1
|
Garifo S, Stanicki D, Boutry S, Larbanoix L, Ternad I, Muller RN, Laurent S. Functionalized silica nanoplatform as a bimodal contrast agent for MRI and optical imaging. NANOSCALE 2021; 13:16509-16524. [PMID: 34590110 DOI: 10.1039/d1nr04972k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The preparation of an efficient bimodal single probe for magnetic resonance (MRI) and optical imaging (OI) is reported. Paramagnetic properties have been obtained by the non-covalent encapsulation of the clinically used Gd3+ chelate (i.e., Gd-HP-DO3A) within silica nanoparticles through a water-in-oil microemulsion process. To ensure colloidal stability, the surface of the particles was modified by means of treatment using PEG-silane, and further functionalized photochemically using a diazirine linker bearing carboxylic functions. Optical properties were obtained by the covalent grafting of a near-infrared emitting probe (NIR) on the resulting surface. The confinement of Gd complexes within the permeable matrix resulted in a significant increase in longitudinal relaxivities (>500% at 20 MHz) in comparison with the relaxivities of free chelate, while the post-functionalization process of PEG with fluorescent compounds appeared promising for the derivatization procedure. Several physico-chemical properties attested to the efficient surface modification and confirmed covalent grafting. Preliminary imaging experiments complete this study and confirm the potential of the presented system for preclinical imaging experiments.
Collapse
Affiliation(s)
- Sarah Garifo
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 19 avenue Maistriau, 7000 Mons, Belgium.
| | - Dimitri Stanicki
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 19 avenue Maistriau, 7000 Mons, Belgium.
| | - Sébastien Boutry
- Center for Microscopy and Molecular Imaging (CMMI), 8 rue Adrienne Bolland, 6041 Gosselies, Belgium
| | - Lionel Larbanoix
- Center for Microscopy and Molecular Imaging (CMMI), 8 rue Adrienne Bolland, 6041 Gosselies, Belgium
| | - Indiana Ternad
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 19 avenue Maistriau, 7000 Mons, Belgium.
| | - Robert N Muller
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 19 avenue Maistriau, 7000 Mons, Belgium.
- Center for Microscopy and Molecular Imaging (CMMI), 8 rue Adrienne Bolland, 6041 Gosselies, Belgium
| | - Sophie Laurent
- General, Organic and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, 19 avenue Maistriau, 7000 Mons, Belgium.
- Center for Microscopy and Molecular Imaging (CMMI), 8 rue Adrienne Bolland, 6041 Gosselies, Belgium
| |
Collapse
|
2
|
Neri G, Mion G, Pizzi A, Celentano W, Chaabane L, Chierotti MR, Gobetto R, Li M, Messa P, De Campo F, Cellesi F, Metrangolo P, Baldelli Bombelli F. Fluorinated PLGA Nanoparticles for Enhanced Drug Encapsulation and 19 F NMR Detection. Chemistry 2020; 26:10057-10063. [PMID: 32515857 DOI: 10.1002/chem.202002078] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/08/2020] [Indexed: 12/13/2022]
Abstract
In the continuous search for multimodal systems with combined diagnostic and therapeutic functions, several efforts have been made to develop multifunctional drug delivery systems. In this work, through a covalent approach, a new class of fluorinated poly(lactic-co-glycolic acid) co-polymers (F-PLGA) were designed that contain an increasing number of magnetically equivalent fluorine atoms. In particular, two novel compounds, F3 -PLGA and F9 -PLGA, were synthesized and their chemical structure and thermal stability were analyzed by solution NMR, DSC, and TGA. The obtained F-PLGA compounds were proven to form in aqueous solution colloidal stable nanoparticles (NPs) displaying a strong 19 F NMR signal. The fluorinated NPs also showed an enhanced ability to load hydrophobic drugs containing fluorine atoms compared to analogous pristine PLGA NPs. Preliminary in vitro studies showed high cell viability and the NP ability to intracellularly deliver and release a functioning drug.
Collapse
Affiliation(s)
- Giulia Neri
- Laboratory of Supramolecular and Bio-Nanomaterials (SupraBioNanoLab), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, V. Luigi Mancinelli, 20131, Milan, Italy.,Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le F. Stagno d'Alcontres, 31, 98166, Messina, Italy
| | - Giuliana Mion
- Laboratory of Supramolecular and Bio-Nanomaterials (SupraBioNanoLab), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, V. Luigi Mancinelli, 20131, Milan, Italy
| | - Andrea Pizzi
- Laboratory of Supramolecular and Bio-Nanomaterials (SupraBioNanoLab), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, V. Luigi Mancinelli, 20131, Milan, Italy
| | - Wanda Celentano
- Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, V. Luigi Mancinelli, 20131, Milan, Italy
| | - Linda Chaabane
- Institute of Experimental Neurology (INSPE) and Experimental Imaging, Center (CIS), IRCCS San Raffaele Hospital, V. Olgettina, 60, 20132, Milan, Italy
| | - Michele R Chierotti
- Department of Chemistry and NIS Centre, Università di Torino, V. Pietro Giuria, 7, 10125, Turin, Italy
| | - Roberto Gobetto
- Department of Chemistry and NIS Centre, Università di Torino, V. Pietro Giuria, 7, 10125, Turin, Italy
| | - Min Li
- Renal Research Laboratory, Fondazione IRCCS Ca" Granda Ospedale Maggiore Policlinico, V. Francesco Sforza, 35, 20122, Milan, Italy
| | - Piergiorgio Messa
- Renal Research Laboratory, Fondazione IRCCS Ca" Granda Ospedale Maggiore Policlinico, V. Francesco Sforza, 35, 20122, Milan, Italy
| | - Floryan De Campo
- Solvay Specialty Polymers, V. Lombardia, 20, Bollate, 20021, Milan, Italy
| | - Francesco Cellesi
- Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, V. Luigi Mancinelli, 20131, Milan, Italy
| | - Pierangelo Metrangolo
- Laboratory of Supramolecular and Bio-Nanomaterials (SupraBioNanoLab), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, V. Luigi Mancinelli, 20131, Milan, Italy
| | - Francesca Baldelli Bombelli
- Laboratory of Supramolecular and Bio-Nanomaterials (SupraBioNanoLab), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta", Politecnico di Milano, V. Luigi Mancinelli, 20131, Milan, Italy
| |
Collapse
|
3
|
Popescu Din IM, Balas M, Hermenean A, Vander Elst L, Laurent S, Burtea C, Cinteza LO, Dinischiotu A. Novel Polymeric Micelles-Coated Magnetic Nanoparticles for In Vivo Bioimaging of Liver: Toxicological Profile and Contrast Enhancement. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2722. [PMID: 32549296 PMCID: PMC7345181 DOI: 10.3390/ma13122722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022]
Abstract
Magnetic nanoparticles are intensively studied for magnetic resonance imaging (MRI) as contrast agents but yet there remained some gaps regarding their toxicity potential and clinical implications of their biodistribution in organs. This study presents the effects induced by magnetite nanoparticles encapsulated in polymeric micelles (MNP-DSPE-PEG) on biochemical markers, metabolic functions, and MRI signal in CD1 mice liver. Three groups of animals, one control and the other ones injected with a suspension of five, respectively, 15 mg Fe/kg bw nanoparticles, were monitored up to 14 days. The results indicated the presence of MNP-DSPE-PEG in the liver in the first two days of the experiment. The most significant biochemical changes also occurred in the first 3 days after exposure when the most severe histological changes were observed. The change of the MRI signal intensity on the T2-weighted images and increased transverse relaxation rates R2 in the liver were observed after the first minutes from the nanoparticle administration. The study shows that the alterations of biomarkers level resulting from exposure to MNP-DSPE-PEG are restored in time in mice liver. This was associated with a significant contrast on T2-weighted images and made us conclude that these nanoparticles might be potential candidates for use as a contrast agent in liver medical imaging.
Collapse
Affiliation(s)
- Ioana Mihaela Popescu Din
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independentei, 050095 Bucharest, Romania; (I.M.P.D.); (A.D.)
| | - Mihaela Balas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independentei, 050095 Bucharest, Romania; (I.M.P.D.); (A.D.)
| | - Anca Hermenean
- Department of Experimental and Applied Biology, Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania;
- Department of Histology, Faculty of Medicine, Vasile Goldis Western University of Arad, 1 Feleacului street, 310396 Arad, Romania
| | - Luce Vander Elst
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, Faculty of Medicine and Pharmacy, University of Mons, 19, Avenue Maistriau, Mendeleev Building, B-7000 Mons, Belgium; (L.V.E.); (S.L.); (C.B.)
| | - Sophie Laurent
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, Faculty of Medicine and Pharmacy, University of Mons, 19, Avenue Maistriau, Mendeleev Building, B-7000 Mons, Belgium; (L.V.E.); (S.L.); (C.B.)
| | - Carmen Burtea
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, Faculty of Medicine and Pharmacy, University of Mons, 19, Avenue Maistriau, Mendeleev Building, B-7000 Mons, Belgium; (L.V.E.); (S.L.); (C.B.)
| | - Ludmila Otilia Cinteza
- Department of Physical Chemistry, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta Blvd, 030018 Bucharest, Romania;
| | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91–95 Splaiul Independentei, 050095 Bucharest, Romania; (I.M.P.D.); (A.D.)
| |
Collapse
|
4
|
Targeted Molecular Magnetic Resonance Imaging Detects Brown Adipose Tissue with Ultrasmall Superparamagnetic Iron Oxide. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3619548. [PMID: 30406134 PMCID: PMC6199858 DOI: 10.1155/2018/3619548] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/18/2018] [Indexed: 11/18/2022]
Abstract
The peptide (CKGGRAKDC-NH2) specifically targets the brown adipose tissue (BAT). Here we applied this peptide coupled with polyethylene glycol (PEG)-coated ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles to detect BAT in vivo by magnetic resonance imaging (MRI). The peptide was conjugated with PEG-coated USPIO nanoparticles to obtain targeted USPIO nanoprobes. Then the nanoprobes for BAT were evaluated in mice. T2⁎-weighted images were performed, precontrast and postcontrast USPIO nanoparticles. Finally, histological analyses proved the specific targeting. The specificity of targeted USPIO nanoprobes was observed in mice. The T2⁎ relaxation time of BAT in the targeted group decreased obviously compared to the controls (P<0.001). Prussian blue staining and transmission electron microscope confirmed the specific presence of iron oxide. This study demonstrated that peptide (CKGGRAKDC-NH2) coupled with PEG-coated USPIO nanoparticles could identify BAT noninvasively in vivo with MRI.
Collapse
|
5
|
Luchini A, Gerelli Y, Fragneto G, Nylander T, Pálsson GK, Appavou MS, Paduano L. Neutron Reflectometry reveals the interaction between functionalized SPIONs and the surface of lipid bilayers. Colloids Surf B Biointerfaces 2016; 151:76-87. [PMID: 27987458 DOI: 10.1016/j.colsurfb.2016.12.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 12/02/2016] [Accepted: 12/06/2016] [Indexed: 11/18/2022]
Abstract
The safe application of nanotechnology devices in biomedicine requires fundamental understanding on how they interact with and affect the different components of biological systems. In this respect, the cellular membrane, the cell envelope, certainly represents an important target or barrier for nanosystems. Here we report on the interaction between functionalized SuperParamagnetic Iron Oxide Nanoparticles (SPIONs), promising contrast agents for Magnetic Resonance Imaging (MRI), and lipid bilayers that mimic the plasma membrane. Neutron Reflectometry, supported by Quartz Crystal Microbalance with Dissipation monitoring (QCM-D) experiments, was used to characterize this interaction by varying both SPION coating and lipid bilayer composition. In particular, the interaction of two different SPIONs, functionalized with a cationic surfactant and a zwitterionic phospholipid, and lipid bilayers, containing different amount of cholesterol, were compared. The obtained results were further validated by Dynamic Light Scattering (DLS) measurements and Cryogenic Transmission Electron Microscopy (Cryo-TEM) images. None of the investigated functionalized SPIONs were found to disrupt the lipid membrane. However, in all case we observed the attachment of the functionalized SPIONs onto the surface of the bilayers, which was affected by the bilayer rigidity, i.e. the cholesterol concentration.
Collapse
Affiliation(s)
- Alessandra Luchini
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli "Federico II", Complesso Universitario di Monte S. Angelo, via Cintia, 80126 Napoli, Italy; CSGI - Consorzio interuniversitario per lo sviluppo dei Sistemi a Grande Interfase, Italy; Institut Laue-Langevin, BP 156, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Yuri Gerelli
- Institut Laue-Langevin, BP 156, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Giovanna Fragneto
- Institut Laue-Langevin, BP 156, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Tommy Nylander
- Physical Chemistry 1, Lund University, P.O. Box 124, 221 00 Lund, Sweden
| | - Gunnar K Pálsson
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38000 Grenoble, France; Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden
| | - Marie-Sousai Appavou
- Jülich Centre for Neutron Science, Garching Forschungszentrum, Lichtenbergstrasse 1, D-85747 Garching bei München, Germany
| | - Luigi Paduano
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli "Federico II", Complesso Universitario di Monte S. Angelo, via Cintia, 80126 Napoli, Italy; CSGI - Consorzio interuniversitario per lo sviluppo dei Sistemi a Grande Interfase, Italy.
| |
Collapse
|
6
|
Luchini A, Heenan RK, Paduano L, Vitiello G. Functionalized SPIONs: the surfactant nature modulates the self-assembly and cluster formation. Phys Chem Chem Phys 2016; 18:18441-9. [PMID: 27338137 DOI: 10.1039/c6cp01694d] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SuperParamagnetic Iron Oxide Nanoparticles (SPIONs) represent a suitable system for several applications especially in nanomedicine. Great efforts have been made to design stable and biocompatible functionalized SPIONs suitable for diagnostics and drug delivery. In particular, zwitterionic-surfactant functionalized SPIONs, obtained through a coating strategy based on hydrophobic interaction, are promising systems for biomedical applications. The size of functionalized SPIONs has emerged as a crucial parameter determining their fate in living organisms. However, not all the proposed functionalization strategies lead to monodispersed systems and SPION clustering often occurs. In this study, we report a systematic investigation on different surfactant-functionalized SPIONs in order to explore the possibility of tuning the particle size by choosing an appropriate amphiphilic molecule. By combining Small-Angle Neutron Scattering (SANS) and Dynamic Light Scattering (DLS) analysis, we have provided a detailed description of the functionalized SPION structure. Furthermore, we have also related the surfactant aggregation properties, i.e. the Critical Micelle Concentration (CMC), to their efficiency in coating the SPION surface. A lack in the formation of a compact shell leads to a clusters formation. On this basis, the present study contributes to furnishing decisive information to define synthetic strategies able to tune functionalized-SPION design.
Collapse
Affiliation(s)
- Alessandra Luchini
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario di Monte S. Angelo, via Cintia 4, 80126 Naples, Italy
| | | | | | | |
Collapse
|
7
|
Luchini A, Irace C, Santamaria R, Montesarchio D, Heenan RK, Szekely N, Flori A, Menichetti L, Paduano L. Phosphocholine-decorated superparamagnetic iron oxide nanoparticles: defining the structure and probing in vivo applications. NANOSCALE 2016; 8:10078-86. [PMID: 26751053 DOI: 10.1039/c5nr08486e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Superparamagnetic Iron Oxide Nanoparticles (SPIONs) are performing contrast agents for Magnetic Resonance Imaging (MRI). A functionalization strategy for SPIONs based on hydrophobic interactions is a versatile approach easily extendable to several kinds of inorganic nanoparticles and suitable for obtaining stable and biocompatible systems. Here we report on the original preparation of functionalized SPIONs with an 8 nm radius exploiting the hydrophobic interaction between a phosphocholine and an inner amphiphilic. With respect to other similarly functionalized SPIONs, characterized by the typical nanoparticle clustering that leads to large aggregates, our phosphocholine-decorated SPIONs are demonstrated to be monodisperse. We report the in vitro and in vivo study that proves the effective applicability of phosphocholine-decorated SPIONs as MRI contrast agents. The versatility of this functionalization approach is highlighted by introducing on the SPION surface a ruthenium-based potential antitumoral drug, named ToThyCholRu. Even if in this case we observed the formation of SPION clusters, ascribable to the presence of the amphiphilic ruthenium complex, interesting and promising antiproliferative activity points at the ToThyCholRu-decorated SPIONs as potential theranostic agents.
Collapse
Affiliation(s)
- Alessandra Luchini
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli "Federico II", Complesso Universitario di Monte S. Angelo, via Cintia, 80126 Napoli, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Corbet C, Ragelle H, Pourcelle V, Vanvarenberg K, Marchand-Brynaert J, Préat V, Feron O. Delivery of siRNA targeting tumor metabolism using non-covalent PEGylated chitosan nanoparticles: Identification of an optimal combination of ligand structure, linker and grafting method. J Control Release 2016; 223:53-63. [DOI: 10.1016/j.jconrel.2015.12.020] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/03/2015] [Accepted: 12/12/2015] [Indexed: 12/22/2022]
|
9
|
Kandasamy G, Surendran S, Chakrabarty A, Kale SN, Maity D. Facile synthesis of novel hydrophilic and carboxyl-amine functionalized superparamagnetic iron oxide nanoparticles for biomedical applications. RSC Adv 2016. [DOI: 10.1039/c6ra18567c] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We report a one-step facile synthesis of novel water-soluble and functionalized SPIONs, which could be promising candidates for cancer theranostics.
Collapse
Affiliation(s)
| | | | | | - S. N. Kale
- Department of Applied Physics
- Defence Institute of Advanced Technology
- Pune 411025
- India
| | - Dipak Maity
- Department of Mechanical Engineering
- Shiv Nadar University
- India
| |
Collapse
|
10
|
Braun T, Kleusch C, Naumovska E, Merkel R, Csiszár A. A bioanalytical assay to distinguish cellular uptake routes for liposomes. Cytometry A 2015; 89:301-8. [DOI: 10.1002/cyto.a.22792] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/17/2015] [Accepted: 10/05/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Tobias Braun
- ICS-7: Biomechanics; Forschungszentrum Jülich GmbH, Institute of Complex Systems; Jülich 52425 Germany
| | - Christian Kleusch
- ICS-7: Biomechanics; Forschungszentrum Jülich GmbH, Institute of Complex Systems; Jülich 52425 Germany
| | - Elena Naumovska
- ICS-7: Biomechanics; Forschungszentrum Jülich GmbH, Institute of Complex Systems; Jülich 52425 Germany
| | - Rudolf Merkel
- ICS-7: Biomechanics; Forschungszentrum Jülich GmbH, Institute of Complex Systems; Jülich 52425 Germany
| | - Agnes Csiszár
- ICS-7: Biomechanics; Forschungszentrum Jülich GmbH, Institute of Complex Systems; Jülich 52425 Germany
| |
Collapse
|
11
|
Kandasamy G, Maity D. Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics. Int J Pharm 2015; 496:191-218. [PMID: 26520409 DOI: 10.1016/j.ijpharm.2015.10.058] [Citation(s) in RCA: 202] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/20/2015] [Accepted: 10/22/2015] [Indexed: 12/15/2022]
Abstract
Recently superparamagnetic iron oxide nanoparticles (SPIONs) have been extensively used in cancer therapy and diagnosis (theranostics) via magnetic targeting, magnetic resonance imaging, etc. due to their remarkable magnetic properties, chemical stability, and biocompatibility. However, the magnetic properties of SPIONs are influenced by various physicochemical and synthesis parameters. So, this review mainly focuses on the influence of spin canting effects, introduced by the variations in size, shape, and organic/inorganic surface coatings, on the magnetic properties of SPIONs. This review also describes the several predominant chemical synthesis procedures and role of the synthesis parameters for monitoring the size, shape, crystallinity and composition of the SPIONs. Moreover, this review discusses about the latest developments of the inorganic materials and organic polymers for encapsulation of the SPIONs. Finally, the most recent advancements of the SPIONs and their nanopackages in combination with other imaging/therapeutic agents have been comprehensively discussed for their effective usage as in vitro and in vivo theranostic agents in cancer treatments.
Collapse
Affiliation(s)
- Ganeshlenin Kandasamy
- Nanomaterials Lab, Department of Mechanical Engineering, Shiv Nadar University, Uttar Pradesh 201314, India
| | - Dipak Maity
- Nanomaterials Lab, Department of Mechanical Engineering, Shiv Nadar University, Uttar Pradesh 201314, India.
| |
Collapse
|
12
|
Kong N, Zhou J, Park J, Xie S, Ramström O, Yan M. Quantitative Fluorine NMR To Determine Carbohydrate Density on Glyconanomaterials Synthesized from Perfluorophenyl Azide-Functionalized Silica Nanoparticles by Click Reaction. Anal Chem 2015; 87:9451-8. [DOI: 10.1021/acs.analchem.5b02507] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Na Kong
- Department
of Chemistry, KTH - Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden
| | - Juan Zhou
- Department
of Chemistry, KTH - Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden
| | - JaeHyeung Park
- Department
of Chemistry, University of Massachusetts Lowell, 1 University
Ave., Lowell, Massachusetts 01854, United States
| | - Sheng Xie
- Department
of Chemistry, KTH - Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden
| | - Olof Ramström
- Department
of Chemistry, KTH - Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden
| | - Mingdi Yan
- Department
of Chemistry, KTH - Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm, Sweden
- Department
of Chemistry, University of Massachusetts Lowell, 1 University
Ave., Lowell, Massachusetts 01854, United States
| |
Collapse
|