1
|
Jiang X, Nik Nabil WN, Ze Y, Dai R, Xi Z, Xu H. Unlocking Natural Potential: Antibody-Drug Conjugates With Naturally Derived Payloads for Cancer Therapy. Phytother Res 2024. [PMID: 39688127 DOI: 10.1002/ptr.8407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/06/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024]
Abstract
Natural compound-derived chemotherapies remain central to cancer treatment, however, they often cause off-target side effects that negatively impact patients' quality of life. In contrast, antibody-drug conjugates (ADCs) combine cytotoxic payloads with antibodies to specifically target cancer cells. Most approved and clinically investigated ADCs utilize naturally derived payloads, while those with conventional synthetic molecular payloads remain limited. This review focuses on approved ADCs that enhance the efficacy of naturally derived payloads by linking them with antibodies. We provide an overview of the core components of ADCs, their working mechanisms, and FDA-approved ADCs featuring naturally derived payloads, such as calicheamicin, camptothecin, dolastatin 10, maytansine, pyrrolbenzodiazepine (PBD), and the immunotoxin Pseudomonas exotoxin A. This review also explores recent clinical advancements aimed at broadening the therapeutic potential of ADCs, their applicability in treating heterogeneously composed tumors and their potential use beyond oncology. Additionally, this review highlights naturally derived payloads that are currently being clinically investigated but have not yet received approval. By summarizing the current landscape, this review provides insights into promising avenues for exploration and contributes to the refinement of treatment protocols for improved patient outcomes.
Collapse
Affiliation(s)
- Xue Jiang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Wan Najbah Nik Nabil
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- National Pharmaceutical Regulatory Agency, Ministry of Health, Selangor, Malaysia
| | - Yufei Ze
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Rongchen Dai
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Zhichao Xi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Hongxi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
2
|
Xi M, Zhu J, Zhang F, Shen H, Chen J, Xiao Z, Huangfu Y, Wu C, Sun H, Xia G. Antibody-drug conjugates for targeted cancer therapy: Recent advances in potential payloads. Eur J Med Chem 2024; 276:116709. [PMID: 39068862 DOI: 10.1016/j.ejmech.2024.116709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Antibody-drug conjugates (ADCs) represent a promising cancer therapy modality which specifically delivers highly toxic payloads to cancer cells through antigen-specific monoclonal antibodies (mAbs). To date, 15 ADCs have been approved and more than 100 ADC candidates have advanced to clinical trials for the treatment of various cancers. Among these ADCs, microtubule-targeting and DNA-damaging agents are at the forefront of payload development. However, several challenges including toxicity and drug resistance limit the potential of this modality. To tackle these issues, multiple innovative payloads such as immunomodulators and proteolysis targeting chimeras (PROTACs) are incorporated into ADCs to enable multimodal cancer therapy. In this review, we describe the mechanism of ADCs, highlight the importance of ADC payloads and summarize recent progresses of conventional and unconventional ADC payloads, trying to provide an insight into payload diversification as a key step in future ADC development.
Collapse
Affiliation(s)
- Meiyang Xi
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing, 312000, China; College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Jingjing Zhu
- NovoCodex Biopharmaceuticals Co. Ltd., Shaoxing, 312090, China
| | - Fengxia Zhang
- NovoCodex Biopharmaceuticals Co. Ltd., Shaoxing, 312090, China
| | - Hualiang Shen
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing, 312000, China; College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Jianhui Chen
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Ziyan Xiao
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Yanping Huangfu
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Chunlei Wu
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing, 312000, China; College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Haopeng Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China.
| | - Gang Xia
- NovoCodex Biopharmaceuticals Co. Ltd., Shaoxing, 312090, China
| |
Collapse
|
3
|
Paulo BS, Recchia MJJ, Lee S, Fergusson CH, Romanowski SB, Hernandez A, Krull N, Liu DY, Cavanagh H, Bos A, Gray CA, Murphy BT, Linington RG, Eustaquio AS. Discovery of megapolipeptins by genome mining of a Burkholderiales bacteria collection. Chem Sci 2024; 15:d4sc03594a. [PMID: 39309087 PMCID: PMC11411415 DOI: 10.1039/d4sc03594a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024] Open
Abstract
Burkholderiales bacteria have emerged as a promising source of structurally diverse natural products that are expected to play important ecological and industrial roles. This order ranks in the top three in terms of predicted natural product diversity from available genomes, warranting further genome sequencing efforts. However, a major hurdle in obtaining the predicted products is that biosynthetic genes are often 'silent' or poorly expressed. Here we report complementary strain isolation, genomics, metabolomics, and synthetic biology approaches to enable natural product discovery. First, we built a collection of 316 rhizosphere-derived Burkholderiales strains over the course of five years. We then selected 115 strains for sequencing using the mass spectrometry pipeline IDBac to avoid strain redundancy. After predicting and comparing the biosynthetic potential of each strain, a biosynthetic gene cluster that was silent in the native Paraburkholderia megapolitana and Paraburkholderia acidicola producers was cloned and activated by heterologous expression in a Burkholderia sp. host, yielding megapolipeptins A and B. Megapolipeptins are unusual polyketide, nonribosomal peptide, and polyunsaturated fatty acid hybrids that show low structural similarity to known natural products, highlighting the advantage of our Burkholderiales genomics-driven and synthetic biology-enabled pipeline to discover novel natural products.
Collapse
Affiliation(s)
- Bruno S Paulo
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago Chicago IL 60607 USA
- Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago Chicago IL 60607 USA
| | | | - Sanghoon Lee
- Department of Chemistry, Simon Fraser University Burnaby BC V5H 1S6 Canada
| | - Claire H Fergusson
- Department of Chemistry, Simon Fraser University Burnaby BC V5H 1S6 Canada
| | - Sean B Romanowski
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago Chicago IL 60607 USA
- Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago Chicago IL 60607 USA
| | - Antonio Hernandez
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago Chicago IL 60607 USA
- Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago Chicago IL 60607 USA
| | - Nyssa Krull
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago Chicago IL 60607 USA
| | - Dennis Y Liu
- Department of Chemistry, Simon Fraser University Burnaby BC V5H 1S6 Canada
| | - Hannah Cavanagh
- Department of Chemistry, Simon Fraser University Burnaby BC V5H 1S6 Canada
| | - Allyson Bos
- Department of Biological Sciences, University of New Brunswick Saint John New Brunswick E2L 4L5 Canada
| | - Christopher A Gray
- Department of Biological Sciences, University of New Brunswick Saint John New Brunswick E2L 4L5 Canada
| | - Brian T Murphy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago Chicago IL 60607 USA
- Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago Chicago IL 60607 USA
| | - Roger G Linington
- Department of Chemistry, Simon Fraser University Burnaby BC V5H 1S6 Canada
| | - Alessandra S Eustaquio
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago Chicago IL 60607 USA
- Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago Chicago IL 60607 USA
| |
Collapse
|
4
|
Hao JL, Li XY, Liu YT, Lang JX, Liu DJ, Zhang CD. Antibody-drug conjugates in gastric cancer: from molecular landscape to clinical strategies. Gastric Cancer 2024; 27:887-906. [PMID: 38963593 DOI: 10.1007/s10120-024-01529-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
Antibody-drug conjugates (ADCs) represent a crucial component of targeted therapies in gastric cancer, potentially altering traditional treatment paradigms. Many ADCs have entered rigorous clinical trials based on biological theories and preclinical experiments. Modality trials have also been conducted in combination with monoclonal antibody therapies, chemotherapies, immunotherapies, and other treatments to enhance the efficacy of drug coordination effects. However, ADCs exhibit limitations in treating gastric cancer, including resistance triggered by their structure or other factors. Ongoing intensive researches and preclinical experiments are yielding improvements, while enhancements in drug development processes and concomitant diagnostics during the therapeutic period actively boost ADC efficacy. The optimal treatment strategy for gastric cancer patients is continually evolving. This review summarizes the clinical progress of ADCs in treating gastric cancer, analyzes the mechanisms of ADC combination therapies, discusses resistance patterns, and offers a promising outlook for future applications in ADC drug development and companion diagnostics.
Collapse
Affiliation(s)
- Jia-Lin Hao
- Central Laboratory, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Xin-Yun Li
- Clinical Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Yu-Tong Liu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110022, China
| | - Ji-Xuan Lang
- Department of Surgical Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Di-Jie Liu
- Central Laboratory, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Chun-Dong Zhang
- Central Laboratory, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China.
- Department of Surgical Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China.
| |
Collapse
|
5
|
Li C, Shi K, Zhao S, Liu J, Zhai Q, Hou X, Xu J, Wang X, Liu J, Wu X, Fan W. Natural-source payloads used in the conjugated drugs architecture for cancer therapy: Recent advances and future directions. Pharmacol Res 2024; 207:107341. [PMID: 39134188 DOI: 10.1016/j.phrs.2024.107341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024]
Abstract
Drug conjugates are obtained from tumor-located vectors connected to cytotoxic agents via linkers, which are designed to deliver hyper-toxic payloads directly to targeted cancer cells. These drug conjugates include antibody-drug conjugates (ADCs), peptide-drug conjugates (PDCs), small molecule-drug conjugates (SMDCs), nucleic acid aptamer-drug conjugates (ApDCs), and virus-like drug conjugate (VDCs), which show great therapeutic value in the clinic. Drug conjugates consist of a targeting carrier, a linker, and a payload. Payloads are key therapy components. Cytotoxic molecules and their derivatives derived from natural products are commonly used in the payload portion of conjugates. The ideal payload should have sufficient toxicity, stability, coupling sites, and the ability to be released under specific conditions to kill tumor cells. Microtubule protein inhibitors, DNA damage agents, and RNA inhibitors are common cytotoxic molecules. Among these conjugates, cytotoxic molecules of natural origin are summarized based on their mechanism of action, conformational relationships, and the discovery of new derivatives. This paper also mentions some cytotoxic molecules that have the potential to be payloads. It also summarizes the latest technologies and novel conjugates developed in recent years to overcome the shortcomings of ADCs, PDCs, SMDCs, ApDCs, and VDCs. In addition, this paper summarizes the clinical trials conducted on conjugates of these cytotoxic molecules over the last five years. It provides a reference for designing and developing safer and more efficient conjugates.
Collapse
Affiliation(s)
- Cuiping Li
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| | - Kourong Shi
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| | - Siyuan Zhao
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| | - Juan Liu
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| | - Qiaoli Zhai
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| | - Xiaoli Hou
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| | - Jie Xu
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| | - Xinyu Wang
- Shanghai Wei Er Lab, Shanghai 201707, China.
| | - Jiahui Liu
- Fujian University of Traditional Chinese Medicine, Fuzhou 350108, China.
| | - Xin Wu
- Fujian University of Traditional Chinese Medicine, Fuzhou 350108, China; Shanghai Wei Er Lab, Shanghai 201707, China.
| | - Wei Fan
- Department of Pharmacy, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| |
Collapse
|
6
|
Tonon G, Rizzolio F, Visentin F, Scattolin T. Antibody Drug Conjugates for Cancer Therapy: From Metallodrugs to Nature-Inspired Payloads. Int J Mol Sci 2024; 25:8651. [PMID: 39201338 PMCID: PMC11355040 DOI: 10.3390/ijms25168651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/02/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
This review highlights significant advancements in antibody-drug conjugates (ADCs) equipped with metal-based and nature-inspired payloads, focusing on synthetic strategies for antibody conjugation. Traditional methods such us maleimide and succinimide conjugation and classical condensation reactions are prevalent for metallodrugs and natural compounds. However, emerging non-conventional strategies such as photoconjugation are gaining traction due to their milder conditions and, in an aspect which minimizes side reactions, selective formation of ADC. The review also summarizes the therapeutic and diagnostic properties of these ADCs, highlighting their enhanced selectivity and reduced side effects in cancer treatment compared to non-conjugated payloads. ADCs combine the specificity of monoclonal antibodies with the cytotoxicity of chemotherapy drugs, offering a targeted approach to the elimination of cancer cells while sparing healthy tissues. This targeted mechanism has demonstrated impressive clinical efficacy in various malignancies. Key future advancements include improved linker technology for enhanced stability and controlled release of cytotoxic agents, incorporation of novel, more potent, cytotoxic agents, and the identification of new cancer-specific antigens through genomic and proteomic technologies. ADCs are also expected to play a crucial role in combination therapies with immune checkpoint inhibitors, CAR-T cells, and small molecule inhibitors, leading to more durable and potentially curative outcomes. Ongoing research and clinical trials are expanding their capabilities, paving the way for more effective, safer, and personalized treatments, positioning ADCs as a cornerstone of modern medicine and offering new hope to patients.
Collapse
Affiliation(s)
- Giovanni Tonon
- Department of Molecular Sciences and Nanosystems, Università Ca’ Foscari Campus Scientifico, Via Torino 155, 30174 Venezia-Mestre, Italy; (G.T.); (F.R.)
| | - Flavio Rizzolio
- Department of Molecular Sciences and Nanosystems, Università Ca’ Foscari Campus Scientifico, Via Torino 155, 30174 Venezia-Mestre, Italy; (G.T.); (F.R.)
- Pathology Unit, Department of Molecular Biology and Translational Research, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via Franco Gallini 2, 33081 Aviano, Italy
| | - Fabiano Visentin
- Department of Molecular Sciences and Nanosystems, Università Ca’ Foscari Campus Scientifico, Via Torino 155, 30174 Venezia-Mestre, Italy; (G.T.); (F.R.)
| | - Thomas Scattolin
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
7
|
Lu N, Wu J, Tian M, Zhang S, Li Z, Shi L. Comprehensive review on the elaboration of payloads derived from natural products for antibody-drug conjugates. Eur J Med Chem 2024; 268:116233. [PMID: 38408390 DOI: 10.1016/j.ejmech.2024.116233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/08/2024] [Accepted: 02/10/2024] [Indexed: 02/28/2024]
Abstract
Antibody-drug conjugates (ADCs) have arisen as a promising class of biotherapeutics for targeted cancer treatment, combining the specificity of monoclonal antibodies with the cytotoxicity of small-molecule drugs. The choice of an appropriate payload is crucial for the success development of ADCs, as it determines the therapeutic efficacy and safety profile. This review focuses on payloads derived from natural products, including cytotoxic agents, DNA-damaging agents, and immunomodulators. These offer several advantages such as diverse chemical structures, unique mechanism of actions, and potential for improved therapeutic index. Challenges and opportunities associated with their development were highlighted. This review underscores the significance of natural product payloads in the elaboration of ADCs, which serves as a valuable resource for researchers involved in developing and optimizing next-generation ADCs for cancer treatment.
Collapse
Affiliation(s)
- Nan Lu
- XDC Analytical Sciences, WuXi XDC Co., Ltd., 520 Fute North Road, Pilot Free Trade Zone, Pudong New Area, Shanghai, 200131, China
| | - Jiaqi Wu
- XDC Analytical Sciences, WuXi XDC Co., Ltd., 520 Fute North Road, Pilot Free Trade Zone, Pudong New Area, Shanghai, 200131, China
| | - Mengwei Tian
- XDC Analytical Sciences, WuXi XDC Co., Ltd., 520 Fute North Road, Pilot Free Trade Zone, Pudong New Area, Shanghai, 200131, China
| | - Shanshan Zhang
- XDC Analytical Sciences, WuXi XDC Co., Ltd., 520 Fute North Road, Pilot Free Trade Zone, Pudong New Area, Shanghai, 200131, China.
| | - Zhiguo Li
- XDC Analytical Sciences, WuXi XDC Co., Ltd., 520 Fute North Road, Pilot Free Trade Zone, Pudong New Area, Shanghai, 200131, China.
| | - Liming Shi
- XDC Analytical Sciences, WuXi XDC Co., Ltd., 520 Fute North Road, Pilot Free Trade Zone, Pudong New Area, Shanghai, 200131, China.
| |
Collapse
|
8
|
Kumari S, Raj S, Babu MA, Bhatti GK, Bhatti JS. Antibody-drug conjugates in cancer therapy: innovations, challenges, and future directions. Arch Pharm Res 2024; 47:40-65. [PMID: 38153656 DOI: 10.1007/s12272-023-01479-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
The emergence of antibody-drug conjugates (ADCs) as a potential therapeutic avenue in cancer treatment has garnered significant attention. By combining the selective specificity of monoclonal antibodies with the cytotoxicity of drug molecules, ADCs aim to increase the therapeutic index, selectively targeting cancer cells while minimizing systemic toxicity. Various ADCs have been licensed for clinical usage, with ongoing research paving the way for additional options. However, the manufacture of ADCs faces several challenges. These include identifying suitable target antigens, enhancing antibodies, linkers, and payloads, and managing resistance mechanisms and side effects. This review focuses on the strategies to overcome these hurdles, such as site-specific conjugation techniques, novel antibody formats, and combination therapy. Our focus lies on current advancements in antibody engineering, linker technology, and cytotoxic payloads while addressing the challenges associated with ADC development. Furthermore, we explore the future potential of personalized medicine, leveraging individual patients' molecular profiles, to propel ADC treatments forward. As our understanding of the molecular mechanisms driving cancer progression continues to expand, we anticipate the development of new ADCs that offer more effective and personalized therapeutic options for cancer patients.
Collapse
Affiliation(s)
- Shivangi Kumari
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Sonam Raj
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P., India
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, India
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India.
| |
Collapse
|
9
|
Song CH, Jeong M, In H, Kim JH, Lin CW, Han KH. Trends in the Development of Antibody-Drug Conjugates for Cancer Therapy. Antibodies (Basel) 2023; 12:72. [PMID: 37987250 PMCID: PMC10660735 DOI: 10.3390/antib12040072] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/22/2023] Open
Abstract
In cancer treatment, the first-generation, cytotoxic drugs, though effective against cancer cells, also harmed healthy ones. The second-generation targeted cancer cells precisely to inhibit their growth. Enter the third-generation, consisting of immuno-oncology drugs, designed to combat drug resistance and bolster the immune system's defenses. These advanced therapies operate by obstructing the uncontrolled growth and spread of cancer cells through the body, ultimately eliminating them effectively. Within the arsenal of cancer treatment, monoclonal antibodies offer several advantages, including inducing cancer cell apoptosis, precise targeting, prolonged presence in the body, and minimal side effects. A recent development in cancer therapy is Antibody-Drug Conjugates (ADCs), initially developed in the mid-20th century. The second generation of ADCs addressed this issue through innovative antibody modification techniques, such as DAR regulation, amino acid substitutions, incorporation of non-natural amino acids, and enzymatic drug attachment. Currently, a third generation of ADCs is in development. This study presents an overview of 12 available ADCs, reviews 71 recent research papers, and analyzes 128 clinical trial reports. The overarching objective is to gain insights into the prevailing trends in ADC research and development, with a particular focus on emerging frontiers like potential targets, linkers, and drug payloads within the realm of cancer treatment.
Collapse
Affiliation(s)
- Chi Hun Song
- Department of Biological Sciences and Biotechnology, Hannam University, Daejeon 34054, Republic of Korea; (C.H.S.); (M.J.); (H.I.); (J.H.K.)
| | - Minchan Jeong
- Department of Biological Sciences and Biotechnology, Hannam University, Daejeon 34054, Republic of Korea; (C.H.S.); (M.J.); (H.I.); (J.H.K.)
| | - Hyukmin In
- Department of Biological Sciences and Biotechnology, Hannam University, Daejeon 34054, Republic of Korea; (C.H.S.); (M.J.); (H.I.); (J.H.K.)
| | - Ji Hoe Kim
- Department of Biological Sciences and Biotechnology, Hannam University, Daejeon 34054, Republic of Korea; (C.H.S.); (M.J.); (H.I.); (J.H.K.)
| | - Chih-Wei Lin
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung 406, Taiwan;
| | - Kyung Ho Han
- Department of Biological Sciences and Biotechnology, Hannam University, Daejeon 34054, Republic of Korea; (C.H.S.); (M.J.); (H.I.); (J.H.K.)
| |
Collapse
|
10
|
Han JH, Lee EJ, Park W, Ha KT, Chung HS. Natural compounds as lactate dehydrogenase inhibitors: potential therapeutics for lactate dehydrogenase inhibitors-related diseases. Front Pharmacol 2023; 14:1275000. [PMID: 37915411 PMCID: PMC10616500 DOI: 10.3389/fphar.2023.1275000] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/27/2023] [Indexed: 11/03/2023] Open
Abstract
Lactate dehydrogenase (LDH) is a crucial enzyme involved in energy metabolism and present in various cells throughout the body. Its diverse physiological functions encompass glycolysis, and its abnormal activity is associated with numerous diseases. Targeting LDH has emerged as a vital approach in drug discovery, leading to the identification of LDH inhibitors among natural compounds, such as polyphenols, alkaloids, and terpenoids. These compounds demonstrate therapeutic potential against LDH-related diseases, including anti-cancer effects. However, challenges concerning limited bioavailability, poor solubility, and potential toxicity must be addressed. Combining natural compounds with LDH inhibitors has led to promising outcomes in preclinical studies. This review highlights the promise of natural compounds as LDH inhibitors for treating cancer, cardiovascular, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jung Ho Han
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, Republic of Korea
| | - Eun-Ji Lee
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, Republic of Korea
| | - Wonyoung Park
- Korean Convergence Medical Science Major, KIOM Campus, University of Science and Technology (UST), Daegu, Republic of Korea
| | - Ki-Tae Ha
- Korean Convergence Medical Science Major, KIOM Campus, University of Science and Technology (UST), Daegu, Republic of Korea
| | - Hwan-Suck Chung
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, Republic of Korea
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
11
|
Romanowski SB, Lee S, Kunakom S, Paulo BS, Recchia MJJ, Liu DY, Cavanagh H, Linington RG, Eustáquio AS. Identification of the lipodepsipeptide selethramide encoded in a giant nonribosomal peptide synthetase from a Burkholderia bacterium. Proc Natl Acad Sci U S A 2023; 120:e2304668120. [PMID: 37812712 PMCID: PMC10589681 DOI: 10.1073/pnas.2304668120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 09/06/2023] [Indexed: 10/11/2023] Open
Abstract
Bacterial natural products have found many important industrial applications. Yet traditional discovery pipelines often prioritize individual natural product families despite the presence of multiple natural product biosynthetic gene clusters in each bacterial genome. Systematic characterization of talented strains is a means to expand the known natural product space. Here, we report genomics, epigenomics, and metabolomics studies of Burkholderia sp. FERM BP-3421, a soil isolate and known producer of antitumor spliceostatins. Its genome is composed of two chromosomes and two plasmids encoding at least 29 natural product families. Metabolomics studies showed that FERM BP-3421 also produces antifungal aminopyrrolnitrin and approved anticancer romidepsin. From the orphan metabolome features, we connected a lipopeptide of 1,928 Da to an 18-module nonribosomal peptide synthetase encoded as a single gene in chromosome 1. Isolation and structure elucidation led to the identification of selethramide which contains a repeating pattern of serine and leucine and is cyclized at the side chain oxygen of the one threonine residue at position 13. A (R)-3-hydroxybutyric acid moiety decorates the N-terminal serine. Initial attempts to obtain deletion mutants to probe the role of selethramide failed. After acquiring epigenome (methylome) data for FERM BP-3421, we employed a mimicry by methylation strategy that improved DNA transfer efficiency. Mutants defective in selethramide biosynthesis showed reduced surfactant activity and impaired swarming motility that could be chemically complemented with selethramide. This work unveils a lipopeptide that promotes surface motility, establishes improved DNA transfer efficiency, and sets the stage for continued natural product identification from a prolific strain.
Collapse
Affiliation(s)
- Sean B. Romanowski
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL60607
| | - Sanghoon Lee
- Department of Chemistry, Simon Fraser University, Burnaby, BCV5H 1S6, Canada
| | - Sylvia Kunakom
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL60607
| | - Bruno S. Paulo
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL60607
| | | | - Dennis Y. Liu
- Department of Chemistry, Simon Fraser University, Burnaby, BCV5H 1S6, Canada
| | - Hannah Cavanagh
- Department of Chemistry, Simon Fraser University, Burnaby, BCV5H 1S6, Canada
| | - Roger G. Linington
- Department of Chemistry, Simon Fraser University, Burnaby, BCV5H 1S6, Canada
| | - Alessandra S. Eustáquio
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL60607
| |
Collapse
|
12
|
Wang Z, Li H, Gou L, Li W, Wang Y. Antibody-drug conjugates: Recent advances in payloads. Acta Pharm Sin B 2023; 13:4025-4059. [PMID: 37799390 PMCID: PMC10547921 DOI: 10.1016/j.apsb.2023.06.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/30/2023] [Accepted: 06/23/2023] [Indexed: 10/05/2023] Open
Abstract
Antibody‒drug conjugates (ADCs), which combine the advantages of monoclonal antibodies with precise targeting and payloads with efficient killing, show great clinical therapeutic value. The ADCs' payloads play a key role in determining the efficacy of ADC drugs and thus have attracted great attention in the field. An ideal ADC payload should possess sufficient toxicity, low immunogenicity, high stability, and modifiable functional groups. Common ADC payloads include tubulin inhibitors and DNA damaging agents, with tubulin inhibitors accounting for more than half of the ADC drugs in clinical development. However, due to clinical limitations of traditional ADC payloads, such as inadequate efficacy and the development of acquired drug resistance, novel highly efficient payloads with diverse targets and reduced side effects are being developed. This perspective summarizes the recent research advances of traditional and novel ADC payloads with main focuses on the structure-activity relationship studies, co-crystal structures, and designing strategies, and further discusses the future research directions of ADC payloads. This review also aims to provide valuable references and future directions for the development of novel ADC payloads that will have high efficacy, low toxicity, adequate stability, and abilities to overcome drug resistance.
Collapse
Affiliation(s)
- Zhijia Wang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, China
| | - Hanxuan Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Lantu Gou
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Yuxi Wang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, China
| |
Collapse
|
13
|
Gogia P, Ashraf H, Bhasin S, Xu Y. Antibody-Drug Conjugates: A Review of Approved Drugs and Their Clinical Level of Evidence. Cancers (Basel) 2023; 15:3886. [PMID: 37568702 PMCID: PMC10417123 DOI: 10.3390/cancers15153886] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/17/2023] [Accepted: 07/13/2023] [Indexed: 08/13/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are an innovative family of agents assembled through linking cytotoxic drugs (payloads) covalently to monoclonal antibodies (mAbs) to be delivered to tumor tissue that express their particular antigen, with the theoretical advantage of an augmented therapeutic ratio. As of June 2023, eleven ADCs have been approved by the Food and Drug Administration (FDA) and are on the market. These drugs have been added to the therapeutic armamentarium of acute myeloblastic and lymphoblastic leukemias, various types of lymphoma, breast, gastric or gastroesophageal junction, lung, urothelial, cervical, and ovarian cancers. They have proven to deliver more potent and effective anti-tumor activities than standard practice in a wide variety of indications. In addition to targeting antigen-expressing tumor cells, bystander effects have been engineered to extend cytotoxic killing to low-antigen-expressing or negative tumor cells in the heterogenous tumor milieu. Inevitably, myelosuppression is a common side effect with most of the ADCs due to the effects of the cytotoxic payload. Also, other unique side effects are specific to the tissue antigen that is targeted for, such as the cardiac toxicity with Her-2 targeting ADCs, and the hemorrhagic side effects with the tissue factor (TF) targeting Tisotumab vedotin. Further exciting developments are centered in the strategies to improve the tolerability and efficacy of the ADCs to improve the therapeutic window; as well as the development of novel payloads including (1) peptide-drug conjugates (PDCs), with the peptide replacing the monoclonal antibody, rendering greater tumor penetration; (2) immune-stimulating antibody conjugates (ISACs), which upon conjugation of the antigen, cause an influx of pro-inflammatory cytokines to activate dendritic cells and harness an anti-tumor T-cell response; and (3) the use of radioactive isotopes as a payload to enhance cytotoxic activity.
Collapse
Affiliation(s)
- Pooja Gogia
- Department of Hematology/Oncology, Maimonides Medical Center, Brooklyn, NY 11219, USA;
| | - Hamza Ashraf
- Department of Internal Medicine, Overlook Medical Center, Summit, NJ 07901, USA;
| | - Sidharth Bhasin
- Department of Pulmonary Medicine, Saint Peter’s University Hospital, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA;
| | - Yiqing Xu
- Department of Hematology/Oncology, Maimonides Medical Center, Brooklyn, NY 11219, USA;
| |
Collapse
|
14
|
Gonzalez-Ochoa E, Veneziani AC, Oza AM. Mirvetuximab Soravtansine in Platinum-Resistant Ovarian Cancer. Clin Med Insights Oncol 2023; 17:11795549231187264. [PMID: 37528890 PMCID: PMC10387675 DOI: 10.1177/11795549231187264] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/25/2023] [Indexed: 08/03/2023] Open
Abstract
Ovarian cancer is the second leading cause of death from gynecologic malignancies worldwide. Management of platinum-resistant disease is challenging and clinical outcomes with standard chemotherapy are poor. Over the past decades, significant efforts have been made to understand drug resistance and develop strategies to overcome treatment failure. Antibody drug conjugates (ADCs) are a rapidly growing class of oncologic therapeutics, which combine the ability to target tumor-specific antigens with the cytotoxic effects of chemotherapy. Mirvetuximab soravtansine is an ADC comprising an IgG1 monoclonal antibody against the folate receptor alpha (FRα) conjugated to the cytotoxic maytansinoid effector molecule DM4 that has shown promising clinical activity in patients with FR-α-positive ovarian cancer. This review summarizes current evidence of mirvetuximab soravtansine in platinum-resistant ovarian cancer, focusing on clinical activity, toxicity, and future directions.
Collapse
Affiliation(s)
- Eduardo Gonzalez-Ochoa
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Ana C Veneziani
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Amit M Oza
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
15
|
Chan WC, Trieger KA, La Clair JJ, Jamieson CHM, Burkart MD. Stereochemical Control of Splice Modulation in FD-895 Analogues. J Med Chem 2023; 66:6577-6590. [PMID: 37155693 PMCID: PMC10586521 DOI: 10.1021/acs.jmedchem.2c01893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Highly functionalized skeletons of macrolide natural products gain access to rare spatial arrangements of atoms, where changes in stereochemistry can have a profound impact on the structure and function. Spliceosome modulators present a unique consensus motif, with the majority targeting a key interface within the SF3B spliceosome complex. Our recent preparative-scale synthetic campaign of 17S-FD-895 provided unique access to stereochemical analogues of this complex macrolide. Here, we report on the preparation and systematic activity evaluation of multiple FD-895 analogues. These studies examine the effects of modifications at specific stereocenters within the molecule and highlight future directions for medicinal chemical optimization of spliceosome modulators.
Collapse
Affiliation(s)
- Warren C Chan
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Kelsey A Trieger
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - James J La Clair
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Catriona H M Jamieson
- The Division of Regenerative Medicine, Moores Cancer Center, and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| |
Collapse
|
16
|
Payload diversification: a key step in the development of antibody-drug conjugates. J Hematol Oncol 2023; 16:3. [PMID: 36650546 PMCID: PMC9847035 DOI: 10.1186/s13045-022-01397-y] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/30/2022] [Indexed: 01/18/2023] Open
Abstract
Antibody-drug conjugates (ADCs) is a fast moving class of targeted biotherapeutics that currently combines the selectivity of monoclonal antibodies with the potency of a payload consisting of cytotoxic agents. For many years microtubule targeting and DNA-intercalating agents were at the forefront of ADC development. The recent approval and clinical success of trastuzumab deruxtecan (Enhertu®) and sacituzumab govitecan (Trodelvy®), two topoisomerase 1 inhibitor-based ADCs, has shown the potential of conjugating unconventional payloads with differentiated mechanisms of action. Among future developments in the ADC field, payload diversification is expected to play a key role as illustrated by a growing number of preclinical and clinical stage unconventional payload-conjugated ADCs. This review presents a comprehensive overview of validated, forgotten and newly developed payloads with different mechanisms of action.
Collapse
|
17
|
Barraza SJ, Bhattacharyya A, Trotta CR, Woll MG. Targeting strategies for modulating pre-mRNA splicing with small molecules: Recent advances. Drug Discov Today 2023; 28:103431. [PMID: 36356786 DOI: 10.1016/j.drudis.2022.103431] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
The concept of using small molecules to therapeutically modulate pre-mRNA splicing was validated with the US Food and Drug Administration (FDA) approval of Evrysdi® (risdiplam) in 2020. Since then, efforts have continued unabated toward the discovery of new splicing-modulating drugs. However, the drug development world has evolved in the 10 years since risdiplam precursors were first identified in high-throughput screening (HTS). Now, new mechanistic insights into RNA-processing pathways and regulatory networks afford increasingly feasible targeted approaches. In this review, organized into classes of biological target, we compile and summarize small molecules discovered, devised, and developed since 2020 to alter pre-mRNA splicing.
Collapse
Affiliation(s)
- Scott J Barraza
- PTC Therapeutics, Inc., 100 Corporate Court, South Plainfield, NJ, USA.
| | | | | | - Matthew G Woll
- PTC Therapeutics, Inc., 100 Corporate Court, South Plainfield, NJ, USA
| |
Collapse
|
18
|
Jackson CP, Fang S, Benjamin SR, Alayi T, Hathout Y, Gillen SM, Handel JP, Brems BM, Howe JM, Tumey LN. Evaluation of an ester-linked immunosuppressive payload: A case study in understanding the stability and cleavability of ester-containing ADC linkers. Bioorg Med Chem Lett 2022; 75:128953. [PMID: 36058468 PMCID: PMC10166636 DOI: 10.1016/j.bmcl.2022.128953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/28/2022] [Accepted: 08/21/2022] [Indexed: 11/29/2022]
Abstract
In spite of their value in prodrug applications, the use of esters in antibody-drug-conjugate (ADC) payloads and linkers has generally been avoided due to the ubiquitous and promiscuous nature of human esterases. ADCs generally have a long circulating half life (3-7 days) that makes them susceptible to esterase-mediated metabolism. Moreover, it is largely unclear whether lysosomal and cytosolic esterases cleave ester-containing linkers upon ADC internalization. Due to our interest in the targeted delivery of immune-modulators, our team has recently prepared a series of ester-linked dexamethasone ADCs. Herein, we report our studies of the functional activity of these ADCs, with a particular focus on their catabolism in various biological milieu. We found that esters are selectively but inefficiently cleaved upon cellular uptake, likely by cytosolic esterases. Lysosomal catabolism studies indicate that, in spite of the strong proteolytic activity, very little cleavage of ester-containing linkers occurs in the lysosome. However, ADCs bearing the ester-linked payloads are active in various immune-suppressive assays, suggesting that cytosolic cleavage is taking place. This was confirmed through LCMS quantitation of the payload following cell lysis. Finally, the stability of the ester linkage was evaluated in mouse and human plasma. We found, similar to other reports, there is a significant site-dependence on the cleavage. Esters attached at highly exposed sites, such as 443C, were rapidly cleaved in plasma while esters at more hindered sites, such at 334C, were not. Together, these results help to unravel the complexities of ester-incorporation into ADC linkers and pave a path forward for their utility in ADC applications.
Collapse
Affiliation(s)
- Courtney P Jackson
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, P.O. Box 6000, Binghamton, NY 13902, United States
| | - Siteng Fang
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, P.O. Box 6000, Binghamton, NY 13902, United States
| | - Samantha R Benjamin
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, P.O. Box 6000, Binghamton, NY 13902, United States
| | - Tchilabalo Alayi
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, P.O. Box 6000, Binghamton, NY 13902, United States
| | - Yetrib Hathout
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, P.O. Box 6000, Binghamton, NY 13902, United States
| | - Sarah M Gillen
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, P.O. Box 6000, Binghamton, NY 13902, United States
| | - Jillian P Handel
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, P.O. Box 6000, Binghamton, NY 13902, United States
| | - Brittany M Brems
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, P.O. Box 6000, Binghamton, NY 13902, United States
| | - Justin M Howe
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, P.O. Box 6000, Binghamton, NY 13902, United States
| | - L Nathan Tumey
- School of Pharmacy and Pharmaceutical Sciences, Binghamton University, P.O. Box 6000, Binghamton, NY 13902, United States.
| |
Collapse
|
19
|
Adaikpoh BI, Fernandez HN, Eustáquio AS. Biotechnology approaches for natural product discovery, engineering, and production based on Burkholderia bacteria. Curr Opin Biotechnol 2022; 77:102782. [PMID: 36049254 DOI: 10.1016/j.copbio.2022.102782] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/13/2022] [Accepted: 07/26/2022] [Indexed: 11/15/2022]
Abstract
Bacterial natural products (NPs) retain high value in discovery efforts for applications in medicine and agriculture. Burkholderia β-Proteobacteria are a promising source of NPs. In this review, we summarize the recently developed genetic manipulation techniques used to access silent/cryptic biosynthetic gene clusters from Burkholderia native producers. We also discuss the development of Burkholderia bacteria as heterologous hosts and the application of Burkholderia in industrial-scale production of NPs. Genetic engineering and fermentation media optimization have enabled the industrial-scale production of at least two Burkholderia NPs. The biotechnology approaches discussed here will continue to facilitate the discovery and development of NPs from Burkholderia.
Collapse
Affiliation(s)
- Barbara I Adaikpoh
- Department of Pharmaceutical Sciences and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Hannah N Fernandez
- Department of Pharmaceutical Sciences and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Alessandra S Eustáquio
- Department of Pharmaceutical Sciences and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
20
|
Boghaert ER, Cox MC, Vaidya KS. Pathophysiological and pharmacological considerations to improve the design and application of antibody-drug conjugates. Cancer Res 2022; 82:1858-1869. [PMID: 35298624 DOI: 10.1158/0008-5472.can-21-3236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/01/2022] [Accepted: 03/14/2022] [Indexed: 11/16/2022]
Abstract
Antibody-drug conjugates (ADC) have emerged as one of the pillars of clinical disease management in oncology. The biggest hurdle to widespread development and application of ADCs has been a narrow therapeutic index. Advances in antibody technologies and formats as well as novel linker and payload chemistries have begun to facilitate structural improvements to ADCs. However, the interplay of structural characteristics with physiologic and pharmacologic factors determining therapeutic success has garnered less attention. This review elaborates on the pharmacology of ADCs, the pathophysiology of cancerous tissues, and the reciprocal consequences on ADC properties and functions. While most currently approved ADCs utilize either microtubule inhibition or DNA damage as primary mechanisms of action, we present arguments to expand this repertoire and highlight the need for payload mechanisms that exploit disease-specific vulnerabilities. We promote the idea that the choice of antibody format, targeting antigen, linker properties, and payload of an ADC should be deliberately fit for purpose by taking the pathophysiology of disease and the specific pharmacology of the drug entity into account, thus allowing a higher probability of clinical success.
Collapse
Affiliation(s)
| | - Megan C Cox
- Abbvie, Inc., North Chicago, IL, United States
| | - Kedar S Vaidya
- Jazz Pharmaceuticals (United States), Palo Alto, CA, United States
| |
Collapse
|
21
|
Chang AY, Zhou YJ, Iyengar S, Pobiarzyn PW, Tishchenko P, Shah KM, Wheeler H, Wang YM, Loria PM, Loganzo F, Woo SR. Modulation of SF3B1 in the pre-mRNA spliceosome induces a RIG-I-dependent type I IFN response. J Biol Chem 2021; 297:101277. [PMID: 34619148 PMCID: PMC8559577 DOI: 10.1016/j.jbc.2021.101277] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 09/22/2021] [Accepted: 09/30/2021] [Indexed: 12/14/2022] Open
Abstract
Nucleic acid-sensing pathways play critical roles in innate immune activation through the production of type I interferon (IFN-I) and proinflammatory cytokines. These factors are required for effective antitumor immune responses. Pharmacological modulators of the pre-mRNA spliceosome splicing factor 3b subunit 1 (SF3B1) are under clinical investigation as cancer cytotoxic agents. However, potential roles of these agents in aberrant RNA generation and subsequent RNA-sensing pathway activation have not been studied. In this study, we observed that SF3B1 pharmacological modulation using pladienolide B (Plad B) induces production of aberrant RNA species and robust IFN-I responses via engagement of the dsRNA sensor retinoic acid-inducible gene I (RIG-I) and downstream interferon regulatory factor 3. We found that Plad B synergized with canonical RIG-I agonism to induce the IFN-I response. In addition, Plad B induced NF-κB responses and secretion of proinflammatory cytokines and chemokines. Finally, we showed that cancer cells bearing the hotspot SF3B1K700E mutation, which leads to global aberrant splicing, had enhanced IFN-I response to canonical RIG-I agonism. Together, these results demonstrate that pharmacological modulation of SF3B1 in cancer cells can induce an enhanced IFN-I response dependent on RIG-I expression. The study suggests that spliceosome modulation may not only induce direct cancer cell cytotoxicity but also initiate an innate immune response via activation of RNA-sensing pathways.
Collapse
Affiliation(s)
- Aaron Y Chang
- Oncology Research & Development, Pfizer Inc, Pearl River, New York, USA
| | - Yu Jerry Zhou
- Oncology Research & Development, Pfizer Inc, Pearl River, New York, USA
| | - Sharanya Iyengar
- Emerging Science & Innovation, Pfizer Inc, Pearl River, New York, USA
| | - Piotr W Pobiarzyn
- Oncology Research & Development, Pfizer Inc, Pearl River, New York, USA
| | - Pavel Tishchenko
- Oncology Research & Development, Pfizer Inc, Pearl River, New York, USA
| | - Kesha M Shah
- Oncology Research & Development, Pfizer Inc, Pearl River, New York, USA
| | - Heather Wheeler
- Medicine Design, Worldwide Research & Development, Pfizer Inc, Groton, Connecticut, USA
| | - Yue-Ming Wang
- Medicine Design, Worldwide Research & Development, Pfizer Inc, Groton, Connecticut, USA
| | - Paula M Loria
- Medicine Design, Worldwide Research & Development, Pfizer Inc, Groton, Connecticut, USA
| | - Frank Loganzo
- Oncology Research & Development, Pfizer Inc, Pearl River, New York, USA
| | - Seng-Ryong Woo
- Oncology Research & Development, Pfizer Inc, Pearl River, New York, USA.
| |
Collapse
|
22
|
Seki H, Walsh SJ, Bargh JD, Parker JS, Carroll J, Spring DR. Rapid and robust cysteine bioconjugation with vinylheteroarenes. Chem Sci 2021; 12:9060-9068. [PMID: 34276935 PMCID: PMC8261766 DOI: 10.1039/d1sc02722k] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 05/28/2021] [Indexed: 12/14/2022] Open
Abstract
Methods for residue-selective and stable modification of canonical amino acids enable the installation of distinct functionality which can aid in the interrogation of biological processes or the generation of new therapeutic modalities. Herein, we report an extensive investigation of reactivity and stability profiles for a series of vinylheteroarene motifs. Studies on small molecule and protein substrates identified an optimum vinylheteroarene scaffold for selective cysteine modification. Utilisation of this lead linker to modify a number of protein substrates with various functionalities, including the synthesis of a homogeneous, stable and biologically active antibody-drug conjugate (ADC) was then achieved. The reagent was also efficient in labelling proteome-wide cysteines in cell lysates. The efficiency and selectivity of these reagents as well as the stability of the products makes them suitable for the generation of biotherapeutics or studies in chemical biology.
Collapse
Affiliation(s)
- Hikaru Seki
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Stephen J Walsh
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
- Cancer Research UK Cambridge Institute, University of Cambridge Robinson Way Cambridge CB2 0RE UK
| | - Jonathan D Bargh
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Jeremy S Parker
- Early Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca Macclesfield UK
| | - Jason Carroll
- Cancer Research UK Cambridge Institute, University of Cambridge Robinson Way Cambridge CB2 0RE UK
| | - David R Spring
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
23
|
Biology of the mRNA Splicing Machinery and Its Dysregulation in Cancer Providing Therapeutic Opportunities. Int J Mol Sci 2021; 22:ijms22105110. [PMID: 34065983 PMCID: PMC8150589 DOI: 10.3390/ijms22105110] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
Dysregulation of messenger RNA (mRNA) processing—in particular mRNA splicing—is a hallmark of cancer. Compared to normal cells, cancer cells frequently present aberrant mRNA splicing, which promotes cancer progression and treatment resistance. This hallmark provides opportunities for developing new targeted cancer treatments. Splicing of precursor mRNA into mature mRNA is executed by a dynamic complex of proteins and small RNAs called the spliceosome. Spliceosomes are part of the supraspliceosome, a macromolecular structure where all co-transcriptional mRNA processing activities in the cell nucleus are coordinated. Here we review the biology of the mRNA splicing machinery in the context of other mRNA processing activities in the supraspliceosome and present current knowledge of its dysregulation in lung cancer. In addition, we review investigations to discover therapeutic targets in the spliceosome and give an overview of inhibitors and modulators of the mRNA splicing process identified so far. Together, this provides insight into the value of targeting the spliceosome as a possible new treatment for lung cancer.
Collapse
|
24
|
The Chemistry Behind ADCs. Pharmaceuticals (Basel) 2021; 14:ph14050442. [PMID: 34067144 PMCID: PMC8152005 DOI: 10.3390/ph14050442] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/29/2021] [Accepted: 05/02/2021] [Indexed: 02/07/2023] Open
Abstract
Combining the selective targeting of tumor cells through antigen-directed recognition and potent cell-killing by cytotoxic payloads, antibody-drug conjugates (ADCs) have emerged in recent years as an efficient therapeutic approach for the treatment of various cancers. Besides a number of approved drugs already on the market, there is a formidable follow-up of ADC candidates in clinical development. While selection of the appropriate antibody (A) and drug payload (D) is dictated by the pharmacology of the targeted disease, one has a broader choice of the conjugating linker (C). In the present paper, we review the chemistry of ADCs with a particular emphasis on the medicinal chemistry perspective, focusing on the chemical methods that enable the efficient assembly of the ADC from its three components and the controlled release of the drug payload.
Collapse
|
25
|
Larsen NA. The SF3b Complex is an Integral Component of the Spliceosome and Targeted by Natural Product-Based Inhibitors. Subcell Biochem 2021; 96:409-432. [PMID: 33252738 DOI: 10.1007/978-3-030-58971-4_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
In this chapter, the essential role of the SF3b multi-protein complex will be discussed in the context of the overall spliceosome. SF3b is critical during spliceosome assembly for recognition of the branch point (BP) adenosine and, by de facto, selection of the 3' splice site. This complex is highly dynamic, undergoing significant conformational changes upon loading of the branch duplex RNA and in its relative positioning during spliceosomal remodeling from the A, pre-B, B, Bact and B* complexes. Ultimately, during the spliceosome activation phase, SF3b must be displaced to unmask the branch point adenosine for the first splicing reaction to occur. In certain cancers, such as the hematological malignancies CML, CLL and MDS, the SF3b subunit SF3B1 is frequently mutated. Recent studies suggest these mutations lead to inappropriate branch point selection and mis-splicing events that appear to be drivers of disease. Finally, the SF3b complex is the target for at least three different classes of natural product-based inhibitors. These inhibitors bind in the BP adenosine-binding pocket and demonstrate a pre-mRNA competitive mechanism of action resulting in either intron retention or exon skipping. These compounds are extremely useful as chemical probes to isolate and characterize early stages of spliceosome assembly. They are also being explored preclinically and clinically as possible agents for hematological cancers.
Collapse
|
26
|
Kumar A, Mao S, Dimasi N, Gao C. Design and Validation of Linkers for Site-Specific Preparation of Antibody-Drug Conjugates Carrying Multiple Drug Copies Per Cysteine Conjugation Site. Int J Mol Sci 2020; 21:ijms21186882. [PMID: 32961794 PMCID: PMC7555909 DOI: 10.3390/ijms21186882] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 12/02/2022] Open
Abstract
First-generation cysteine-based site-specific antibody–drug conjugates (ADCs) are limited to one drug per cysteine. However, certain applications require a high drug to antibody ratio (DAR), such as when low-potency payloads are used. Higher drug load can be achieved using classical cysteine conjugation methods, but these result in heterogeneity, suboptimal efficacy and pharmacokinetics. Here, we describe the design, synthesis and validation of heterobifunctional linkers that can be used for the preparation of ADCs with a DAR of two, three and four in a site-specific manner per single cysteine conjugation site, resulting in site-specific ADCs with a DAR of four, six and eight. The designed linkers carry a sulfhydryl-specific iodoacetyl reactive group, and multiple cyclic diene moieties which can efficiently react with maleimide-carrying payloads through the Diels–Alder reaction. As a proof of concept, we synthesized site-specific DAR four, six and eight ADCs carrying tubulysin (AZ13601508) using engineered antibodies with a cysteine inserted after position 239 in the antibody CH2 domain. We evaluated and compared the in vitro cytotoxicity of ADCs obtained via the site-specific platform described herein, with ADCs prepared using classical cysteine conjugation. Our data validated a novel cysteine-based conjugation platform for the preparation of site-specific ADCs with high drug load for therapeutic applications.
Collapse
Affiliation(s)
- Amit Kumar
- Antibody Discovery and Protein Engineering Department, AstraZeneca R&D, Gaithersburg, MD 20878, USA; (A.K.); (N.D.)
| | - Shenlan Mao
- AstraZeneca Oncology R&D, Gaithersburg, MD 20878, USA;
| | - Nazzareno Dimasi
- Antibody Discovery and Protein Engineering Department, AstraZeneca R&D, Gaithersburg, MD 20878, USA; (A.K.); (N.D.)
| | - Changshou Gao
- Antibody Discovery and Protein Engineering Department, AstraZeneca R&D, Gaithersburg, MD 20878, USA; (A.K.); (N.D.)
- Correspondence:
| |
Collapse
|
27
|
Gauzy-Lazo L, Sassoon I, Brun MP. Advances in Antibody–Drug Conjugate Design: Current Clinical Landscape and Future Innovations. SLAS DISCOVERY 2020; 25:843-868. [DOI: 10.1177/2472555220912955] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The targeted delivery of potent cytotoxic molecules into cancer cells is considered a promising anticancer strategy. The design of clinically effective antibody–drug conjugates (ADCs), in which biologically active drugs are coupled through chemical linkers to monoclonal antibodies, has presented challenges for pharmaceutical researchers. After 30 years of intensive research and development activities, only seven ADCs have been approved for clinical use; two have received fast-track designation and two breakthrough therapy designation from the Food and Drug Administration. There is continued interest in the field, as documented by the growing number of candidates in clinical development. This review aims to summarize the most recent innovations that have been applied to the design of ADCs undergoing early- and late-stage clinical trials. Discovery and rational optimization of new payloads, chemical linkers, and antibody formats have improved the therapeutic index of next-generation ADCs, ultimately resulting in improved clinical benefit for the patients.
Collapse
Affiliation(s)
| | - Ingrid Sassoon
- Immuno-Oncology Therapeutic Area, Sanofi, Vitry-sur-Seine, France
| | | |
Collapse
|
28
|
Abstract
The prototypical ADC mechanism involving antigen-mediated uptake and lysosomal release is both elegantly simple and scientifically compelling. However, recent clinical-stage failures have prompted a reevaluation of this delivery paradigm and have resulted in an array of new technologies that have the potential to improve the safety and efficacy of up and coming programs. These innovations can generally be categorized into seven areas that will be elaborated on in this chapter: (1) Exploiting new payload mechanisms; (2) Increasing the drug-antibody ratio (DAR); (3) Increasing the antibody penetration; (4) Overcoming ADC resistance mechanisms; (5) Increasing the efficiency of ADC uptake and processing; (6) Mitigating off-target payload exposure; and (7) Employment of noncytotoxic payloads. It is our belief that these seven areas capture the current "landscape" of innovations that are taking place in the design of next-generation ADCs. Together, these advancements are reshaping the ADC field and providing a path forward in the face of the recent clinical setbacks.
Collapse
Affiliation(s)
- L Nathan Tumey
- Department of Pharmacy and Pharmaceutical Sciences, Binghamton University, Binghamton, NY, USA.
- Pfizer Inc., Groton, CT, USA.
| |
Collapse
|
29
|
Karpov AS, Nieto-Oberhuber CM, Abrams T, Beng-Louka E, Blanco E, Chamoin S, Chene P, Dacquignies I, Daniel D, Dillon MP, Doumampouom-Metoul L, Drosos N, Fedoseev P, Furegati M, Granda B, Grotzfeld RM, Hess Clark S, Joly E, Jones D, Lacaud-Baumlin M, Lagasse-Guerro S, Lorenzana EG, Mallet W, Martyniuk P, Marzinzik AL, Mesrouze Y, Nocito S, Oei Y, Perruccio F, Piizzi G, Richard E, Rudewicz PJ, Schindler P, Velay M, Venstrom K, Wang P, Zurini M, Lafrance M. Discovery of Potent and Selective Antibody-Drug Conjugates with Eg5 Inhibitors through Linker and Payload Optimization. ACS Med Chem Lett 2019; 10:1674-1679. [PMID: 31857845 DOI: 10.1021/acsmedchemlett.9b00468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/03/2019] [Indexed: 12/16/2022] Open
Abstract
Targeted antimitotic agents are a promising class of anticancer therapies. Herein, we describe the development of a potent and selective antimitotic Eg5 inhibitor based antibody-drug conjugate (ADC). Preliminary studies were performed using proprietary Eg5 inhibitors which were conjugated onto a HER2-targeting antibody using maleimido caproyl valine-citrulline para-amino benzocarbamate, or MC-VC-PABC cleavable linker. However, the resulting ADCs lacked antigen-specificity in vivo, probably from premature release of the payload. Second-generation ADCs were then developed, using noncleavable linkers, and the resulting conjugates (ADC-4 and ADC-10) led to in vivo efficacy in an HER-2 expressing (SK-OV-3ip) mouse xenograft model while ADC-11 led to in vivo efficacy in an anti-c-KIT (NCI-H526) mouse xenograft model in a target-dependent manner.
Collapse
Affiliation(s)
- Alexei S. Karpov
- Novartis Institutes for BioMedical Research, Fabrikstrasse 2, CH-4056 Basel, Switzerland
| | | | - Tinya Abrams
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Edwige Beng-Louka
- Novartis Institutes for BioMedical Research, Fabrikstrasse 2, CH-4056 Basel, Switzerland
| | - Enrique Blanco
- Novartis Institutes for BioMedical Research, Fabrikstrasse 2, CH-4056 Basel, Switzerland
| | - Sylvie Chamoin
- Novartis Institutes for BioMedical Research, Fabrikstrasse 2, CH-4056 Basel, Switzerland
| | - Patrick Chene
- Novartis Institutes for BioMedical Research, Fabrikstrasse 2, CH-4056 Basel, Switzerland
| | - Isabelle Dacquignies
- Novartis Institutes for BioMedical Research, Fabrikstrasse 2, CH-4056 Basel, Switzerland
| | - Dylan Daniel
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Michael P. Dillon
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | | | | | - Pavel Fedoseev
- Novartis Institutes for BioMedical Research, Fabrikstrasse 2, CH-4056 Basel, Switzerland
| | - Markus Furegati
- Novartis Institutes for BioMedical Research, Fabrikstrasse 2, CH-4056 Basel, Switzerland
| | - Brian Granda
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Robert M. Grotzfeld
- Novartis Institutes for BioMedical Research, Fabrikstrasse 2, CH-4056 Basel, Switzerland
| | - Suzanna Hess Clark
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Emilie Joly
- Novartis Institutes for BioMedical Research, Fabrikstrasse 2, CH-4056 Basel, Switzerland
| | - Darryl Jones
- Novartis Institutes for BioMedical Research, Fabrikstrasse 2, CH-4056 Basel, Switzerland
| | - Marion Lacaud-Baumlin
- Novartis Institutes for BioMedical Research, Fabrikstrasse 2, CH-4056 Basel, Switzerland
| | | | - Edward G. Lorenzana
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - William Mallet
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Piotr Martyniuk
- Novartis Institutes for BioMedical Research, Fabrikstrasse 2, CH-4056 Basel, Switzerland
| | - Andreas L. Marzinzik
- Novartis Institutes for BioMedical Research, Fabrikstrasse 2, CH-4056 Basel, Switzerland
| | - Yannick Mesrouze
- Novartis Institutes for BioMedical Research, Fabrikstrasse 2, CH-4056 Basel, Switzerland
| | - Sandro Nocito
- Novartis Institutes for BioMedical Research, Fabrikstrasse 2, CH-4056 Basel, Switzerland
| | - Yoko Oei
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Francesca Perruccio
- Novartis Institutes for BioMedical Research, Fabrikstrasse 2, CH-4056 Basel, Switzerland
| | - Grazia Piizzi
- Novartis Institutes for BioMedical Research, Fabrikstrasse 2, CH-4056 Basel, Switzerland
| | - Etienne Richard
- Novartis Institutes for BioMedical Research, Fabrikstrasse 2, CH-4056 Basel, Switzerland
| | - Patrick J. Rudewicz
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Patrick Schindler
- Novartis Institutes for BioMedical Research, Fabrikstrasse 2, CH-4056 Basel, Switzerland
| | - Mélanie Velay
- Novartis Institutes for BioMedical Research, Fabrikstrasse 2, CH-4056 Basel, Switzerland
| | - Kristine Venstrom
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Peiyin Wang
- Novartis Institutes for BioMedical Research, 5300 Chiron Way, Emeryville, California 94608, United States
| | - Mauro Zurini
- Novartis Institutes for BioMedical Research, Fabrikstrasse 2, CH-4056 Basel, Switzerland
| | - Marc Lafrance
- Novartis Institutes for BioMedical Research, Fabrikstrasse 2, CH-4056 Basel, Switzerland
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
30
|
Khongorzul P, Ling CJ, Khan FU, Ihsan AU, Zhang J. Antibody–Drug Conjugates: A Comprehensive Review. Mol Cancer Res 2019; 18:3-19. [DOI: 10.1158/1541-7786.mcr-19-0582] [Citation(s) in RCA: 248] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/22/2019] [Accepted: 10/22/2019] [Indexed: 11/16/2022]
|
31
|
Abstract
A critical component of antibody-drug conjugate (ADC) development is identification or verification of the active released entity upon cellular uptake and exposure to lysosomal enzymes. Coupled with LC/MS, commercial human lysosomal preparations can be used as an in vitro tool to explore the release characteristics of new ADCs, and gain information on potential metabolic or chemical liabilities of new payload structures. A general method for approaching this is described for cathepsin B-cleavable as well as non-cleavable ADCs, and opportunities for tailoring the method to specific cases are indicated.
Collapse
|
32
|
Abstract
Burkholderia bacteria are multifaceted organisms that are ecologically and metabolically diverse. The Burkholderia genus has gained prominence because it includes human pathogens; however, many strains are nonpathogenic and have desirable characteristics such as beneficial plant associations and degradation of pollutants. The diversity of the Burkholderia genus is reflected within the large genomes that feature multiple replicons. Burkholderia genomes encode a plethora of natural products with potential therapeutic relevance and biotechnological applications. This review highlights Burkholderia as an emerging source of natural products. An overview of the taxonomy of the Burkholderia genus, which is currently being revised, is provided. We then present a curated compilation of natural products isolated from Burkholderia sensu lato and analyze their characteristics in terms of biosynthetic class, discovery method, and bioactivity. Finally, we describe and discuss genome characteristics and highlight the biosynthesis of a select number of natural products that are encoded in unusual biosynthetic gene clusters. The availability of >1000 Burkholderia genomes in public databases provides an opportunity to realize the genetic potential of this underexplored taxon for natural product discovery.
Collapse
Affiliation(s)
- Sylvia Kunakom
- Department of Medicinal Chemistry and Pharmacognosy and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Alessandra S. Eustáquio
- Department of Medicinal Chemistry and Pharmacognosy and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
33
|
Klahn P, Fetz V, Ritter A, Collisi W, Hinkelmann B, Arnold T, Tegge W, Rox K, Hüttel S, Mohr KI, Wink J, Stadler M, Wissing J, Jänsch L, Brönstrup M. The nuclear export inhibitor aminoratjadone is a potent effector in extracellular-targeted drug conjugates. Chem Sci 2019; 10:5197-5210. [PMID: 31191875 PMCID: PMC6540907 DOI: 10.1039/c8sc05542d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/15/2019] [Indexed: 12/04/2022] Open
Abstract
The concept of targeted drug conjugates has been successfully translated to clinical practice in oncology. Whereas the majority of cytotoxic effectors in drug conjugates are directed against either DNA or tubulin, our study aimed to validate nuclear export inhibition as a novel effector principle in drug conjugates. For this purpose, a semisynthetic route starting from the natural product ratjadone A, a potent nuclear export inhibitor, has been developed. The biological evaluation of ratjadones functionalized at the 16-position revealed that oxo- and amino-analogues had very high potencies against cancer cell lines (e.g. 16R-aminoratjadone 16 with IC50 = 260 pM against MCF-7 cells, or 19-oxoratjadone 14 with IC50 = 100 pM against A-549 cells). Mechanistically, the conjugates retained a nuclear export inhibitory activity through binding CRM1. To demonstrate a proof-of-principle for cellular targeting, folate- and luteinizing hormone releasing hormone (LHRH)-based carrier molecules were synthesized and coupled to aminoratjadones as well as fluorescein for cellular efficacy and imaging studies, respectively. The Trojan-Horse conjugates selectively addressed receptor-positive cell lines and were highly potent inhibitors of their proliferation. For example, the folate conjugate FA-7-Val-Cit-pABA-16R-aminoratjadone had an IC50 of 34.3 nM, and the LHRH conjugate d-Orn-Gose-Val-Cit-pABA-16R-aminoratjadone had an IC50 of 12.8 nM. The results demonstrate that nuclear export inhibition is a promising mode-of-action for extracellular-targeted drug conjugate payloads.
Collapse
Affiliation(s)
- Philipp Klahn
- Department of Chemical Biology , Helmholtz Centre for Infection Research , Inhoffenstrasse 7 , 38124 Braunschweig , Germany .
- Institute of Organic Chemistry , Technische Universität Braunschweig , Hagenring 30 , 38106 Braunschweig , Germany .
| | - Verena Fetz
- Department of Chemical Biology , Helmholtz Centre for Infection Research , Inhoffenstrasse 7 , 38124 Braunschweig , Germany .
| | - Antje Ritter
- Department of Chemical Biology , Helmholtz Centre for Infection Research , Inhoffenstrasse 7 , 38124 Braunschweig , Germany .
| | - Wera Collisi
- Department of Chemical Biology , Helmholtz Centre for Infection Research , Inhoffenstrasse 7 , 38124 Braunschweig , Germany .
- Department of Microbial Drugs , Helmholtz Centre for Infection Research , Inhoffenstrasse 7 , 38124 Braunschweig , Germany
| | - Bettina Hinkelmann
- Department of Chemical Biology , Helmholtz Centre for Infection Research , Inhoffenstrasse 7 , 38124 Braunschweig , Germany .
| | - Tatjana Arnold
- Department of Chemical Biology , Helmholtz Centre for Infection Research , Inhoffenstrasse 7 , 38124 Braunschweig , Germany .
| | - Werner Tegge
- Department of Chemical Biology , Helmholtz Centre for Infection Research , Inhoffenstrasse 7 , 38124 Braunschweig , Germany .
| | - Katharina Rox
- Department of Chemical Biology , Helmholtz Centre for Infection Research , Inhoffenstrasse 7 , 38124 Braunschweig , Germany .
- German Centre of Infection Research (DZIF) , Partner Site Hannover-Braunschweig , Germany
| | - Stephan Hüttel
- Department of Microbial Drugs , Helmholtz Centre for Infection Research , Inhoffenstrasse 7 , 38124 Braunschweig , Germany
| | - Kathrin I Mohr
- Department of Microbial Drugs , Helmholtz Centre for Infection Research , Inhoffenstrasse 7 , 38124 Braunschweig , Germany
| | - Joachim Wink
- Department of Microbial Drugs , Helmholtz Centre for Infection Research , Inhoffenstrasse 7 , 38124 Braunschweig , Germany
| | - Marc Stadler
- Department of Microbial Drugs , Helmholtz Centre for Infection Research , Inhoffenstrasse 7 , 38124 Braunschweig , Germany
| | - Josef Wissing
- Department of Structure and Function of Proteins , Research Group Cellular Proteomic , Helmholtz Centre for Infection Research , Inhoffenstrasse 7 , 38124 Braunschweig , Germany
| | - Lothar Jänsch
- Department of Structure and Function of Proteins , Research Group Cellular Proteomic , Helmholtz Centre for Infection Research , Inhoffenstrasse 7 , 38124 Braunschweig , Germany
| | - Mark Brönstrup
- Department of Chemical Biology , Helmholtz Centre for Infection Research , Inhoffenstrasse 7 , 38124 Braunschweig , Germany .
- Biomolecular Drug Research Center (BMWZ) , Schneiderberg 38 , 30167 Hannover , Germany
- German Centre of Infection Research (DZIF) , Partner Site Hannover-Braunschweig , Germany
| |
Collapse
|
34
|
Benjamin SR, Jackson CP, Fang S, Carlson DP, Guo Z, Tumey LN. Thiolation of Q295: Site-Specific Conjugation of Hydrophobic Payloads without the Need for Genetic Engineering. Mol Pharm 2019; 16:2795-2807. [PMID: 31067063 DOI: 10.1021/acs.molpharmaceut.9b00323] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Site-specific conjugation technology frequently relies on antibody engineering to incorporate rare or non-natural amino acids into the primary sequence of the protein. However, when the primary sequence is unknown or when antibody engineering is not feasible, there are very limited options for site-specific protein modification. We have developed a transglutaminase-mediated conjugation that incorporates a thiol at a "privileged" location on deglycosylated antibodies (Q295). Perhaps surprisingly, this conjugation employs a reported transglutaminase inhibitor, cystamine, as the key enzyme substrate. The chemical incorporation of a thiol at the Q295 site allows for the site-specific attachment of a plethora of commonly used and commercially available payloads via maleimide chemistry. Herein, we demonstrate the utility of this method by comparing the conjugatability, plasma stability, and in vitro potency of these site-specific antibody-drug conjugates (ADCs) with analogous endogenous cysteine conjugates. Cytotoxic ADCs prepared using this methodology are shown to exhibit comparable in vitro efficacy to stochastic cysteine conjugates while displaying dramatically improved plasma stability and conjugatability. In particular, we note that this technique appears to be useful for the incorporation of highly hydrophobic linker payloads without the addition of PEG modifiers. We postulate a possible mechanism for this feature by probing the local environment of the Q295 site with two fluorescent probes that are known to be sensitive to the local hydrophobic environment. In summary, we describe a highly practical method for the site-specific conjugation of genetically nonengineered antibodies, which results in plasma-stable ADCs with low intrinsic hydrophobicity. We believe that this technology will find broad utility in the ADC community.
Collapse
Affiliation(s)
- Samantha R Benjamin
- School of Pharmacy and Pharmaceutical Sciences , Binghamton University , P.O. Box 6000, Binghamton , New York 13902 , United States
| | - Courtney P Jackson
- School of Pharmacy and Pharmaceutical Sciences , Binghamton University , P.O. Box 6000, Binghamton , New York 13902 , United States
| | - Siteng Fang
- School of Pharmacy and Pharmaceutical Sciences , Binghamton University , P.O. Box 6000, Binghamton , New York 13902 , United States
| | - Dane P Carlson
- School of Pharmacy and Pharmaceutical Sciences , Binghamton University , P.O. Box 6000, Binghamton , New York 13902 , United States
| | - Zhongyuan Guo
- School of Pharmacy and Pharmaceutical Sciences , Binghamton University , P.O. Box 6000, Binghamton , New York 13902 , United States
| | - L Nathan Tumey
- School of Pharmacy and Pharmaceutical Sciences , Binghamton University , P.O. Box 6000, Binghamton , New York 13902 , United States
| |
Collapse
|
35
|
Vasudevan A, Argiriadi MA, Baranczak A, Friedman MM, Gavrilyuk J, Hobson AD, Hulce JJ, Osman S, Wilson NS. Covalent binders in drug discovery. PROGRESS IN MEDICINAL CHEMISTRY 2019; 58:1-62. [PMID: 30879472 DOI: 10.1016/bs.pmch.2018.12.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covalent modulation of protein function can have multiple utilities including therapeutics, and probes to interrogate biology. While this field is still viewed with scepticism due to the potential for (idiosyncratic) toxicities, significant strides have been made in terms of understanding how to tune electrophilicity to selectively target specific residues. Progress has also been made in harnessing the potential of covalent binders to uncover novel biology and to provide an enhanced utility as payloads for Antibody Drug Conjugates. This perspective covers the tenets and applications of covalent binders.
Collapse
Affiliation(s)
| | | | | | | | - Julia Gavrilyuk
- AbbVie Stemcentrx, LLC, South San Francisco, CA, United States
| | | | | | - Sami Osman
- AbbVie Bioresearch Center, Worcester, MA, United States
| | | |
Collapse
|
36
|
DeNicola AB, Tang Y. Therapeutic approaches to treat human spliceosomal diseases. Curr Opin Biotechnol 2019; 60:72-81. [PMID: 30772756 DOI: 10.1016/j.copbio.2019.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/02/2019] [Indexed: 02/06/2023]
Abstract
Mutated RNA splicing machinery drives many human diseases and is a promising therapeutic target for engineering and small molecule therapy. In the case of mutations in individual genes that cause them to be incorrectly spliced, engineered splicing factors can be introduced to correct splicing of these aberrant transcripts and reduce the effects of the disease phenotype. Mutations that occur in certain splicing factor genes themselves have been implicated in many cancers, particularly myelodysplastic syndromes. Small molecules that target splicing factors have been developed as therapies to preferentially induce apoptosis in these cancer cells. Specifically, drugs targeting the splicing factor SF3B1 have led to recent clinical trials. Here, we review the role of alternative splicing in disease, approaches to rescue incorrect splicing using engineered splicing factors, and small molecule splicing inhibitors developed to treat hematological cancers.
Collapse
Affiliation(s)
- Anthony B DeNicola
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, United States.
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, United States
| |
Collapse
|
37
|
Ratnayake AS, Chang LP, Tumey LN, Loganzo F, Chemler JA, Wagenaar M, Musto S, Li F, Janso JE, Ballard TE, Rago B, Steele GL, Ding W, Feng X, Hosselet C, Buklan V, Lucas J, Koehn FE, O'Donnell CJ, Graziani EI. Natural Product Bis-Intercalator Depsipeptides as a New Class of Payloads for Antibody-Drug Conjugates. Bioconjug Chem 2018; 30:200-209. [PMID: 30543418 DOI: 10.1021/acs.bioconjchem.8b00843] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A potent class of DNA-damaging agents, natural product bis-intercalator depsipeptides (NPBIDs), was evaluated as ultrapotent payloads for use in antibody-drug conjugates (ADCs). Detailed investigation of potency (both in cells and via biophysical characterization of DNA binding), chemical tractability, and in vitro and in vivo stability of the compounds in this class eliminated a number of potential candidates, greatly reducing the complexity and resources required for conjugate preparation and evaluation. This effort yielded a potent, stable, and efficacious ADC, PF-06888667, consisting of the bis-intercalator, SW-163D, conjugated via an N-acetyl-lysine-valine-citrulline- p-aminobenzyl alcohol- N, N-dimethylethylenediamine (AcLysValCit-PABC-DMAE) linker to an engineered variant of the anti-Her2 mAb, trastuzumab, catalyzed by transglutaminase.
Collapse
Affiliation(s)
- Anokha S Ratnayake
- Medicine Design , Pfizer Worldwide Research and Development , 445 Eastern Point Road , Groton , Connecticut 06340 , United States
| | - Li-Ping Chang
- Medicine Design , Pfizer Worldwide Research and Development , 445 Eastern Point Road , Groton , Connecticut 06340 , United States
| | - L Nathan Tumey
- Medicine Design , Pfizer Worldwide Research and Development , 445 Eastern Point Road , Groton , Connecticut 06340 , United States
| | - Frank Loganzo
- Oncology Research , Pfizer Worldwide Research and Development , 401 North Middletown Road , Pearl River , New York 10965 , United States
| | - Joseph A Chemler
- Medicine Design , Pfizer Worldwide Research and Development , 445 Eastern Point Road , Groton , Connecticut 06340 , United States
| | - Melissa Wagenaar
- Medicine Design , Pfizer Worldwide Research and Development , 445 Eastern Point Road , Groton , Connecticut 06340 , United States
| | - Sylvia Musto
- Oncology Research , Pfizer Worldwide Research and Development , 401 North Middletown Road , Pearl River , New York 10965 , United States
| | - Fengping Li
- Medicine Design , Pfizer Worldwide Research and Development , 445 Eastern Point Road , Groton , Connecticut 06340 , United States
| | - Jeffrey E Janso
- Medicine Design , Pfizer Worldwide Research and Development , 445 Eastern Point Road , Groton , Connecticut 06340 , United States
| | - T Eric Ballard
- Medicine Design , Pfizer Worldwide Research and Development , 445 Eastern Point Road , Groton , Connecticut 06340 , United States
| | - Brian Rago
- Medicine Design , Pfizer Worldwide Research and Development , 445 Eastern Point Road , Groton , Connecticut 06340 , United States
| | - Greg L Steele
- Medicine Design , Pfizer Worldwide Research and Development , 445 Eastern Point Road , Groton , Connecticut 06340 , United States
| | - WeiDong Ding
- Medicine Design , Pfizer Worldwide Research and Development , 445 Eastern Point Road , Groton , Connecticut 06340 , United States
| | - Xidong Feng
- Medicine Design , Pfizer Worldwide Research and Development , 445 Eastern Point Road , Groton , Connecticut 06340 , United States
| | - Christine Hosselet
- Oncology Research , Pfizer Worldwide Research and Development , 401 North Middletown Road , Pearl River , New York 10965 , United States
| | - Vlad Buklan
- Oncology Research , Pfizer Worldwide Research and Development , 401 North Middletown Road , Pearl River , New York 10965 , United States
| | - Judy Lucas
- Oncology Research , Pfizer Worldwide Research and Development , 401 North Middletown Road , Pearl River , New York 10965 , United States
| | - Frank E Koehn
- Medicine Design , Pfizer Worldwide Research and Development , 445 Eastern Point Road , Groton , Connecticut 06340 , United States
| | - Christopher J O'Donnell
- Medicine Design , Pfizer Worldwide Research and Development , 445 Eastern Point Road , Groton , Connecticut 06340 , United States
| | - Edmund I Graziani
- Medicine Design , Pfizer Worldwide Research and Development , 445 Eastern Point Road , Groton , Connecticut 06340 , United States
| |
Collapse
|
38
|
Deonarain MP. Miniaturised 'antibody'-drug conjugates for solid tumours? DRUG DISCOVERY TODAY. TECHNOLOGIES 2018; 30:47-53. [PMID: 30553520 DOI: 10.1016/j.ddtec.2018.09.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 06/09/2023]
Abstract
With Antibody-Drug Conjugate strategies firmly focussed on the precise conjugation to the large protein Immunoglobulin-G format, it is easy to miss the more recent technological innovations in small-format drug conjugates. Here, the targeting ligand can be at 50-95% reduced in size, or even smaller if peptidic in nature. Antibody domains or alternative binding scaffolds, chemically-modified with ultra-potent cytotoxic payloads offer an alternative approach for oncology therapeutics, promising a wider therapeutic window by virtue of superior solid tumour penetration properties and more rapid system clearance. Many of the traditional ADC concepts still apply, but as these miniaturised ADCs enter the clinic over the next 2-3 years, we will learn whether these new features translate to patient benefits.
Collapse
Affiliation(s)
- Mahendra P Deonarain
- Antikor Biopharma Ltd, Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2FX, UK; Dept. of Chemistry, Imperial College London, Exhibition Road, London SW7 2AZ, UK.
| |
Collapse
|
39
|
Fu Y, Ho M. DNA damaging agent-based antibody-drug conjugates for cancer therapy. Antib Ther 2018; 1:33-43. [PMID: 30294716 PMCID: PMC6161754 DOI: 10.1093/abt/tby007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/15/2018] [Accepted: 08/27/2018] [Indexed: 01/02/2023] Open
Abstract
Currently, four antibody-drug conjugates (ADCs) are approved by the Food and Drug Administration or the European Medicine Agency to treat cancer patients. More than 60 ADCs are in clinical development for cancer therapy. More than 60% of ADCs in clinical trials employ microtubule inhibitors as their payloads. A better understanding of payloads other than microtubule inhibitors, especially DNA-damaging agents, is important for further development of ADCs. In this review, we highlight an emerging trend of using DNA-damaging agents as payloads for ADCs. This review summarizes recent advances in our understanding gained from ongoing clinical studies; it will help to define the utility of DNA-damaging payloads for ADCs as cancer therapeutics. Future directions of the development of ADCs are also discussed, focusing on targeting drug resistance and combination treatment with immunotherapy.
Collapse
Affiliation(s)
- Ying Fu
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, MD, USA
| | - Mitchell Ho
- Laboratory of Molecular Biology, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
40
|
Deonarain MP, Yahioglu G, Stamati I, Pomowski A, Clarke J, Edwards BM, Diez-Posada S, Stewart AC. Small-Format Drug Conjugates: A Viable Alternative to ADCs for Solid Tumours? Antibodies (Basel) 2018; 7:E16. [PMID: 31544868 PMCID: PMC6698822 DOI: 10.3390/antib7020016] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/07/2018] [Accepted: 03/08/2018] [Indexed: 12/16/2022] Open
Abstract
Antibody-Drug Conjugates (ADCs) have been through multiple cycles of technological innovation since the concept was first practically demonstrated ~40 years ago. Current technology is focusing on large, whole immunoglobulin formats (of which there are approaching 100 in clinical development), many with site-specifically conjugated payloads numbering 2 or 4. Despite the success of trastuzumab-emtansine in breast cancer, ADCs have generally failed to have an impact in solid tumours, leading many to explore alternative, smaller formats which have better penetrating properties as well as more rapid pharmacokinetics (PK). This review describes research and development progress over the last ~10 years obtained from the primary literature or conferences covering over a dozen different smaller format-drug conjugates from 80 kDa to around 1 kDa in total size. In general, these agents are potent in vitro, particularly more recent ones incorporating ultra-potent payloads such as auristatins or maytansinoids, but this potency profile changes when testing in vivo due to the more rapid clearance. Strategies to manipulate the PK properties, whilst retaining the more effective tumour penetrating properties could at last make small-format drug conjugates viable alternative therapeutics to the more established ADCs.
Collapse
Affiliation(s)
- Mahendra P Deonarain
- Antikor Biopharma Ltd., Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage Herts SG12FX, UK.
- Department of Chemistry, Imperial College London, Exhibition Road, London SW72AZ, UK.
| | - Gokhan Yahioglu
- Antikor Biopharma Ltd., Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage Herts SG12FX, UK.
- Department of Chemistry, Imperial College London, Exhibition Road, London SW72AZ, UK.
| | - Ioanna Stamati
- Antikor Biopharma Ltd., Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage Herts SG12FX, UK.
| | - Anja Pomowski
- Antikor Biopharma Ltd., Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage Herts SG12FX, UK.
| | - James Clarke
- Antikor Biopharma Ltd., Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage Herts SG12FX, UK.
| | - Bryan M Edwards
- Antikor Biopharma Ltd., Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage Herts SG12FX, UK.
| | - Soraya Diez-Posada
- Antikor Biopharma Ltd., Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage Herts SG12FX, UK.
| | - Ashleigh C Stewart
- Antikor Biopharma Ltd., Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage Herts SG12FX, UK.
| |
Collapse
|
41
|
Su D, Kozak KR, Sadowsky J, Yu SF, Fourie-O’Donohue A, Nelson C, Vandlen R, Ohri R, Liu L, Ng C, He J, Davis H, Lau J, Del Rosario G, Cosino E, Cruz-Chuh JD, Ma Y, Zhang D, Darwish M, Cai W, Chen C, Zhou H, Lu J, Liu Y, Kaur S, Xu K, Pillow TH. Modulating Antibody–Drug Conjugate Payload Metabolism by Conjugation Site and Linker Modification. Bioconjug Chem 2018; 29:1155-1167. [DOI: 10.1021/acs.bioconjchem.7b00785] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dian Su
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Katherine R. Kozak
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jack Sadowsky
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Shang-Fan Yu
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | | | - Christopher Nelson
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Richard Vandlen
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Rachana Ohri
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Luna Liu
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Carl Ng
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jintang He
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Helen Davis
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jeff Lau
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Geoffrey Del Rosario
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Ely Cosino
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | | | - Yong Ma
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Donglu Zhang
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Martine Darwish
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Wenwen Cai
- Wuxi Biologics, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Chunjiao Chen
- Wuxi Biologics, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Hongxiang Zhou
- Wuxi Biologics, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Jiawei Lu
- Wuxi Biologics, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Yichin Liu
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Surinder Kaur
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Keyang Xu
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Thomas H. Pillow
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
42
|
LC–MS Challenges in Characterizing and Quantifying Monoclonal Antibodies (mAb) and Antibody-Drug Conjugates (ADC) in Biological Samples. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s40495-017-0118-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
43
|
Tang Y, Tang F, Yang Y, Zhao L, Zhou H, Dong J, Huang W. Real-Time Analysis on Drug-Antibody Ratio of Antibody-Drug Conjugates for Synthesis, Process Optimization, and Quality Control. Sci Rep 2017; 7:7763. [PMID: 28798339 PMCID: PMC5552727 DOI: 10.1038/s41598-017-08151-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 07/07/2017] [Indexed: 12/21/2022] Open
Abstract
Drug-antibody ratio (DAR) of antibody-drug conjugates (ADCs) is important for their therapeutic efficacy and pharmacokinetics, therefore control on DAR in synthesis process is a key for ADC quality control. Although various analytical methods were reported, the real-time monitoring on DAR is still a challenge because time-consuming sample preparation is usually needed during the analysis. Antibody deglycosylation of ADC simplifies DAR measurement, however long-time PNGaseF digestion for deglycosylation hampers the real-time detection. Here, we report a rapid DAR analysis within 15 min by robust deglycosylation treatment and LC-MS detection that enables real-time DAR monitoring for optimization on ADC synthetic process. With this approach, we were able to screen suitable conjugation conditions efficiently and afford the ADCs with expected DARs. To the best of our knowledge, this is the first report on real-time DAR analysis of ADCs for conjugation optimization and quality control, compatible with random lysine-linked ADCs, glycosite-specific ADCs, and the complicated dual-payload ADCs.
Collapse
Affiliation(s)
- Yubo Tang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.,CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai, China, 201203
| | - Feng Tang
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai, China, 201203
| | - Yang Yang
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai, China, 201203
| | - Lei Zhao
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai, China, 201203
| | - Hu Zhou
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai, China, 201203
| | - Jinhua Dong
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Wei Huang
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai, China, 201203.
| |
Collapse
|
44
|
Multivalent peptidic linker enables identification of preferred sites of conjugation for a potent thialanstatin antibody drug conjugate. PLoS One 2017; 12:e0178452. [PMID: 28558059 PMCID: PMC5448779 DOI: 10.1371/journal.pone.0178452] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/12/2017] [Indexed: 11/19/2022] Open
Abstract
Antibody drug conjugates (ADCs) are no longer an unknown entity in the field of cancer therapy with the success of marketed ADCs like ADCETRIS and KADCYLA and numerous others advancing through clinical trials. The pursuit of novel cytotoxic payloads beyond the mictotubule inhibitors and DNA damaging agents has led us to the recent discovery of an mRNA splicing inhibitor, thailanstatin, as a potent ADC payload. In our previous work, we observed that the potency of this payload was uniquely tied to the method of conjugation, with lysine conjugates showing much superior potency as compared to cysteine conjugates. However, the ADC field is rapidly shifting towards site-specific ADCs due to their advantages in manufacturability, characterization and safety. In this work we report the identification of a highly efficacious site-specific thailanstatin ADC. The site of conjugation played a critical role on both the in vitro and in vivo potency of these ADCs. During the course of this study, we developed a novel methodology of loading a single site with multiple payloads using an in situ generated multi-drug carrying peptidic linker that allowed us to rapidly screen for optimal conjugation sites. Using this methodology, we were able to identify a double-cysteine mutant ADC delivering four-loaded thailanstatin that was very efficacious in a gastric cancer xenograft model at 3mg/kg and was also shown to be efficacious against T-DM1 resistant and MDR1 overexpressing tumor cell lines.
Collapse
|
45
|
Wang J, Xiao H, Qian ZG, Zhong JJ. Bioproduction of Antibody–Drug Conjugate Payload Precursors by Engineered Cell Factories. Trends Biotechnol 2017; 35:466-478. [DOI: 10.1016/j.tibtech.2017.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/25/2017] [Accepted: 03/01/2017] [Indexed: 12/30/2022]
|
46
|
Tumey LN, Li F, Rago B, Han X, Loganzo F, Musto S, Graziani EI, Puthenveetil S, Casavant J, Marquette K, Clark T, Bikker J, Bennett EM, Barletta F, Piche-Nicholas N, Tam A, O'Donnell CJ, Gerber HP, Tchistiakova L. Site Selection: a Case Study in the Identification of Optimal Cysteine Engineered Antibody Drug Conjugates. AAPS JOURNAL 2017; 19:1123-1135. [PMID: 28439809 DOI: 10.1208/s12248-017-0083-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 04/03/2017] [Indexed: 11/30/2022]
Abstract
As the antibody drug conjugate (ADC) community continues to shift towards site-specific conjugation technology, there is a growing need to understand how the site of conjugation impacts the biophysical and biological properties of an ADC. In order to address this need, we prepared a carefully selected series of engineered cysteine ADCs and proceeded to systematically evaluate their potency, stability, and PK exposure. The site of conjugation did not have a significant influence on the thermal stability and in vitro cytotoxicity of the ADCs. However, we demonstrate that the rate of cathepsin-mediated linker cleavage is heavily dependent upon site and is closely correlated with ADC hydrophobicity, thus confirming other recent reports of this phenomenon. Interestingly, conjugates with high rates of cathepsin-mediated linker cleavage did not exhibit decreased plasma stability. In fact, the major source of plasma instability was shown to be retro-Michael mediated deconjugation. This process is known to be impeded by succinimide hydrolysis, and thus, we undertook a series of mutational experiments demonstrating that basic residues located nearby the site of conjugation can be a significant driver of succinimide ring opening. Finally, we show that total antibody PK exposure in rat was loosely correlated with ADC hydrophobicity. It is our hope that these observations will help the ADC community to build "design rules" that will enable more efficient prosecution of next-generation ADC discovery programs.
Collapse
Affiliation(s)
- L Nathan Tumey
- Binghamton University, School of Pharmacy and Pharmaceutical Sciences, P.O. Box 6000, Binghamton, New York, 13902-6000, USA.
| | - Fengping Li
- Biomedicine Design, Pfizer, Inc., Cambridge, Massachusetts, 06379, USA
| | - Brian Rago
- Worldwide Research and Development, Pfizer, Inc., 445 Eastern Point Road, Groton, Connecticut, 06379, USA
| | - Xiaogang Han
- PKDM, Amgen, Inc., 360 Binney Street, AMA 1, Cambridge, Massachusetts, 02142, USA
| | - Frank Loganzo
- Oncology Research and Development, Pfizer, Inc., 401 N. Middletown Rd., Pearl River, New York, 10965, USA
| | - Sylvia Musto
- Oncology Research and Development, Pfizer, Inc., 401 N. Middletown Rd., Pearl River, New York, 10965, USA
| | - Edmund I Graziani
- Worldwide Research and Development, Pfizer, Inc., 445 Eastern Point Road, Groton, Connecticut, 06379, USA
| | | | - Jeffrey Casavant
- Worldwide Research and Development, Pfizer, Inc., 445 Eastern Point Road, Groton, Connecticut, 06379, USA
| | | | - Tracey Clark
- Worldwide Research and Development, Pfizer, Inc., 445 Eastern Point Road, Groton, Connecticut, 06379, USA
| | - Jack Bikker
- International Flavors and Fragrances, 521 West 57th Street, New York, New York, 10019, USA
| | - Eric M Bennett
- Biomedicine Design, Pfizer, Inc., Cambridge, Massachusetts, 06379, USA
| | - Frank Barletta
- Worldwide Research and Development, Pfizer, Inc., 445 Eastern Point Road, Groton, Connecticut, 06379, USA
| | | | - Amy Tam
- Biomedicine Design, Pfizer, Inc., Cambridge, Massachusetts, 06379, USA
| | - Christopher J O'Donnell
- Worldwide Research and Development, Pfizer, Inc., 445 Eastern Point Road, Groton, Connecticut, 06379, USA
| | - Hans Peter Gerber
- Maverick Therapeutics, Inc, 3260 Bayshore Blvd, Brisbane, California, 94005, USA
| | | |
Collapse
|
47
|
Kemp GC, Tiberghien AC, Patel NV, D'Hooge F, Nilapwar SM, Adams LR, Corbett S, Williams DG, Hartley JA, Howard PW. Synthesis and in vitro evaluation of SG3227, a pyrrolobenzodiazepine dimer antibody-drug conjugate payload based on sibiromycin. Bioorg Med Chem Lett 2017; 27:1154-1158. [PMID: 28188066 DOI: 10.1016/j.bmcl.2017.01.074] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 11/24/2022]
Abstract
A novel pyrrolobenzodiazepine dimer payload, SG3227, was rationally designed based on the naturally occurring antitumour compound sibiromycin. SG3227 was synthesized from a dimeric core in an efficient fashion. An unexpected room temperature Diels-Alder reaction occurred during the final step of the synthesis and was circumvented by use of an iodoacetamide conjugation moiety in place of a maleimide. The payload was successfully conjugated to trastuzumab and the resulting ADC exhibited potent activity against a HER2-expressing human cancer cell line in vitro.
Collapse
Affiliation(s)
- Gary C Kemp
- Spirogen, QMB Innovation Centre, 42 New Road, London E1 2AX, UK
| | | | - Neki V Patel
- Spirogen, QMB Innovation Centre, 42 New Road, London E1 2AX, UK
| | | | | | - Lauren R Adams
- Spirogen, QMB Innovation Centre, 42 New Road, London E1 2AX, UK
| | - Simon Corbett
- Spirogen, QMB Innovation Centre, 42 New Road, London E1 2AX, UK
| | | | - John A Hartley
- Spirogen, QMB Innovation Centre, 42 New Road, London E1 2AX, UK
| | - Philip W Howard
- Spirogen, QMB Innovation Centre, 42 New Road, London E1 2AX, UK.
| |
Collapse
|
48
|
Kulkarni C, Finley JE, Bessire AJ, Zhong X, Musto S, Graziani EI. Development of Fluorophore-Labeled Thailanstatin Antibody-Drug Conjugates for Cellular Trafficking Studies. Bioconjug Chem 2017; 28:1041-1047. [PMID: 28191936 DOI: 10.1021/acs.bioconjchem.6b00718] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
As the antibody-drug conjugate (ADC) field grows increasingly important for cancer treatment, it is vital for researchers to establish a firm understanding of how ADCs function at the molecular level. To gain insight into ADC uptake, trafficking, and catabolism-processes that are critical to ADC efficacy and toxicity-imaging studies have been performed with fluorophore-labeled conjugates. However, such labels may alter the properties and behavior of the ADC under investigation. As an alternative approach, we present here the development of a "clickable" ADC bearing an azide-functionalized linker-payload (LP) poised for "click" reaction with alkyne fluorophores; the azide group represents a significantly smaller structural perturbation to the LP than most fluorophores. Notably, the clickable ADC shows excellent potency in target-expressing cells, whereas the fluorophore-labeled product ADC suffers from a significant loss of activity, underscoring the impact of the label itself on the payload. Live-cell confocal microscopy reveals robust uptake of the clickable ADC, which reacts selectively in situ with a derivatized fluorescent label. Time-course trafficking studies show greater and more rapid net internalization of the ADCs than the parent antibody. More generally, the application of chemical biology tools to the study of ADCs should improve our understanding of how ADCs are processed in biological systems.
Collapse
Affiliation(s)
| | | | | | - Xiaotian Zhong
- Global Biotherapeutics Technologies, Pfizer Worldwide R&D , Cambridge, Massachusetts 02139, United States
| | - Sylvia Musto
- Oncology Research Unit, Pfizer Worldwide R&D , Pearl River, New York 10965, United States
| | | |
Collapse
|
49
|
Abstract
Antibody-drug conjugates (ADCs) represent an emerging new paradigm in cancer therapy. The approval of two ADCs has spurred considerable interest in this area of research, and over 55 ADCs are currently in clinical testing. In order to improve the clinical success rate of ADC therapy, all three components of the ADC: the antibody, linker, and payload have to be optimized. While considerable improvements have been made in antibody properties and target selection, medicinal chemistry efforts have lagged behind, and there is a significant need for innovation in linker design and payloads.
Collapse
Affiliation(s)
- Ravi V. J. Chari
- ImmunoGen, Inc., 830 Winter Street, Waltham, Massachusetts 02451, United States
| |
Collapse
|