1
|
Pallardy M, Bechara R, Whritenour J, Mitchell-Ryan S, Herzyk D, Lebrec H, Merk H, Gourley I, Komocsar WJ, Piccotti JR, Balazs M, Sharma A, Walker DB, Weinstock D. Drug hypersensitivity reactions: review of the state of the science for prediction and diagnosis. Toxicol Sci 2024; 200:11-30. [PMID: 38588579 PMCID: PMC11199923 DOI: 10.1093/toxsci/kfae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024] Open
Abstract
Drug hypersensitivity reactions (DHRs) are a type of adverse drug reaction that can occur with different classes of drugs and affect multiple organ systems and patient populations. DHRs can be classified as allergic or non-allergic based on the cellular mechanisms involved. Whereas nonallergic reactions rely mainly on the innate immune system, allergic reactions involve the generation of an adaptive immune response. Consequently, drug allergies are DHRs for which an immunological mechanism, with antibody and/or T cell, is demonstrated. Despite decades of research, methods to predict the potential for a new chemical entity to cause DHRs or to correctly attribute DHRs to a specific mechanism and a specific molecule are not well-established. This review will focus on allergic reactions induced by systemically administered low-molecular weight drugs with an emphasis on drug- and patient-specific factors that could influence the development of DHRs. Strategies for predicting and diagnosing DHRs, including potential tools based on the current state of the science, will also be discussed.
Collapse
Affiliation(s)
- Marc Pallardy
- Université Paris-Saclay, INSERM, Inflammation Microbiome Immunosurveillance, Orsay, 91400, France
| | - Rami Bechara
- Université Paris-Saclay, INSERM, CEA, Center for Research in Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB), Le Kremlin Bicêtre, 94270, France
| | - Jessica Whritenour
- Pfizer Worldwide Research, Development and Medical, Groton, Connecticut 06340, USA
| | - Shermaine Mitchell-Ryan
- The Health and Environmental Science Institute, Immunosafety Technical Committee, Washington, District of Columbia 20005, USA
| | - Danuta Herzyk
- Merck & Co., Inc, West Point, Pennsylvania 19486, USA
| | - Herve Lebrec
- Amgen Inc., Translational Safety and Bioanalytical Sciences, South San Francisco, California 94080, USA
| | - Hans Merk
- Department of Dermatology and Allergology, RWTH Aachen University, Aachen, 52062, Germany
| | - Ian Gourley
- Janssen Research & Development, LLC, Immunology Clinical Development, Spring House, Pennsylvania 19002, USA
| | - Wendy J Komocsar
- Immunology Business Unit, Eli Lilly and Company, Indianapolis, Indiana 46225, USA
| | | | - Mercedesz Balazs
- Genentech, Biochemical and Cellular Pharmacology, South San Francisco, California 94080, USA
| | - Amy Sharma
- Pfizer, Drug Safety Research & Development, New York 10017, USA
| | - Dana B Walker
- Novartis Institute for Biomedical Research, Preclinical Safety-Translational Immunology and Clinical Pathology, Cambridge, Massachusetts 02139, USA
| | - Daniel Weinstock
- Janssen Research & Development, LLC, Preclinical Sciences Translational Safety, Spring House, Pennsylvania 19002, USA
| |
Collapse
|
2
|
Awiaz G, Lin J, Wu A. Recent advances of Au@Ag core-shell SERS-based biosensors. EXPLORATION (BEIJING, CHINA) 2023; 3:20220072. [PMID: 37323623 PMCID: PMC10190953 DOI: 10.1002/exp.20220072] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/18/2022] [Indexed: 06/17/2023]
Abstract
The methodological advancements in surface-enhanced Raman scattering (SERS) technique with nanoscale materials based on noble metals, Au, Ag, and their bimetallic alloy Au-Ag, has enabled the highly efficient sensing of chemical and biological molecules at very low concentration values. By employing the innovative various type of Au, Ag nanoparticles and especially, high efficiency Au@Ag alloy nanomaterials as substrate in SERS based biosensors have revolutionized the detection of biological components including; proteins, antigens antibodies complex, circulating tumor cells, DNA, and RNA (miRNA), etc. This review is about SERS-based Au/Ag bimetallic biosensors and their Raman enhanced activity by focusing on different factors related to them. The emphasis of this research is to describe the recent developments in this field and conceptual advancements behind them. Furthermore, in this article we apex the understanding of impact by variation in basic features like effects of size, shape varying lengths, thickness of core-shell and their influence of large-scale magnitude and morphology. Moreover, the detailed information about recent biological applications based on these core-shell noble metals, importantly detection of receptor binding domain (RBD) protein of COVID-19 is provided.
Collapse
Affiliation(s)
- Gul Awiaz
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical MaterialsNingbo Institute of Materials Technology and Engineering, CASNingboChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jie Lin
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical MaterialsNingbo Institute of Materials Technology and Engineering, CASNingboChina
- Advanced Energy Science and Technology Guangdong LaboratoryHuizhouChina
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices and Zhejiang Engineering Research Center for Biomedical MaterialsNingbo Institute of Materials Technology and Engineering, CASNingboChina
- Advanced Energy Science and Technology Guangdong LaboratoryHuizhouChina
| |
Collapse
|
3
|
Bechara R, Feray A, Pallardy M. Drug and Chemical Allergy: A Role for a Specific Naive T-Cell Repertoire? Front Immunol 2021; 12:653102. [PMID: 34267746 PMCID: PMC8276071 DOI: 10.3389/fimmu.2021.653102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/15/2021] [Indexed: 01/11/2023] Open
Abstract
Allergic reactions to drugs and chemicals are mediated by an adaptive immune response involving specific T cells. During thymic selection, T cells that have not yet encountered their cognate antigen are considered naive T cells. Due to the artificial nature of drug/chemical-T-cell epitopes, it is not clear whether thymic selection of drug/chemical-specific T cells is a common phenomenon or remains limited to few donors or simply does not exist, suggesting T-cell receptor (TCR) cross-reactivity with other antigens. Selection of drug/chemical-specific T cells could be a relatively rare event accounting for the low occurrence of drug allergy. On the other hand, a large T-cell repertoire found in multiple donors would underline the potential of a drug/chemical to be recognized by many donors. Recent observations raise the hypothesis that not only the drug/chemical, but also parts of the haptenated protein or peptides may constitute the important structural determinants for antigen recognition by the TCR. These observations may also suggest that in the case of drug/chemical allergy, the T-cell repertoire results from particular properties of certain TCR to recognize hapten-modified peptides without need for previous thymic selection. The aim of this review is to address the existence and the role of a naive T-cell repertoire in drug and chemical allergy. Understanding this role has the potential to reveal efficient strategies not only for allergy diagnosis but also for prediction of the immunogenic potential of new chemicals.
Collapse
Affiliation(s)
- Rami Bechara
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Alexia Feray
- Inflammation, Microbiome and Immunosurveillance, Université Paris-Saclay, INSERM, Châtenay-Malabry, France
| | - Marc Pallardy
- Inflammation, Microbiome and Immunosurveillance, Université Paris-Saclay, INSERM, Châtenay-Malabry, France
| |
Collapse
|
4
|
Thomson PJ, Kafu L, Meng X, Snoeys J, De Bondt A, De Maeyer D, Wils H, Leclercq L, Vinken P, Naisbitt DJ. Drug-specific T-cell responses in patients with liver injury following treatment with the BACE inhibitor atabecestat. Allergy 2021; 76:1825-1835. [PMID: 33150583 DOI: 10.1111/all.14652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/01/2020] [Accepted: 10/16/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Atabecestat is an orally administered BACE inhibitor developed to treat Alzheimer's disease. Elevations in hepatic enzymes were detected in a number of in trial patients, which resulted in termination of the drug development programme. Immunohistochemical characterization of liver tissue from an index case of atabecestat-mediated liver injury revealed an infiltration of T-lymphocytes in areas of hepatocellular damage. This coupled with the fact that liver injury had a delayed onset suggests that the adaptive immune system may be involved in the pathogenesis. The aim of this study was to generate and characterize atabecestat(metabolite)-responsive T-cell clones from patients with liver injury. METHODS Peripheral blood mononuclear cells were cultured with atabecestat and its metabolites (diaminothiazine [DIAT], N-acetyl DIAT & epoxide) and cloning was attempted in a number of patients. Atabecestat(metabolite)-responsive clones were analysed in terms of T-cell phenotype, function, pathways of T-cell activation and cross-reactivity with structurally related compounds. RESULTS CD4+ T-cell clones activated with the DIAT metabolite were detected in 5 out of 8 patients (up to 4.5% cloning efficiency). Lower numbers of CD4+ and CD8+ clones displayed reactivity against atabecestat. Clones proliferated and secreted IFN-γ, IL-13 and cytolytic molecules following atabecestat or DIAT stimulation. Certain atabecestat and DIAT-responsive clones cross-reacted with N-acetyl DIAT; however, no cross-reactivity was observed between atabecestat and DIAT. CD4+ clones were activated through a direct, reversible compound-HLA class II interaction with no requirement for protein processing. CONCLUSION The detection of atabecestat metabolite-responsive T-cell clones activated via a pharmacological interactions pathway in patients with liver injury is indicative of an immune-based mechanism for the observed hepatic enzyme elevations.
Collapse
Affiliation(s)
- Paul J. Thomson
- MRC Centre for Drug Safety Science Department of Molecular and Clinical Pharmacology University of Liverpool Liverpool UK
| | - Laila Kafu
- MRC Centre for Drug Safety Science Department of Molecular and Clinical Pharmacology University of Liverpool Liverpool UK
| | - Xiaoli Meng
- MRC Centre for Drug Safety Science Department of Molecular and Clinical Pharmacology University of Liverpool Liverpool UK
| | - Jan Snoeys
- Drug Metabolism and Pharmacokinetics Janssen R&D Beerse Belgium
| | - An De Bondt
- Discovery Sciences Janssen R&D Beerse Belgium
| | | | - Hans Wils
- Discovery Sciences Janssen R&D Beerse Belgium
| | | | | | - Dean J. Naisbitt
- MRC Centre for Drug Safety Science Department of Molecular and Clinical Pharmacology University of Liverpool Liverpool UK
| |
Collapse
|
5
|
Puig M, Ananthula S, Venna R, Kumar Polumuri S, Mattson E, Walker LM, Cardone M, Takahashi M, Su S, Boyd LF, Natarajan K, Abdoulaeva G, Wu WW, Roderiquez G, Hildebrand WH, Beaucage SL, Li Z, Margulies DH, Norcross MA. Alterations in the HLA-B*57:01 Immunopeptidome by Flucloxacillin and Immunogenicity of Drug-Haptenated Peptides. Front Immunol 2021; 11:629399. [PMID: 33633747 PMCID: PMC7900192 DOI: 10.3389/fimmu.2020.629399] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 12/23/2020] [Indexed: 12/15/2022] Open
Abstract
Neoantigen formation due to the interaction of drug molecules with human leukocyte antigen (HLA)-peptide complexes can lead to severe hypersensitivity reactions. Flucloxacillin (FLX), a β-lactam antibiotic for narrow-spectrum gram-positive bacterial infections, has been associated with severe immune-mediated drug-induced liver injury caused by an influx of T-lymphocytes targeting liver cells potentially recognizing drug-haptenated peptides in the context of HLA-B*57:01. To identify immunopeptidome changes that could lead to drug-driven immunogenicity, we used mass spectrometry to characterize the proteome and immunopeptidome of B-lymphoblastoid cells solely expressing HLA-B*57:01 as MHC-I molecules. Selected drug-conjugated peptides identified in these cells were synthesized and tested for their immunogenicity in HLA-B*57:01-transgenic mice. T cell responses were evaluated in vitro by immune assays. The immunopeptidome of FLX-treated cells was more diverse than that of untreated cells, enriched with peptides containing carboxy-terminal tryptophan and FLX-haptenated lysine residues on peptides. Selected FLX-modified peptides with drug on P4 and P6 induced drug-specific CD8+ T cells in vivo. FLX was also found directly linked to the HLA K146 that could interfere with KIR-3DL or peptide interactions. These studies identify a novel effect of antibiotics to alter anchor residue frequencies in HLA-presented peptides which may impact drug-induced inflammation. Covalent FLX-modified lysines on peptides mapped drug-specific immunogenicity primarily at P4 and P6 suggesting these peptide sites as drivers of off-target adverse reactions mediated by FLX. FLX modifications on HLA-B*57:01-exposed lysines may also impact interactions with KIR or TCR and subsequent NK and T cell function.
Collapse
Affiliation(s)
- Montserrat Puig
- Laboratory of Immunology, Office of Biotechnology Products, Center for Drugs Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Suryatheja Ananthula
- Laboratory of Immunology, Office of Biotechnology Products, Center for Drugs Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Ramesh Venna
- Laboratory of Immunology, Office of Biotechnology Products, Center for Drugs Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Swamy Kumar Polumuri
- Laboratory of Immunology, Office of Biotechnology Products, Center for Drugs Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Elliot Mattson
- Laboratory of Immunology, Office of Biotechnology Products, Center for Drugs Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Lacey M Walker
- Division of Applied Regulatory Science, Office of Translational Science, Center for Drugs Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Marco Cardone
- Laboratory of Immunology, Office of Biotechnology Products, Center for Drugs Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Mayumi Takahashi
- Laboratory of Biological Chemistry, Office of Biotechnology Products, Center for Drugs Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Shan Su
- Laboratory of Immunology, Office of Biotechnology Products, Center for Drugs Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Lisa F Boyd
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Kannan Natarajan
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Galina Abdoulaeva
- Facility for Biotechnology Resources, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Wells W Wu
- Facility for Biotechnology Resources, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Gregory Roderiquez
- Laboratory of Immunology, Office of Biotechnology Products, Center for Drugs Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - William H Hildebrand
- Department of Microbiology and Immunology, School of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Serge L Beaucage
- Laboratory of Biological Chemistry, Office of Biotechnology Products, Center for Drugs Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Zhihua Li
- Division of Applied Regulatory Science, Office of Translational Science, Center for Drugs Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - David H Margulies
- Molecular Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Michael A Norcross
- Laboratory of Immunology, Office of Biotechnology Products, Center for Drugs Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
6
|
Wang Y, Jiang J, Fotina H, Zhang H, Chen J. Advances in Antibody Preparation Techniques for Immunoassays of Total Aflatoxin in Food. Molecules 2020; 25:molecules25184113. [PMID: 32916811 PMCID: PMC7571119 DOI: 10.3390/molecules25184113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/07/2020] [Accepted: 09/07/2020] [Indexed: 11/16/2022] Open
Abstract
Aflatoxin (AF) contamination is a major concern in the food and feed industry because of its prevalence and toxicity. Improved aflatoxin detection methods are still needed. Immunoassays are an important method for total aflatoxin (TAF) analysis in food due to its technical advantages such as high specificity, sensitivity, and simplicity, but require high-quality antibodies. Here, we first review the three ways to prepare high-quality antibodies for TAF immunoassay, second, compare the advantages and disadvantages of antigen synthesis methods for B-group and G-group aflatoxins, and third, describe the status of novel genetic engineering antibodies. This review can provide new methods and ideas for the development of TAF immunoassays.
Collapse
Affiliation(s)
- Yanan Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China; (Y.W.); (H.Z.); (J.C.)
- Faculty of Veterinary Medicine, Sumy National Agrarian University, 40021 Sumy, Ukraine
| | - Jinqing Jiang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China; (Y.W.); (H.Z.); (J.C.)
- Correspondence: (J.J.); (H.F.); Tel.: +86-135-2508-3536 (J.J.)
| | - Hanna Fotina
- Faculty of Veterinary Medicine, Sumy National Agrarian University, 40021 Sumy, Ukraine
- Correspondence: (J.J.); (H.F.); Tel.: +86-135-2508-3536 (J.J.)
| | - Haitang Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China; (Y.W.); (H.Z.); (J.C.)
| | - Junjie Chen
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China; (Y.W.); (H.Z.); (J.C.)
| |
Collapse
|
7
|
Naisbitt DJ, Olsson‐Brown A, Gibson A, Meng X, Ogese MO, Tailor A, Thomson P. Immune dysregulation increases the incidence of delayed-type drug hypersensitivity reactions. Allergy 2020; 75:781-797. [PMID: 31758810 DOI: 10.1111/all.14127] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/05/2019] [Accepted: 11/18/2019] [Indexed: 12/14/2022]
Abstract
Delayed-type, T cell-mediated, drug hypersensitivity reactions are a serious unwanted manifestation of drug exposure that develops in a small percentage of the human population. Drugs and drug metabolites are known to interact directly and indirectly (through irreversible protein binding and processing to the derived adducts) with HLA proteins that present the drug-peptide complex to T cells. Multiple forms of drug hypersensitivity are strongly linked to expression of a single HLA allele, and there is increasing evidence that drugs and peptides interact selectively with the protein encoded by the HLA allele. Despite this, many individuals expressing HLA risk alleles do not develop hypersensitivity when exposed to culprit drugs suggesting a nonlinear, multifactorial relationship in which HLA risk alleles are one factor. This has prompted a search for additional susceptibility factors. Herein, we argue that immune regulatory pathways are one key determinant of susceptibility. As expression and activity of these pathways are influenced by disease, environmental and patient factors, it is currently impossible to predict whether drug exposure will result in a health benefit, hypersensitivity or both. Thus, a concerted effort is required to investigate how immune dysregulation influences susceptibility towards drug hypersensitivity.
Collapse
Affiliation(s)
- Dean J. Naisbitt
- MRC Centre for Drug Safety Science Department of Clinical and Molecular Pharmacology The University of Liverpool Liverpool UK
| | - Anna Olsson‐Brown
- MRC Centre for Drug Safety Science Department of Clinical and Molecular Pharmacology The University of Liverpool Liverpool UK
| | - Andrew Gibson
- MRC Centre for Drug Safety Science Department of Clinical and Molecular Pharmacology The University of Liverpool Liverpool UK
| | - Xiaoli Meng
- MRC Centre for Drug Safety Science Department of Clinical and Molecular Pharmacology The University of Liverpool Liverpool UK
| | - Monday O. Ogese
- MRC Centre for Drug Safety Science Department of Clinical and Molecular Pharmacology The University of Liverpool Liverpool UK
| | - Arun Tailor
- MRC Centre for Drug Safety Science Department of Clinical and Molecular Pharmacology The University of Liverpool Liverpool UK
| | - Paul Thomson
- MRC Centre for Drug Safety Science Department of Clinical and Molecular Pharmacology The University of Liverpool Liverpool UK
| |
Collapse
|
8
|
Bechara R, Maillere B, Joseph D, Weaver RJ, Pallardy M. Identification and characterization of a naïve
CD
8+ T cell repertoire for benzylpenicillin. Clin Exp Allergy 2019; 49:636-643. [DOI: 10.1111/cea.13338] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 12/18/2018] [Accepted: 01/09/2019] [Indexed: 02/02/2023]
Affiliation(s)
- Rami Bechara
- Inflammation Chimiokines et Immunopathologie INSERM, Fac de pharmacie Univ.Paris‐Sud Université Paris‐Saclay Châtenay‐Malabry France
| | | | - Delphine Joseph
- BioCIS, Univ Paris‐Sud, CNRS Université Paris‐Saclay Châtenay‐Malabry France
| | | | - Marc Pallardy
- Inflammation Chimiokines et Immunopathologie INSERM, Fac de pharmacie Univ.Paris‐Sud Université Paris‐Saclay Châtenay‐Malabry France
| |
Collapse
|
9
|
Azoury ME, Filì L, Bechara R, Scornet N, de Chaisemartin L, Weaver RJ, Claude N, Maillere B, Parronchi P, Joseph D, Pallardy M. Identification of T-cell epitopes from benzylpenicillin conjugated to human serum albumin and implication in penicillin allergy. Allergy 2018; 73:1662-1672. [PMID: 29355985 DOI: 10.1111/all.13418] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2018] [Indexed: 01/03/2023]
Abstract
BACKGROUND There is in vitro evidence that T cells from allergic patients react to benzylpenicillin-human serum albumin (BP-HSA) bioconjugates. Our group has recently shown the existence of naïve CD4+ T cells recognizing BP-HSA in healthy donors. However, BP-haptenated peptides from HSA participating in the immunization of allergic patients have never been identified. The purpose of the present study is to identify immunodominant BP-haptenated peptides from HSA involved in immunization of patients to BP and to refine the frequency calculation of naïve CD4+ T cells recognizing BP. METHODS Co-cultures were established with CD4+ T cells from non-allergic donors and mature autologous dendritic cells (DCs) loaded with BP-HSA or BP-haptenated peptides from HSA. The CD4+ T-cell response specific for BP-HSA or for individual BP-haptenated peptides was measured using an interferon-γ (IFN-γ) ELISpot assay. The frequency of BP-specific CD4+ T cells was then calculated using the Poisson distribution. BP-HSA and BP-haptenated peptides recognition by allergic patients was evaluated on peripheral blood mononuclear cells (PBMCs) using a lymphocyte transformation test (LTT). RESULTS Results showed that BP-HSA and BP-haptenated peptides were recognized by naïve T cells from 15/16 and 13/14 tested healthy donors, respectively. Most donors responded to 3 peptides with BP covalently bound on lysines 159, 212, and 525. Two of these benzylpenicilloylated peptides (lysines 159 and 525) were also found to induce PBMCs proliferation in patients with allergic reaction to penicillins. CONCLUSION This study identifies and characterizes for the first time the BP-haptenated peptides from HSA involved in the immunization of patients to penicillins.
Collapse
Affiliation(s)
- M. E. Azoury
- Inflammation, Chimiokines et Immunopathologie; INSERM; Univ.Paris-Sud; Université Paris-Saclay; Châtenay-Malabry France
| | - L. Filì
- Department of Experimental and Clinical Medicine; University of Florence; Florence Italy
| | - R. Bechara
- Inflammation, Chimiokines et Immunopathologie; INSERM; Univ.Paris-Sud; Université Paris-Saclay; Châtenay-Malabry France
| | - N. Scornet
- BioCIS; Univ Paris-Sud; CNRS; Université Paris-Saclay; Châtenay-Malabry France
| | - L. de Chaisemartin
- Inflammation, Chimiokines et Immunopathologie; INSERM; Univ.Paris-Sud; Université Paris-Saclay; Châtenay-Malabry France
- Hopital Bichat; Laboratoire d'Immunologie; APHP; Paris France
| | - R. J. Weaver
- Institut de Recherches Internationales Servier; Suresnes France
| | - N. Claude
- Institut de Recherches Internationales Servier; Suresnes France
| | | | - P. Parronchi
- Department of Experimental and Clinical Medicine; University of Florence; Florence Italy
| | - D. Joseph
- BioCIS; Univ Paris-Sud; CNRS; Université Paris-Saclay; Châtenay-Malabry France
| | - M. Pallardy
- Inflammation, Chimiokines et Immunopathologie; INSERM; Univ.Paris-Sud; Université Paris-Saclay; Châtenay-Malabry France
| |
Collapse
|