaying markedly lower toxicities than previous generations of PPARγ ligands. This review examines the emerging framework around the design of these ligands and seeks to unite its principles with the development of new classes of ligands for PPARα and PPARβ/δ. The focus is on the relationships between the binding modes of ligands, their influence on PPAR posttranslational modifications, and gene expression patterns. Specifically, we encourage the design and study of ligands that primarily bind to the Ω pockets of PPARα and PPARβ/δ. In support of this development, we highlight already reported ligands that if studied in the context of this new framework may further our understanding of the gene programs regulated by PPARα and PPARβ/δ. Moreover, recently developed pharmacological tools that can be utilized in the search for ligands with new binding modes are also presented.
Collapse
Affiliation(s)
- Åsmund Kaupang
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, 0316 Oslo, Norway
| | - Trond Vidar Hansen
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, 0316 Oslo, Norway
| |
Collapse
|
7
|
Jang JY, Kim H, Kim HJ, Suh SW, Park SB, Han BW. Structural basis for the inhibitory effects of a novel reversible covalent ligand on PPARγ phosphorylation. Sci Rep 2019; 9:11168. [PMID: 31371757 PMCID: PMC6671948 DOI: 10.1038/s41598-019-47672-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 07/22/2019] [Indexed: 12/13/2022] Open
Abstract
Peroxisome proliferator-activated receptor γ (PPARγ) is a major therapeutic target for the treatment of type 2 diabetes. However, the use of PPARγ-targeted drugs, such as rosiglitazone and pioglitazone, is limited owing to serious side effects caused by classical agonism. Using a rational drug discovery approach, we recently developed SB1495, a novel reversible covalent inhibitor of the cyclin-dependent kinase 5 (Cdk5)-mediated phosphorylation of PPARγ at Ser245, a key factor in the insulin-sensitizing effect of PPARγ-targeted drugs. In this study, we report the crystal structures of PPARγ in complex with SB1495 and its enantiomeric analogue SB1494, which rarely exhibits inhibitory activity, to visualize the mechanistic basis for their distinct activities. SB1495 occupies the Arm3 region near the Ω loop of the PPARγ ligand-binding domain, whereas its enantiomeric analogue SB1494 binds to the Arm2 region. In addition, the piperazine moiety of SB1495 directly pushes the helix H2′, resulting in the stabilization of the Ω loop just behind the helix H2′. Our results may contribute to the development of a new generation of antidiabetic drugs that selectively block PPARγ phosphorylation without classical agonism.
Collapse
Affiliation(s)
- Jun Young Jang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyunsoo Kim
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyun-Jung Kim
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Se Won Suh
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seung Bum Park
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Byung Woo Han
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
8
|
Arnesen H, Haj-Yasein NN, Tungen JE, Soedling H, Matthews J, Paulsen SM, Nebb HI, Sylte I, Hansen TV, Sæther T. Molecular modelling, synthesis, and biological evaluations of a 3,5-disubstituted isoxazole fatty acid analogue as a PPARα-selective agonist. Bioorg Med Chem 2019; 27:4059-4068. [PMID: 31351846 DOI: 10.1016/j.bmc.2019.07.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 01/11/2023]
Abstract
The peroxisome proliferator activated receptors (PPARs) are important drug targets in treatment of metabolic and inflammatory disorders. Fibrates, acting as PPARα agonists, have been widely used lipid-lowering agents for decades. However, the currently available PPARα targeting agents show low subtype-specificity and consequently a search for more potent agonists have emerged. In this study, previously isolated oxohexadecenoic acids from the marine algae Chaetoceros karianus were used to design a PPARα-specific analogue. Herein we report the design, synthesis, molecular modelling studies and biological evaluations of the novel 3,5-disubstituted isoxazole analogue 6-(5-heptyl-1,2-oxazol-3-yl)hexanoic acid (1), named ADAM. ADAM shows a clear receptor preference and significant dose-dependent activation of PPARα (EC50 = 47 µM) through its ligand-binding domain (LBD). Moreover, ADAM induces expression of important PPARα target genes, such as CPT1A, in the Huh7 cell line and primary mouse hepatocytes. In addition, ADAM exhibits a moderate ability to regulate PPARγ target genes and drive adipogenesis. Molecular modelling studies indicated that ADAM docks its carboxyl group into opposite ends of the PPARα and -γ LBD. ADAM interacts with the receptor-activating polar network of amino acids (Tyr501, His447 and Ser317) in PPARα, but not in PPARγ LBD. This may explain the lack of PPARγ agonism, and argues for a PPARα-dependent adipogenic function. Such compounds are of interest towards developing new lipid-lowering remedies.
Collapse
Affiliation(s)
- Henriette Arnesen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| | - Nadia Nabil Haj-Yasein
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| | - Jørn E Tungen
- Section of Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, N-0316 Oslo, Norway
| | - Helen Soedling
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| | - Jason Matthews
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| | - Steinar M Paulsen
- MabCent-SFI, UiT - The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Hilde I Nebb
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
| | - Ingebrigt Sylte
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Trond Vidar Hansen
- Section of Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, N-0316 Oslo, Norway
| | - Thomas Sæther
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway; Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway.
| |
Collapse
|
9
|
Yamamoto K. Discovery of Nuclear Receptor Ligands and Elucidation of Their Mechanisms of Action. Chem Pharm Bull (Tokyo) 2019; 67:609-619. [DOI: 10.1248/cpb.c19-00131] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Keiko Yamamoto
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University
| |
Collapse
|
10
|
Penas FN, Carta D, Dmytrenko G, Mirkin GA, Modenutti CP, Cevey ÁC, Rada MJ, Ferlin MG, Sales ME, Goren NB. Treatment with a New Peroxisome Proliferator-Activated Receptor Gamma Agonist, Pyridinecarboxylic Acid Derivative, Increases Angiogenesis and Reduces Inflammatory Mediators in the Heart of Trypanosoma cruzi-Infected Mice. Front Immunol 2017; 8:1738. [PMID: 29312293 PMCID: PMC5732351 DOI: 10.3389/fimmu.2017.01738] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/23/2017] [Indexed: 12/21/2022] Open
Abstract
Trypanosoma cruzi infection induces an intense inflammatory response in diverse host tissues. The immune response and the microvascular abnormalities associated with infection are crucial aspects in the generation of heart damage in Chagas disease. Upon parasite uptake, macrophages, which are involved in the clearance of infection, increase inflammatory mediators, leading to parasite killing. The exacerbation of the inflammatory response may lead to tissue damage. Peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-dependent nuclear transcription factor that exerts important anti-inflammatory effects and is involved in improving endothelial functions and proangiogenic capacities. In this study, we evaluated the intermolecular interaction between PPARγ and a new synthetic PPARγ ligand, HP24, using virtual docking. Also, we showed that early treatment with HP24, decreases the expression of NOS2, a pro-inflammatory mediator, and stimulates proangiogenic mediators (vascular endothelial growth factor A, CD31, and Arginase I) both in macrophages and in the heart of T. cruzi-infected mice. Moreover, HP24 reduces the inflammatory response, cardiac fibrosis and the levels of inflammatory cytokines (TNF-α, interleukin 6) released by macrophages of T. cruzi-infected mice. We consider that PPARγ agonists might be useful as coadjuvants of the antiparasitic treatment of Chagas disease, to delay, reverse, or preclude the onset of heart damage.
Collapse
Affiliation(s)
- Federico Nicolás Penas
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM)-CONICET, Buenos Aires, Argentina
| | - Davide Carta
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Ganna Dmytrenko
- Centro de Estudios Farmacológicos y Botánicos (CEFyBO)-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gerado A Mirkin
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM)-CONICET, Buenos Aires, Argentina
| | - Carlos Pablo Modenutti
- Instituto de Química Biológica, Facultad de Ciencias Exactas y Naturales (IQUIBICEN)-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ágata Carolina Cevey
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM)-CONICET, Buenos Aires, Argentina
| | - Maria Jimena Rada
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM)-CONICET, Buenos Aires, Argentina
| | - Maria Grazia Ferlin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - María Elena Sales
- Centro de Estudios Farmacológicos y Botánicos (CEFyBO)-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nora Beatriz Goren
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM)-CONICET, Buenos Aires, Argentina.,Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Facultad de Medicina, Buenos Aires, Argentina
| |
Collapse
|
11
|
Kojima H, Itoh T, Yamamoto K. On-site reaction for PPARγ modification using a specific bifunctional ligand. Bioorg Med Chem 2017; 25:6492-6500. [DOI: 10.1016/j.bmc.2017.10.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 10/14/2017] [Accepted: 10/19/2017] [Indexed: 10/18/2022]
|
12
|
Wang Z, Fu Z, Yu Q, Chen J. Oxidation reactivity of 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE) by Compound I model of cytochrome P450s. J Environ Sci (China) 2017; 62:11-21. [PMID: 29289282 DOI: 10.1016/j.jes.2017.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/27/2017] [Accepted: 08/01/2017] [Indexed: 06/07/2023]
Abstract
Alternative brominated flame retardants (BFRs) have become prevalent as a consequence of restrictions on the use of polybrominated diphenyl ethers (PBDEs). For risk assessment of these alternatives, knowledge of their metabolism via cytochrome P450 enzymes is needed. We have previously proved that density functional theory (DFT) is able to predict the metabolism of PBDEs by revealing the molecular mechanisms. In the current study, the reactivity of 1,2-bis(2,4,6-tribromophenoxy)ethane and structurally similar chemicals with the Compound I model representing the active site of P450 enzymes was investigated. The DFT calculations delineated reaction pathways which lead to reasonable explanations for products that were detected by wet experiments, meanwhile intermediates which cannot be determined were also proposed. Results showed that alkyl hydrogen abstraction will lead to bis(2,4,6-tribromophenoxy)ethanol, which may undergo hydrolysis yielding 2,4,6-tribromophenol, a neurotoxic compound. In addition, a general pattern of oxidation reactivity regarding the 2,4,6-tribromophenyl moiety was observed among several model compounds. Our study has provided insights for convenient evaluation of the metabolism of other structurally similar BFRs.
Collapse
Affiliation(s)
- Zhongyu Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Zhiqiang Fu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Qi Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
13
|
Ohura A, Itoh T, Ishida H, Saito A, Yamamoto K. Three-Component Regioselective Synthesis of Tetrahydrofuro[2,3-d]oxazoles and Their Efficient Conversion to Oxazoles. ASIAN J ORG CHEM 2017. [DOI: 10.1002/ajoc.201700074] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Arisa Ohura
- Laboratory of Drug Design and Medicinal Chemistry; Showa Pharmaceutical University; 3-3165 Higashi-Tamagawagakuen, Machida Tokyo 194-8543 Japan
| | - Toshimasa Itoh
- Laboratory of Drug Design and Medicinal Chemistry; Showa Pharmaceutical University; 3-3165 Higashi-Tamagawagakuen, Machida Tokyo 194-8543 Japan
| | - Hiroaki Ishida
- Laboratory of Drug Design and Medicinal Chemistry; Showa Pharmaceutical University; 3-3165 Higashi-Tamagawagakuen, Machida Tokyo 194-8543 Japan
| | - Akio Saito
- Division of Applied Chemistry, Institute of Engineering; Tokyo University of Agriculture and Technology; 2-24-16 Naka-cho, Koganei Tokyo 184-8588 Japan
| | - Keiko Yamamoto
- Laboratory of Drug Design and Medicinal Chemistry; Showa Pharmaceutical University; 3-3165 Higashi-Tamagawagakuen, Machida Tokyo 194-8543 Japan
| |
Collapse
|
14
|
Egawa D, Itoh T, Akiyama Y, Saito T, Yamamoto K. 17-OxoDHA Is a PPARα/γ Dual Covalent Modifier and Agonist. ACS Chem Biol 2016; 11:2447-55. [PMID: 27337155 DOI: 10.1021/acschembio.6b00338] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
17-Hydroxy docosahexaenoic acid (17-HDHA) is an oxidized form of docosahexaenoic acid (DHA) and known as a specialized proresolving mediator. We found that a further oxidized product, 17-oxodocosahexaenoic acid (17-oxoDHA), activates peroxisome proliferator-activated receptors γ (PPARγ) and PPARα in transcriptional assays and thus can be classified as an α/γ dual agonist. ESI mass spectroscopy and X-ray crystallographic analysis showed that 17-oxoDHA binds to PPARγ and PPARα covalently, making 17-oxoDHA the first of a novel class of PPAR agonists, the PPARα/γ dual covalent agonist. Furthermore, the covalent binding sites were identified as Cys285 for PPARγ and Cys275 for PPARα.
Collapse
Affiliation(s)
- Daichi Egawa
- Laboratory of Drug Design
and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Toshimasa Itoh
- Laboratory of Drug Design
and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Yui Akiyama
- Laboratory of Drug Design
and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Tomoko Saito
- Laboratory of Drug Design
and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Keiko Yamamoto
- Laboratory of Drug Design
and Medicinal Chemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| |
Collapse
|
15
|
Anami Y, Sakamaki Y, Itoh T, Inaba Y, Nakabayashi M, Ikura T, Ito N, Yamamoto K. Fine tuning of agonistic/antagonistic activity for vitamin D receptor by 22-alkyl chain length of ligands: 22S-Hexyl compound unexpectedly restored agonistic activity. Bioorg Med Chem 2015; 23:7274-81. [DOI: 10.1016/j.bmc.2015.10.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 10/18/2015] [Accepted: 10/19/2015] [Indexed: 10/22/2022]
|
16
|
Kaupang Å, Hildonen S, Halvorsen TG, Mortén M, Vik A, Hansen TV. Involvement of covalent interactions in the mode of action of PPARβ/δ antagonists. RSC Adv 2015. [DOI: 10.1039/c5ra15707b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Investigations on the mode of action of several different chemical modulators of the peroxisome proliferator-activated receptor β/δ (PPARβ/δ) have been reported using MS and NMR experiments.
Collapse
Affiliation(s)
- Åsmund Kaupang
- Department of Pharmaceutical Chemistry
- School of Pharmacy
- University of Oslo
- 0316 Oslo
- Norway
| | - Siri Hildonen
- Department of Pharmaceutical Chemistry
- School of Pharmacy
- University of Oslo
- 0316 Oslo
- Norway
| | - Trine G. Halvorsen
- Department of Pharmaceutical Chemistry
- School of Pharmacy
- University of Oslo
- 0316 Oslo
- Norway
| | - Magnus Mortén
- Department of Chemistry
- University of Oslo
- 0315 Oslo
- Norway
| | - Anders Vik
- Department of Pharmaceutical Chemistry
- School of Pharmacy
- University of Oslo
- 0316 Oslo
- Norway
| | - Trond Vidar Hansen
- Department of Pharmaceutical Chemistry
- School of Pharmacy
- University of Oslo
- 0316 Oslo
- Norway
| |
Collapse
|