1
|
Liu X, Wang W, Li Q, Niu H, Zhang W. Therapeutic potentials of peptide-derived nanoformulations in atherosclerosis: present status and future directions. INTERNATIONAL JOURNAL OF SMART AND NANO MATERIALS 2024; 15:610-651. [DOI: 10.1080/19475411.2024.2395270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 08/18/2024] [Indexed: 01/06/2025]
Affiliation(s)
- Xue Liu
- Department of Cardiovascular Medicine, Yantaishan Hospital, Yantai, China
| | - Weijiao Wang
- Department of Otolaryngology, Yantaishan Hospital, Yantai, China
| | - Qiang Li
- Department of Cardiovascular Medicine, Yantaishan Hospital, Yantai, China
| | - Hongtao Niu
- Department of Cardiovascular Medicine, Yantaishan Hospital, Yantai, China
| | - Weili Zhang
- Department of Geriatric Medicine, Yantaishan Hospital, Yantai, China
| |
Collapse
|
2
|
Yue NN, Xu HM, Xu J, Zhu MZ, Zhang Y, Tian CM, Nie YQ, Yao J, Liang YJ, Li DF, Wang LS. Application of Nanoparticles in the Diagnosis of Gastrointestinal Diseases: A Complete Future Perspective. Int J Nanomedicine 2023; 18:4143-4170. [PMID: 37525691 PMCID: PMC10387254 DOI: 10.2147/ijn.s413141] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/02/2023] [Indexed: 08/02/2023] Open
Abstract
The diagnosis of gastrointestinal (GI) diseases currently relies primarily on invasive procedures like digestive endoscopy. However, these procedures can cause discomfort, respiratory issues, and bacterial infections in patients, both during and after the examination. In recent years, nanomedicine has emerged as a promising field, providing significant advancements in diagnostic techniques. Nanoprobes, in particular, offer distinct advantages, such as high specificity and sensitivity in detecting GI diseases. Integration of nanoprobes with advanced imaging techniques, such as nuclear magnetic resonance, optical fluorescence imaging, tomography, and optical correlation tomography, has significantly enhanced the detection capabilities for GI tumors and inflammatory bowel disease (IBD). This synergy enables early diagnosis and precise staging of GI disorders. Among the nanoparticles investigated for clinical applications, superparamagnetic iron oxide, quantum dots, single carbon nanotubes, and nanocages have emerged as extensively studied and utilized agents. This review aimed to provide insights into the potential applications of nanoparticles in modern imaging techniques, with a specific focus on their role in facilitating early and specific diagnosis of a range of GI disorders, including IBD and colorectal cancer (CRC). Additionally, we discussed the challenges associated with the implementation of nanotechnology-based GI diagnostics and explored future prospects for translation in this promising field.
Collapse
Affiliation(s)
- Ning-ning Yue
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, People’s Republic of China
| | - Hao-ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, People’s Republic of China
| | - Jing Xu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, People’s Republic of China
| | - Min-zheng Zhu
- Department of Gastroenterology and Hepatology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, People’s Republic of China
| | - Yuan Zhang
- Department of Medical Administration, Huizhou Institute of Occupational Diseases Control and Prevention, Huizhou, Guangdong, People’s Republic of China
| | - Cheng-Mei Tian
- Department of Emergency, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, People’s Republic of China
| | - Yu-qiang Nie
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, People’s Republic of China
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, People’s Republic of China
| | - Yu-jie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen, Guangdong, People’s Republic of China
| | - De-feng Li
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, People’s Republic of China
| | - Li-sheng Wang
- Department of Gastroenterology, Shenzhen People’s Hospital (the Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, People’s Republic of China
| |
Collapse
|
3
|
In Humanized Sickle Cell Mice, Imatinib Protects Against Sickle Cell-Related Injury. Hemasphere 2023; 7:e848. [PMID: 36874380 PMCID: PMC9977487 DOI: 10.1097/hs9.0000000000000848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/19/2023] [Indexed: 03/06/2023] Open
Abstract
Drug repurposing is a valuable strategy for rare diseases. Sickle cell disease (SCD) is a rare hereditary hemolytic anemia accompanied by acute and chronic painful episodes, most often in the context of vaso-occlusive crisis (VOC). Although progress in the knowledge of pathophysiology of SCD have allowed the development of new therapeutic options, a large fraction of patients still exhibits unmet therapeutic needs, with persistence of VOCs and chronic disease progression. Here, we show that imatinib, an oral tyrosine kinase inhibitor developed for the treatment of chronic myelogenous leukemia, acts as multimodal therapy targeting signal transduction pathways involved in the pathogenesis of both anemia and inflammatory vasculopathy of humanized murine model for SCD. In addition, imatinib inhibits the platelet-derived growth factor-B-dependent pathway, interfering with the profibrotic response to hypoxia/reperfusion injury, used to mimic acute VOCs. Our data indicate that imatinib might be considered as possible new therapeutic tool for chronic treatment of SCD.
Collapse
|
4
|
Siva S, Jin JO, Choi I, Kim M. Nanoliposome based biosensors for probing mycotoxins and their applications for food: A review. Biosens Bioelectron 2023; 219:114845. [PMID: 36327568 DOI: 10.1016/j.bios.2022.114845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/28/2022] [Accepted: 10/19/2022] [Indexed: 11/19/2022]
Abstract
Mycotoxins are the most common feed and food contaminants affecting animals and humans, respectively; continuous exposure causes tremendous health problems such as kidney disorders, infertility, immune suppression, liver inflammation, and cancer. Consequently, their control and quantification in food materials is crucial. Biosensors are potential tools for the rapid detection and quantification of mycotoxins with high sensitivity and selectivity. Nanoliposomes (NLs) are vesicular carriers formed by self-assembling phospholipids that surround the aqueous cores. Utilizing their biocompatibility, biodegradability, and high carrying capacity, researchers have employed NLs in biosensors for monitoring various targets in biological and food samples. The NLs are used for surface modification, signal marker delivery, and detection of toxins, bacteria, pesticides, and diseases. Here, we review marker-entrapped NLs used in the development of NL-based biosensors for mycotoxins. These biosensors are sensitive, selective, portable, and cost-effective analytical tools, and the resulting signal can be produced and/or amplified with or without destroying the NLs. In addition, this review emphasizes the benefits of the immunoliposome method in comparison with traditional detection approaches. We expect this review to serve as a valuable reference for researchers in this rapidly growing field. The insights provided may facilitate the rational design of next-generation NL-based biosensors.
Collapse
Affiliation(s)
- Subramanian Siva
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea.
| | - Jun-O Jin
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea; Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea.
| | - Inho Choi
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea; Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea.
| | - Myunghee Kim
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea.
| |
Collapse
|
5
|
Carniato F, Ricci M, Tei L, Garello F, Terreno E, Ravera E, Parigi G, Luchinat C, Botta M. High Relaxivity with No Coordinated Waters: A Seemingly Paradoxical Behavior of [Gd(DOTP)] 5- Embedded in Nanogels. Inorg Chem 2022; 61:5380-5387. [PMID: 35316037 PMCID: PMC8985129 DOI: 10.1021/acs.inorgchem.2c00225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Nanogels (NGs) obtained
by electrostatic interactions between chitosan
and hyaluronic acid and comprising paramagnetic Gd chelates are gaining
increasing attention for their potential application in magnetic resonance
bioimaging. Herein, the macrocyclic complexes [Gd(DOTP)]5−, lacking metal-bound water molecules (q = 0), were
confined or used as a cross-linker in this type of NG. Unlike the
typical behavior of Gd complexes with q = 0, a remarkable
relaxivity value of 78.0 mM–1 s–1 was measured at 20 MHz and 298 K, nearly 20 times greater than that
found for the free complex. A careful analysis of the relaxation data
emphasizes the fundamental role of second sphere water molecules with
strong and long-lived hydrogen bonding interactions with the complex.
Finally, PEGylated derivatives of nanoparticles were used for the
first in vivo magnetic resonance imaging study of
this type of NG, revealing a fast renal excretion of paramagnetic
complexes after their release from the NGs. Nanogels incorporating [Gd(DOTP)]5− complexes
(q = 0) exhibit remarkable relaxivity values, thanks
to structured water molecules in the second coordination shell of
the metal ion involved in strong H-bonding interactions with the phosphonate
groups.
Collapse
Affiliation(s)
- Fabio Carniato
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "A. Avogadro", Viale Teresa Michel 11, Alessandria 15121, Italy
| | - Marco Ricci
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "A. Avogadro", Viale Teresa Michel 11, Alessandria 15121, Italy
| | - Lorenzo Tei
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "A. Avogadro", Viale Teresa Michel 11, Alessandria 15121, Italy
| | - Francesca Garello
- Molecular Imaging Centre, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Torino 10126, Italy
| | - Enzo Terreno
- Molecular Imaging Centre, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, Torino 10126, Italy
| | - Enrico Ravera
- Magnetic Resonance Center (CERM), University of Florence, via Sacconi 6, Sesto Fiorentino 50019, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino 50019, Italy.,Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), via Sacconi 6, Sesto Fiorentino 50019, Italy
| | - Giacomo Parigi
- Magnetic Resonance Center (CERM), University of Florence, via Sacconi 6, Sesto Fiorentino 50019, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino 50019, Italy.,Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), via Sacconi 6, Sesto Fiorentino 50019, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), University of Florence, via Sacconi 6, Sesto Fiorentino 50019, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino 50019, Italy.,Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), via Sacconi 6, Sesto Fiorentino 50019, Italy
| | - Mauro Botta
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "A. Avogadro", Viale Teresa Michel 11, Alessandria 15121, Italy
| |
Collapse
|
6
|
Capuana F, Phinikaridou A, Stefania R, Padovan S, Lavin B, Lacerda S, Almouazen E, Chevalier Y, Heinrich-Balard L, Botnar RM, Aime S, Digilio G. Imaging of Dysfunctional Elastogenesis in Atherosclerosis Using an Improved Gadolinium-Based Tetrameric MRI Probe Targeted to Tropoelastin. J Med Chem 2021; 64:15250-15261. [PMID: 34661390 PMCID: PMC8558862 DOI: 10.1021/acs.jmedchem.1c01286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Dysfunctional elastin turnover plays a major role in the progression of atherosclerotic plaques. Failure of tropoelastin cross-linking into mature elastin leads to the accumulation of tropoelastin within the growing plaque, increasing its instability. Here we present Gd4-TESMA, an MRI contrast agent specifically designed for molecular imaging of tropoelastin within plaques. Gd4-TESMA is a tetrameric probe composed of a tropoelastin-binding peptide (the VVGS-peptide) conjugated with four Gd(III)-DOTA-monoamide chelates. It shows a relaxivity per molecule of 34.0 ± 0.8 mM-1 s-1 (20 MHz, 298 K, pH 7.2), a good binding affinity to tropoelastin (KD = 41 ± 12 μM), and a serum half-life longer than 2 h. Gd4-TESMA accumulates specifically in atherosclerotic plaques in the ApoE-/- murine model of plaque progression, with 2 h persistence of contrast enhancement. As compared to the monomeric counterpart (Gd-TESMA), the tetrameric Gd4-TESMA probe shows a clear advantage regarding both sensitivity and imaging time window, allowing for a better characterization of atherosclerotic plaques.
Collapse
Affiliation(s)
- Federico Capuana
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, Turin 10126, Italy
| | - Alkystis Phinikaridou
- School of Biomedical Engineering and Imaging Sciences, King's College London, Westminster Bridge Road, London SE1 7EH, United Kingdom
| | - Rachele Stefania
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, Turin 10126, Italy
| | - Sergio Padovan
- Institute for Biostructures and Bioimages (CNR) c/o Molecular Biotechnology Center, Via Nizza 52, Torino 10126, Italy
| | - Begoña Lavin
- School of Biomedical Engineering and Imaging Sciences, King's College London, Westminster Bridge Road, London SE1 7EH, United Kingdom.,Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University, Ciudad Universitaria s/n, Madrid 28040, Spain
| | - Sara Lacerda
- Centre de Biophysique Moléculaire, CNRS, UPR 4301, Université d'Orléans, Rue Charles Sadron, Orléans Cedex 2 45071, France
| | - Eyad Almouazen
- CNRS, LAGEPP UMR 5007, Univ Lyon, Université Claude Bernard Lyon 1, 43 boulevard du 11 novembre 1918, Villeurbanne 69622, France
| | - Yves Chevalier
- CNRS, LAGEPP UMR 5007, Univ Lyon, Université Claude Bernard Lyon 1, 43 boulevard du 11 novembre 1918, Villeurbanne 69622, France
| | - Laurence Heinrich-Balard
- INSA Lyon, CNRS, MATEIS, UMR5510, Univ Lyon, Université Claude Bernard Lyon 1, Villeurbanne 69100, France
| | - René M Botnar
- School of Biomedical Engineering and Imaging Sciences, King's College London, Westminster Bridge Road, London SE1 7EH, United Kingdom.,Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Avda. Vicuña Mackenna, Santiago 4860, Chile
| | | | - Giuseppe Digilio
- Department of Science and Technologic Innovation, Università del Piemonte Orientale ″Amedeo Avogadro″, Viale T. Michel 11, Alessandria 15121, Italy
| |
Collapse
|
7
|
Lima PHCD, Butera AP, Cabeça LF, Ribeiro-Viana RM. Liposome surface modification by phospholipid chemical reactions. Chem Phys Lipids 2021; 237:105084. [PMID: 33891960 DOI: 10.1016/j.chemphyslip.2021.105084] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/17/2021] [Accepted: 04/16/2021] [Indexed: 12/13/2022]
Abstract
Liposomal systems are well known for playing an important role as drug carriers, presenting several therapeutic applications in different sectors, such as in drug delivery, diagnosis, and in many other academic areas. A novel class of this nanoparticle is the actively target liposome, which is constructed with the surface modified with appropriated molecules (or ligands) to actively bind a target molecule of certain cells, system, or tissue. There are many ways to functionalize these nanostructures, from non-covalent adsorption to covalent bond formation. In this review, we focus on the strategies of modifying liposomes by glycerophospholipid covalent chemical reaction. The approach used in this text summarizes the main reactions and strategies used in phospholipid modification that can be carried out by chemists and researchers from other areas. The knowledge of these methodologies is of great importance for planning new studies using this material and also for manipulating its properties.
Collapse
Affiliation(s)
- Pedro Henrique Correia de Lima
- Programa de Pós-graduação em Ciências e Engenharia de Materiais (PPGCEM-UTFPR), Universidade Tecnológica Federal do Paraná, UTFPR-Ld, CEP 86036-370, Londrina, PR, Brazil
| | - Anna Paola Butera
- Departamento de Química, Universidade Estadual de Londrina, UEL, CEP 86051-980, Londrina, PR, Brazil
| | - Luis Fernando Cabeça
- Programa de Pós-graduação em Ciências e Engenharia de Materiais (PPGCEM-UTFPR), Universidade Tecnológica Federal do Paraná, UTFPR-Ld, CEP 86036-370, Londrina, PR, Brazil; Departamento Acadêmico de Química, Universidade Tecnológica Federal do Paraná, UTFPR-Ld, CEP 86036-370, Londrina, PR, Brazil
| | - Renato Márcio Ribeiro-Viana
- Programa de Pós-graduação em Ciências e Engenharia de Materiais (PPGCEM-UTFPR), Universidade Tecnológica Federal do Paraná, UTFPR-Ld, CEP 86036-370, Londrina, PR, Brazil; Departamento Acadêmico de Química, Universidade Tecnológica Federal do Paraná, UTFPR-Ld, CEP 86036-370, Londrina, PR, Brazil.
| |
Collapse
|
8
|
Luca SD, Verdoliva V, Saviano M. Peptide Ligands Specifically Targeting HER2 Receptor and the Role Played by a Synthetic Model System of the Receptor Extracellular Domain: Hypothesized Future Perspectives. J Med Chem 2020; 63:15333-15343. [PMID: 33226807 DOI: 10.1021/acs.jmedchem.0c01340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A short (Fab)trastuzumab-derived peptide specific for HER2 receptor was identified. Its affinity for the model system HER2-DIVMP was found in a nanomolar range. The structural determinants responsible for the interaction between this ligand (A9) and HER2-DIVMP were investigated by both computational and NMR analysis. Next, the possibility of using A9 as HER2- specific probe for the nuclear medicine imaging was evaluated by conjugating A9 with the DTPA chelator and radiolabeling it with 111In. The developed probe retained a nanomolar affinity to HER2-overexpressing cancer cells, however, some unspecific binding also occurred. The peptide internalization into cells by receptor-mediated endocytosis was also studied. Future perspectives are aimed at using A9 as a probe for molecular imaging diagnostics as well as active targeting of anticancer drugs. Lead structure optimization is needed to minimize the percentage of A9 unspecific binding and to increase the binding affinity to the receptor.
Collapse
Affiliation(s)
- Stefania De Luca
- Institute of Biostructures and Bioimaging, National Research Council, 80134 Naples, Italy
| | - Valentina Verdoliva
- Institute of Biostructures and Bioimaging, National Research Council, 80134 Naples, Italy
| | - Michele Saviano
- Institute of Crystallography, National Research Council, 70126 Bari, Italy
| |
Collapse
|
9
|
Affiliation(s)
- Xinping Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering Southeast University Nanjing China
| | - Xiaoyang Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering Southeast University Nanjing China
| | - Yuxin Guo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering Southeast University Nanjing China
| | - Fu‐Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering Southeast University Nanjing China
| |
Collapse
|
10
|
Peptide-based nanosystems for vascular cell adhesion molecule-1 targeting: a real opportunity for therapeutic and diagnostic agents in inflammation associated disorders. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
11
|
Magnetic Materials and Systems: Domain Structure Visualization and Other Characterization Techniques for the Application in the Materials Science and Biomedicine. INORGANICS 2020. [DOI: 10.3390/inorganics8010006] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Magnetic structures have attracted a great interest due to their multiple applications, from physics to biomedicine. Several techniques are currently employed to investigate magnetic characteristics and other physicochemical properties of magnetic structures. The major objective of this review is to summarize the current knowledge on the usage, advances, advantages, and disadvantages of a large number of techniques that are currently available to characterize magnetic systems. The present review, aiming at helping in the choice of the most suitable method as appropriate, is divided into three sections dedicated to characterization techniques. Firstly, the magnetism and magnetization (hysteresis) techniques are introduced. Secondly, the visualization methods of the domain structures by means of different probes are illustrated. Lastly, the characterization of magnetic nanosystems in view of possible biomedical applications is discussed, including the exploitation of magnetism in imaging for cell tracking/visualization of pathological alterations in living systems (mainly by magnetic resonance imaging, MRI).
Collapse
|
12
|
Liu R, Tang J, Xu Y, Dai Z. Bioluminescence Imaging of Inflammation in Vivo Based on Bioluminescence and Fluorescence Resonance Energy Transfer Using Nanobubble Ultrasound Contrast Agent. ACS NANO 2019; 13:5124-5132. [PMID: 31059237 DOI: 10.1021/acsnano.8b08359] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Inflammation is an immunological response involved in various inflammatory disorders ranging from neurodegenerative diseases to cancers. Luminol has been reported to detect myeloperoxidase (MPO) activity in an inflamed area through a light-emitting reaction. However, this method is limited by low tissue penetration and poor spatial resolution. Here, we fabricated a nanobubble (NB) doped with two tandem lipophilic dyes, red-shifting luminol-emitted blue light to near-infrared region through a process integrating bioluminescence resonance energy transfer (BRET) and fluorescence resonance energy transfer (FRET). This BRET-FRET process caused a 24-fold increase in detectable luminescence emission over luminol alone in an inflammation model induced by lipopolysaccharide. In addition, the echogenicity of the BRET-FRET NBs also enables perfused tissue microvasculature to be delineated by contrast-enhanced ultrasound imaging with high spatial resolution. Compared with commercially available ultrasound contrast agent, the BRET-FRET NBs exhibited comparable contrast-enhancing capability but much smaller size and higher concentration. This bioluminescence/ultrasound dual-modal contrast agent was then successfully applied for imaging of an animal model of breast cancer. Furthermore, biosafety experiments revealed that multi-injection of luminol and NBs did not induce any observable abnormality. By integrating the advantages of bioluminescence imaging and ultrasound imaging, this BRET-FRET system may have the potential to address a critical need of inflammation imaging.
Collapse
Affiliation(s)
- Renfa Liu
- Department of Biomedical Engineering College of Engineering , Peking University , Beijing 100871 , China
| | - Jie Tang
- Department of Biomedical Engineering College of Engineering , Peking University , Beijing 100871 , China
| | - Yunxue Xu
- Department of Biomedical Engineering College of Engineering , Peking University , Beijing 100871 , China
| | - Zhifei Dai
- Department of Biomedical Engineering College of Engineering , Peking University , Beijing 100871 , China
| |
Collapse
|
13
|
Chinnathambi S, Hanagata N. Photostability of quantum dot micelles under ultraviolet irradiation. LUMINESCENCE 2019; 34:472-479. [PMID: 30809921 DOI: 10.1002/bio.3618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/15/2019] [Accepted: 01/25/2019] [Indexed: 12/11/2022]
Abstract
Phospholipid quantum dot micelles are useful for bio-applications because of their amphiphilicity and exceptional biocompatibilities. We investigated the uptake of phospholipid [polyethylene glycol (PEG), biotin, and folic acid terminated] modified CdSe/ZnS quantum dot micelles by cancer cells and its photostability under ultrviolet light in the C spectrum (UV-C) (254 nm) or UV-A (365 nm) light irradiation. The stability of micelles to the exposure of UV-C and UV-A light was assessed. Biotin-modified quantum dot micelles give photoluminescence enhancement under UV-C light irradiation. Folate modified micelle under UV-C and UV-A results show considerable photoluminescence enhancement. Photoluminescence lifetime measurements showed 7.04, 8.11 and 11.42 ns for PEG, folate, and biotin terminated phospholipid micelles, respectively. Folate and biotin-modified quantum dot micelles showed excellent uptake by HeLa cells under fluorescence confocal microscopy. Phospholipid CdSe/ZnS quantum dot micelles can be potentially used for diagnosis and treatment of cancer in the future.
Collapse
Affiliation(s)
- Shanmugavel Chinnathambi
- International Center for Young Scientists, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
| | - Nobutaka Hanagata
- International Center for Young Scientists, National Institute for Materials Science, Tsukuba, Ibaraki, Japan.,Nanotechnology Innovation Station, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
| |
Collapse
|
14
|
Leone L, Esteban-Gómez D, Platas-Iglesias C, Milanesio M, Tei L. Accelerating water exchange in GdIII–DO3A-derivatives by favouring the dissociative mechanism through hydrogen bonding. Chem Commun (Camb) 2019; 55:513-516. [DOI: 10.1039/c8cc08556k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The water exchange rate in GdIII-complexes increases by one order of magnitude due to H-bonding between the phenol(ate) group and the water molecules involved in the dissociative exchange mechanism.
Collapse
Affiliation(s)
- Loredana Leone
- Dipartimento di Scienze e Innovazione Tecnologica (DiSIT)
- Università degli Studi del Piemonte Orientale “Amedeo Avogadro”
- Viale T. Michel 11
- I-15121 Alessandria
- Italy
| | - David Esteban-Gómez
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química
- Facultade de Ciencias, Universidade da Coruña
- 15071 A Coruña
- Spain
| | - Carlos Platas-Iglesias
- Centro de Investigacións Científicas Avanzadas (CICA) and Departamento de Química
- Facultade de Ciencias, Universidade da Coruña
- 15071 A Coruña
- Spain
| | - Marco Milanesio
- Dipartimento di Scienze e Innovazione Tecnologica (DiSIT)
- Università degli Studi del Piemonte Orientale “Amedeo Avogadro”
- Viale T. Michel 11
- I-15121 Alessandria
- Italy
| | - Lorenzo Tei
- Dipartimento di Scienze e Innovazione Tecnologica (DiSIT)
- Università degli Studi del Piemonte Orientale “Amedeo Avogadro”
- Viale T. Michel 11
- I-15121 Alessandria
- Italy
| |
Collapse
|
15
|
Ferrauto G, Beauprez F, Di Gregorio E, Carrera C, Aime S, Terreno E, Delli Castelli D. Development and characterization of lanthanide-HPDO3A-C16-based micelles as CEST-MRI contrast agents. Dalton Trans 2019; 48:5343-5351. [DOI: 10.1039/c8dt04621b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The synthesis and characterization of a novel HPDO3A-based ligand having a C16 alkyl chain and its Eu3+, Gd3+and Yb3+complexes are reported.
Collapse
Affiliation(s)
- Giuseppe Ferrauto
- Molecular Imaging Center
- Department of Molecular Biotechnology and Health Sciences
- University of Torino- Via Nizza 52
- 10126 Torino
- Italy
| | - Frederik Beauprez
- Molecular Imaging Center
- Department of Molecular Biotechnology and Health Sciences
- University of Torino- Via Nizza 52
- 10126 Torino
- Italy
| | - Enza Di Gregorio
- Molecular Imaging Center
- Department of Molecular Biotechnology and Health Sciences
- University of Torino- Via Nizza 52
- 10126 Torino
- Italy
| | - Carla Carrera
- Molecular Imaging Center
- Department of Molecular Biotechnology and Health Sciences
- University of Torino- Via Nizza 52
- 10126 Torino
- Italy
| | - Silvio Aime
- Molecular Imaging Center
- Department of Molecular Biotechnology and Health Sciences
- University of Torino- Via Nizza 52
- 10126 Torino
- Italy
| | - Enzo Terreno
- Molecular Imaging Center
- Department of Molecular Biotechnology and Health Sciences
- University of Torino- Via Nizza 52
- 10126 Torino
- Italy
| | - Daniela Delli Castelli
- Molecular Imaging Center
- Department of Molecular Biotechnology and Health Sciences
- University of Torino- Via Nizza 52
- 10126 Torino
- Italy
| |
Collapse
|
16
|
MRI visualization of neuroinflammation using VCAM-1 targeted paramagnetic micelles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:2341-2350. [DOI: 10.1016/j.nano.2017.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/05/2017] [Accepted: 10/13/2017] [Indexed: 01/29/2023]
|
17
|
Curaj A, Wu Z, Rix A, Gresch O, Sternkopf M, Alampour-Rajabi S, Lammers T, van Zandvoort M, Weber C, Koenen RR, Liehn EA, Kiessling F. Molecular Ultrasound Imaging of Junctional Adhesion Molecule A Depicts Acute Alterations in Blood Flow and Early Endothelial Dysregulation. Arterioscler Thromb Vasc Biol 2017; 38:40-48. [PMID: 29191926 DOI: 10.1161/atvbaha.117.309503] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 11/17/2017] [Indexed: 01/08/2023]
Abstract
OBJECTIVE The junctional adhesion molecule A (JAM-A) is physiologically located in interendothelial tight junctions and focally redistributes to the luminal surface of blood vessels under abnormal shear and flow conditions accompanying atherosclerotic lesion development. Therefore, JAM-A was evaluated as a target for molecularly targeted ultrasound imaging of transient endothelial dysfunction under acute blood flow variations. APPROACH AND RESULTS Flow-dependent endothelial dysfunction was induced in apolipoprotein E-deficient mice (n=43) by carotid partial ligation. JAM-A expression was investigated by molecular ultrasound using antibody-targeted poly(n-butyl cyanoacrylate) microbubbles and validated with immunofluorescence. Flow disturbance and arterial remodeling were assessed using functional ultrasound. Partial ligation led to an immediate drop in perfusion at the ligated side and a direct compensatory increase at the contralateral side. This was accompanied by a strongly increased JAM-A expression and JAM-A-targeted microbubbles binding at the partially ligated side and by a moderate and temporary increase in the contralateral artery (≈14× [P<0.001] and ≈5× [P<0.001] higher than control, respectively), both peaking after 2 weeks. Subsequently, although JAM-A expression and JAM-A-targeted microbubbles binding persisted at a higher level at the partially ligated side, it completely normalized within 4 weeks at the contralateral side. CONCLUSIONS Temporary blood flow variations induce endothelial rearrangement of JAM-A, which can be visualized using JAM-A-targeted microbubbles. Thus, JAM-A may be considered as a marker of acute endothelial activation and dysfunction. Its imaging may facilitate the early detection of cardiovascular risk areas, and it enables the therapeutic prevention of their progression toward an irreversible pathological state.
Collapse
Affiliation(s)
- Adelina Curaj
- From the Institute for Molecular Cardiovascular Research (IMCAR) (A.C., Z.W., M.S., S.A.-R., M.v.Z., E.A.L.), and Institute for Experimental Molecular Imaging (ExMI) (A.C., Z.W., A.R., T.L., F.K.), University Hospital Aachen, RWTH Aachen, Germany; Victor Babes National Institute of Pathology, Bucharest, Romania (A.C.); AYOXXA Biosystems GmbH, Cologne, Germany (O.G.); Department of Targeted Therapeutics, University of Twente, Enschede, The Netherlands (T.L.); Department of Genetics and Molecular Cell Biology, School for Oncology and Developmental Biology (GROW), Maastricht University, The Netherlands (M.v.Z., R.R.K.); Department of Biochemistry, School for Cardiovascular Diseases (CARIM), Maastricht University, The Netherlands (M.v.Z., C.W.); German Centre for Cardiovascular Research, partner site Munich Heart Alliance (DZHK), Germany (C.W.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München, Munich, Germany (C.W.); and Human Genetic Laboratory, University for Medicine and Pharmacy, Craiova, Romania (E.A.L.)
| | - Zhuojun Wu
- From the Institute for Molecular Cardiovascular Research (IMCAR) (A.C., Z.W., M.S., S.A.-R., M.v.Z., E.A.L.), and Institute for Experimental Molecular Imaging (ExMI) (A.C., Z.W., A.R., T.L., F.K.), University Hospital Aachen, RWTH Aachen, Germany; Victor Babes National Institute of Pathology, Bucharest, Romania (A.C.); AYOXXA Biosystems GmbH, Cologne, Germany (O.G.); Department of Targeted Therapeutics, University of Twente, Enschede, The Netherlands (T.L.); Department of Genetics and Molecular Cell Biology, School for Oncology and Developmental Biology (GROW), Maastricht University, The Netherlands (M.v.Z., R.R.K.); Department of Biochemistry, School for Cardiovascular Diseases (CARIM), Maastricht University, The Netherlands (M.v.Z., C.W.); German Centre for Cardiovascular Research, partner site Munich Heart Alliance (DZHK), Germany (C.W.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München, Munich, Germany (C.W.); and Human Genetic Laboratory, University for Medicine and Pharmacy, Craiova, Romania (E.A.L.)
| | - Anne Rix
- From the Institute for Molecular Cardiovascular Research (IMCAR) (A.C., Z.W., M.S., S.A.-R., M.v.Z., E.A.L.), and Institute for Experimental Molecular Imaging (ExMI) (A.C., Z.W., A.R., T.L., F.K.), University Hospital Aachen, RWTH Aachen, Germany; Victor Babes National Institute of Pathology, Bucharest, Romania (A.C.); AYOXXA Biosystems GmbH, Cologne, Germany (O.G.); Department of Targeted Therapeutics, University of Twente, Enschede, The Netherlands (T.L.); Department of Genetics and Molecular Cell Biology, School for Oncology and Developmental Biology (GROW), Maastricht University, The Netherlands (M.v.Z., R.R.K.); Department of Biochemistry, School for Cardiovascular Diseases (CARIM), Maastricht University, The Netherlands (M.v.Z., C.W.); German Centre for Cardiovascular Research, partner site Munich Heart Alliance (DZHK), Germany (C.W.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München, Munich, Germany (C.W.); and Human Genetic Laboratory, University for Medicine and Pharmacy, Craiova, Romania (E.A.L.)
| | - Oliver Gresch
- From the Institute for Molecular Cardiovascular Research (IMCAR) (A.C., Z.W., M.S., S.A.-R., M.v.Z., E.A.L.), and Institute for Experimental Molecular Imaging (ExMI) (A.C., Z.W., A.R., T.L., F.K.), University Hospital Aachen, RWTH Aachen, Germany; Victor Babes National Institute of Pathology, Bucharest, Romania (A.C.); AYOXXA Biosystems GmbH, Cologne, Germany (O.G.); Department of Targeted Therapeutics, University of Twente, Enschede, The Netherlands (T.L.); Department of Genetics and Molecular Cell Biology, School for Oncology and Developmental Biology (GROW), Maastricht University, The Netherlands (M.v.Z., R.R.K.); Department of Biochemistry, School for Cardiovascular Diseases (CARIM), Maastricht University, The Netherlands (M.v.Z., C.W.); German Centre for Cardiovascular Research, partner site Munich Heart Alliance (DZHK), Germany (C.W.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München, Munich, Germany (C.W.); and Human Genetic Laboratory, University for Medicine and Pharmacy, Craiova, Romania (E.A.L.)
| | - Marieke Sternkopf
- From the Institute for Molecular Cardiovascular Research (IMCAR) (A.C., Z.W., M.S., S.A.-R., M.v.Z., E.A.L.), and Institute for Experimental Molecular Imaging (ExMI) (A.C., Z.W., A.R., T.L., F.K.), University Hospital Aachen, RWTH Aachen, Germany; Victor Babes National Institute of Pathology, Bucharest, Romania (A.C.); AYOXXA Biosystems GmbH, Cologne, Germany (O.G.); Department of Targeted Therapeutics, University of Twente, Enschede, The Netherlands (T.L.); Department of Genetics and Molecular Cell Biology, School for Oncology and Developmental Biology (GROW), Maastricht University, The Netherlands (M.v.Z., R.R.K.); Department of Biochemistry, School for Cardiovascular Diseases (CARIM), Maastricht University, The Netherlands (M.v.Z., C.W.); German Centre for Cardiovascular Research, partner site Munich Heart Alliance (DZHK), Germany (C.W.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München, Munich, Germany (C.W.); and Human Genetic Laboratory, University for Medicine and Pharmacy, Craiova, Romania (E.A.L.)
| | - Setareh Alampour-Rajabi
- From the Institute for Molecular Cardiovascular Research (IMCAR) (A.C., Z.W., M.S., S.A.-R., M.v.Z., E.A.L.), and Institute for Experimental Molecular Imaging (ExMI) (A.C., Z.W., A.R., T.L., F.K.), University Hospital Aachen, RWTH Aachen, Germany; Victor Babes National Institute of Pathology, Bucharest, Romania (A.C.); AYOXXA Biosystems GmbH, Cologne, Germany (O.G.); Department of Targeted Therapeutics, University of Twente, Enschede, The Netherlands (T.L.); Department of Genetics and Molecular Cell Biology, School for Oncology and Developmental Biology (GROW), Maastricht University, The Netherlands (M.v.Z., R.R.K.); Department of Biochemistry, School for Cardiovascular Diseases (CARIM), Maastricht University, The Netherlands (M.v.Z., C.W.); German Centre for Cardiovascular Research, partner site Munich Heart Alliance (DZHK), Germany (C.W.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München, Munich, Germany (C.W.); and Human Genetic Laboratory, University for Medicine and Pharmacy, Craiova, Romania (E.A.L.)
| | - Twan Lammers
- From the Institute for Molecular Cardiovascular Research (IMCAR) (A.C., Z.W., M.S., S.A.-R., M.v.Z., E.A.L.), and Institute for Experimental Molecular Imaging (ExMI) (A.C., Z.W., A.R., T.L., F.K.), University Hospital Aachen, RWTH Aachen, Germany; Victor Babes National Institute of Pathology, Bucharest, Romania (A.C.); AYOXXA Biosystems GmbH, Cologne, Germany (O.G.); Department of Targeted Therapeutics, University of Twente, Enschede, The Netherlands (T.L.); Department of Genetics and Molecular Cell Biology, School for Oncology and Developmental Biology (GROW), Maastricht University, The Netherlands (M.v.Z., R.R.K.); Department of Biochemistry, School for Cardiovascular Diseases (CARIM), Maastricht University, The Netherlands (M.v.Z., C.W.); German Centre for Cardiovascular Research, partner site Munich Heart Alliance (DZHK), Germany (C.W.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München, Munich, Germany (C.W.); and Human Genetic Laboratory, University for Medicine and Pharmacy, Craiova, Romania (E.A.L.)
| | - Marc van Zandvoort
- From the Institute for Molecular Cardiovascular Research (IMCAR) (A.C., Z.W., M.S., S.A.-R., M.v.Z., E.A.L.), and Institute for Experimental Molecular Imaging (ExMI) (A.C., Z.W., A.R., T.L., F.K.), University Hospital Aachen, RWTH Aachen, Germany; Victor Babes National Institute of Pathology, Bucharest, Romania (A.C.); AYOXXA Biosystems GmbH, Cologne, Germany (O.G.); Department of Targeted Therapeutics, University of Twente, Enschede, The Netherlands (T.L.); Department of Genetics and Molecular Cell Biology, School for Oncology and Developmental Biology (GROW), Maastricht University, The Netherlands (M.v.Z., R.R.K.); Department of Biochemistry, School for Cardiovascular Diseases (CARIM), Maastricht University, The Netherlands (M.v.Z., C.W.); German Centre for Cardiovascular Research, partner site Munich Heart Alliance (DZHK), Germany (C.W.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München, Munich, Germany (C.W.); and Human Genetic Laboratory, University for Medicine and Pharmacy, Craiova, Romania (E.A.L.)
| | - Christian Weber
- From the Institute for Molecular Cardiovascular Research (IMCAR) (A.C., Z.W., M.S., S.A.-R., M.v.Z., E.A.L.), and Institute for Experimental Molecular Imaging (ExMI) (A.C., Z.W., A.R., T.L., F.K.), University Hospital Aachen, RWTH Aachen, Germany; Victor Babes National Institute of Pathology, Bucharest, Romania (A.C.); AYOXXA Biosystems GmbH, Cologne, Germany (O.G.); Department of Targeted Therapeutics, University of Twente, Enschede, The Netherlands (T.L.); Department of Genetics and Molecular Cell Biology, School for Oncology and Developmental Biology (GROW), Maastricht University, The Netherlands (M.v.Z., R.R.K.); Department of Biochemistry, School for Cardiovascular Diseases (CARIM), Maastricht University, The Netherlands (M.v.Z., C.W.); German Centre for Cardiovascular Research, partner site Munich Heart Alliance (DZHK), Germany (C.W.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München, Munich, Germany (C.W.); and Human Genetic Laboratory, University for Medicine and Pharmacy, Craiova, Romania (E.A.L.)
| | - Rory R Koenen
- From the Institute for Molecular Cardiovascular Research (IMCAR) (A.C., Z.W., M.S., S.A.-R., M.v.Z., E.A.L.), and Institute for Experimental Molecular Imaging (ExMI) (A.C., Z.W., A.R., T.L., F.K.), University Hospital Aachen, RWTH Aachen, Germany; Victor Babes National Institute of Pathology, Bucharest, Romania (A.C.); AYOXXA Biosystems GmbH, Cologne, Germany (O.G.); Department of Targeted Therapeutics, University of Twente, Enschede, The Netherlands (T.L.); Department of Genetics and Molecular Cell Biology, School for Oncology and Developmental Biology (GROW), Maastricht University, The Netherlands (M.v.Z., R.R.K.); Department of Biochemistry, School for Cardiovascular Diseases (CARIM), Maastricht University, The Netherlands (M.v.Z., C.W.); German Centre for Cardiovascular Research, partner site Munich Heart Alliance (DZHK), Germany (C.W.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München, Munich, Germany (C.W.); and Human Genetic Laboratory, University for Medicine and Pharmacy, Craiova, Romania (E.A.L.)
| | - Elisa A Liehn
- From the Institute for Molecular Cardiovascular Research (IMCAR) (A.C., Z.W., M.S., S.A.-R., M.v.Z., E.A.L.), and Institute for Experimental Molecular Imaging (ExMI) (A.C., Z.W., A.R., T.L., F.K.), University Hospital Aachen, RWTH Aachen, Germany; Victor Babes National Institute of Pathology, Bucharest, Romania (A.C.); AYOXXA Biosystems GmbH, Cologne, Germany (O.G.); Department of Targeted Therapeutics, University of Twente, Enschede, The Netherlands (T.L.); Department of Genetics and Molecular Cell Biology, School for Oncology and Developmental Biology (GROW), Maastricht University, The Netherlands (M.v.Z., R.R.K.); Department of Biochemistry, School for Cardiovascular Diseases (CARIM), Maastricht University, The Netherlands (M.v.Z., C.W.); German Centre for Cardiovascular Research, partner site Munich Heart Alliance (DZHK), Germany (C.W.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München, Munich, Germany (C.W.); and Human Genetic Laboratory, University for Medicine and Pharmacy, Craiova, Romania (E.A.L.)
| | - Fabian Kiessling
- From the Institute for Molecular Cardiovascular Research (IMCAR) (A.C., Z.W., M.S., S.A.-R., M.v.Z., E.A.L.), and Institute for Experimental Molecular Imaging (ExMI) (A.C., Z.W., A.R., T.L., F.K.), University Hospital Aachen, RWTH Aachen, Germany; Victor Babes National Institute of Pathology, Bucharest, Romania (A.C.); AYOXXA Biosystems GmbH, Cologne, Germany (O.G.); Department of Targeted Therapeutics, University of Twente, Enschede, The Netherlands (T.L.); Department of Genetics and Molecular Cell Biology, School for Oncology and Developmental Biology (GROW), Maastricht University, The Netherlands (M.v.Z., R.R.K.); Department of Biochemistry, School for Cardiovascular Diseases (CARIM), Maastricht University, The Netherlands (M.v.Z., C.W.); German Centre for Cardiovascular Research, partner site Munich Heart Alliance (DZHK), Germany (C.W.); Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München, Munich, Germany (C.W.); and Human Genetic Laboratory, University for Medicine and Pharmacy, Craiova, Romania (E.A.L.).
| |
Collapse
|
18
|
Khodabandehlou K, Masehi-Lano JJ, Poon C, Wang J, Chung EJ. Targeting cell adhesion molecules with nanoparticles using in vivo and flow-based in vitro models of atherosclerosis. Exp Biol Med (Maywood) 2017; 242:799-812. [PMID: 28195515 DOI: 10.1177/1535370217693116] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Atherosclerosis is a leading cause of death worldwide; in addition to lipid dysfunction, chronic arterial wall inflammation is a key component of atherosclerosis. Techniques that target cell adhesion molecules, which are overexpressed during inflammation, are effective methods to detect and treat atherosclerosis. Specifically, research groups have identified vascular cell adhesion molecule-1, intercellular adhesion molecule-1, platelet endothelial cell adhesion molecule, and selectins (E-selectin and P-selectin) as correlated to atherogenesis. In this review, we discuss recent strategies both in vivo and in vitro that target cell adhesion molecules. First, we discuss peptide-based and antibody (Ab)-based nanoparticles utilized in vivo for diagnostic, therapeutic, and theranostic applications. Second, we discuss flow-based in vitro models that serve to reduce the traditional disadvantages of in vivo studies such as variability, time to develop the disease, and ethical burden, but preserve physiological relevance. The knowledge gained from these targeting studies can be translated into clinical solutions for improved detection, prevention, and treatment of atherosclerosis. Impact statement As atherosclerosis remains the leading cause of death, there is an urgent need to develop better tools for treatment of the disease. The ability to improve current treatments relies on enhancing the accuracy of in vitro and in vivo atherosclerotic models. While in vivo models provide all the relevant testing parameters, variability between animals and among models used is a barrier to reproducible results and comparability of NP efficacy. In vitro cultures isolate cells into microenvironments that fail to take into account flow separation and shear stress, which are characteristics of atherosclerotic lesions. Flow-based in vitro models provide more physiologically relevant platforms, bridging the gap between in vivo and 2D in vitro models. This is the first review that presents recent advances regarding endothelial cell-targeting using adhesion molecules in light of in vivo and flow-based in vitro models, providing insights for future development of optimal strategies against atherosclerosis.
Collapse
Affiliation(s)
- Khosrow Khodabandehlou
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Jacqueline J Masehi-Lano
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Christopher Poon
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Jonathan Wang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|