1
|
Tu Y, Gong J, Mou J, Jiang H, Zhao H, Gao J. Strategies for the development of stimuli-responsive small molecule prodrugs for cancer treatment. Front Pharmacol 2024; 15:1434137. [PMID: 39144632 PMCID: PMC11322083 DOI: 10.3389/fphar.2024.1434137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024] Open
Abstract
Approved anticancer drugs typically face challenges due to their narrow therapeutic window, primarily because of high systemic toxicity and limited selectivity for tumors. Prodrugs are initially inactive drug molecules designed to undergo specific chemical modifications. These modifications render the drugs inactive until they encounter specific conditions or biomarkers in vivo, at which point they are converted into active drug molecules. This thoughtful design significantly improves the efficacy of anticancer drug delivery by enhancing tumor specificity and minimizing off-target effects. Recent advancements in prodrug design have focused on integrating these strategies with delivery systems like liposomes, micelles, and polymerosomes to further improve targeting and reduce side effects. This review outlines strategies for designing stimuli-responsive small molecule prodrugs focused on cancer treatment, emphasizing their chemical structures and the mechanisms controlling drug release. By providing a comprehensive overview, we aim to highlight the potential of these innovative approaches to revolutionize cancer therapy.
Collapse
Affiliation(s)
- Yuxuan Tu
- The Afffliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Jianbao Gong
- Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao Municipal Hospital, Qingdao, China
| | - Jing Mou
- Department of Neonatology, Qingdao Women and Children’s Hospital, Qingdao University, Qingdao, Shandong, China
| | - Hongfei Jiang
- The Afffliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Haibo Zhao
- The Afffliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Jiake Gao
- The Afffliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| |
Collapse
|
2
|
Kang C, Ren X, Lee D, Ramesh R, Nimmo S, Yang-Hartwich Y, Kim D. Harnessing small extracellular vesicles for pro-oxidant delivery: novel approach for drug-sensitive and resistant cancer therapy. J Control Release 2024; 365:286-300. [PMID: 37992875 PMCID: PMC10872719 DOI: 10.1016/j.jconrel.2023.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/26/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Multidrug resistance (MDR) is an inevitable clinical problem in chemotherapy due to the activation of abundant P-glycoprotein (P-gp) that can efflux drugs. Limitations of current cancer therapy highlight the need for the development of a comprehensive cancer treatment strategy, including drug-resistant cancers. Small extracellular vesicles (sEVs) possess significant potential in surmounting drug resistance as they can effectively evade the efflux mechanism and transport small molecules directly to MDR cancer cells. One mechanism mediating MDR in cancer cells is sustaining increased levels of reactive oxygen species (ROS) and maintenance of the redox balance with antioxidants, including glutathione (GSH). Herein, we developed GSH-depleting benzoyloxy dibenzyl carbonate (B2C)-encapsulated sEVs (BsEVs), which overcome the efflux system to exert highly potent anticancer activity against human MDR ovarian cancer cells (OVCAR-8/MDR) by depleting GSH to induce oxidative stress and, in turn, apoptotic cell death in both OVCAR-8/MDR and OVCAR-8 cancer cells. BsEVs restore drug responsiveness by inhibiting ATP production through the oxidation of nicotinamide adenine dinucleotide with hydrogen (NADH) and inducing mitochondrial dysfunction, leading to the dysfunction of efflux pumps responsible for drug resistance. In vivo studies showed that BsEV treatment significantly inhibited the growth of OVCAR-8/MDR and OVCAR-8 tumors. Additionally, OVCAR-8/MDR tumors showed a trend towards a greater sensitivity to BsEVs compared to OVCAR tumors. In summary, this study demonstrates that BsEVs hold tremendous potential for cancer treatment, especially against MDR cancer cells.
Collapse
Affiliation(s)
- Changsun Kang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Xiaoyu Ren
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Dongwon Lee
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Jeonju 54896, South Korea
| | - Rajagopal Ramesh
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Susan Nimmo
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Yang Yang-Hartwich
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, Yale University, New Haven, CT 06510, USA
| | - Dongin Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
3
|
Kwon G, Baek J, Kim N, Kwon S, Song N, Park SC, Kim BS, Lee D. Acid-sensitive stable polymeric micelle-based oxidative stress nanoamplifier as immunostimulating anticancer nanomedicine. Biomater Sci 2023; 11:6600-6610. [PMID: 37605830 DOI: 10.1039/d3bm00770g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Oxidative stress amplifying compounds could elicit selective killing of cancer cells with minimal toxicity to normal cells and also induce immunogenic cell death (ICD). However, compared to conventional anticancer drugs, oxidative stress amplifying compounds have inferior therapeutic efficacy. It can be postulated that the anticancer therapeutic efficacy and immunostimulating activity of oxidative stress amplifying hybrid prodrug (OSamp) could be fully maximized by employing ultrastable polymeric micelles as drug carriers. In this work, we developed tumour-targeted oxidative stress nanoamplifiers, composed of OSamp, amphiphilic poly(ethylene glycol) methyl ether-block-poly(cyclohexyloxy ethyl glycidyl ether)s (mPEG-PCHGE) and a lipopeptide containing Arg-Gly-Asp (RGD). Tumour targeted OSamp-loaded mPEG-PCHGE (T-POS) micelles exhibited excellent colloidal stability and significant cytotoxicity to cancer cells with the expression of DAMPs (damage-associated molecular patterns). In the syngeneic mouse tumour model, T-POS micelles induced significant apoptotic cell death to inhibit tumour growth without noticeable body weight changes. T-POS micelles also induced ICD and activated adaptive immune responses by increasing the populations of cytotoxic CD4+ and CD8+ T cells. Therefore, these results suggest that T-POS micelles hold great translational potential as immunostimulating anticancer nanomedicine.
Collapse
Affiliation(s)
- Gayoung Kwon
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Korea
| | - Jinsu Baek
- Department of Chemistry, Yonsei University, Seoul, 03722, Korea
| | - Nuri Kim
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Korea
| | - Soonyoung Kwon
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Korea
| | - Nanhee Song
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Korea
| | - Seong-Cheol Park
- Department of Polymer Engineering, Sunchon National University, Chonnam 57922, Korea
| | - Byeong-Su Kim
- Department of Chemistry, Yonsei University, Seoul, 03722, Korea
| | - Dongwon Lee
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Korea
- Department of Polymer Nano Science and Technology, Jeonbuk National University, Jeonju, Jeonbuk 54896, Korea
| |
Collapse
|
4
|
Mukerabigwi JF, Tang R, Cao Y, Mohammed F, Zhou Q, Zhou M, Ge Z. Mitochondria-Targeting Polyprodrugs to Overcome the Drug Resistance of Cancer Cells by Self-Amplified Oxidation-Triggered Drug Release. Bioconjug Chem 2023; 34:377-391. [PMID: 36716444 DOI: 10.1021/acs.bioconjchem.2c00559] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The multi-drug resistance (MDR) of cancers is one of the main barriers for the success of diverse chemotherapeutic methods and is responsible for most cancer deaths. Developing efficient approaches to overcome MDR is still highly desirable for efficient chemotherapy of cancers. The delivery of targeted anticancer drugs that can interact with mitochondrial DNA is recognized as an effective strategy to reverse the MDR of cancers due to the relatively weak DNA-repairing capability in the mitochondria. Herein, we report on a polyprodrug that can sequentially target cancer cells and mitochondria using folic acid (FA) and tetraphenylphosphonium (TPP) targeting moieties, respectively. They were conjugated to the terminal groups of the amphiphilic block copolymer prodrugs composed of poly[oligo(ethylene glycol) methyl ether methacrylate] (POEGMA) and copolymerized monomers containing cinnamaldehyde (CNM) and doxorubicin (DOX). After self-assembly into micelles with the suitable size (∼30 nm), which were termed as TF@CNM + DOX, and upon intravenous administration, the micelles can accumulate in tumor tissues. After FA-mediated endocytosis, the endosomal acidity (∼pH 5) can trigger the release of CNM from TF@CNM + DOX micelles, followed by enhanced accumulation into the mitochondria via the TPP target. This promotes the overproduction of reactive oxygen species (ROS), which can subsequently enhance the intracellular oxidative stress and trigger ROS-responsive release of DOX into the mitochondria. TF@CNM + DOX shows great potential to inhibit the growth of DOX-resistant MCF-7 ADR tumors without observable side effects. Therefore, the tumor and mitochondria dual-targeting polyprodrug design represents an ideal strategy to treat MDR tumors through improvement of the intracellular oxidative level and ROS-responsive drug release.
Collapse
Affiliation(s)
- Jean Felix Mukerabigwi
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.,Department of Chemistry, School of Science, College of Science and Technology, University of Rwanda, Kigali, 3900 Kigali, Rwanda
| | - Rui Tang
- Neurocritical Care Unit, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Yufei Cao
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Fathelrahman Mohammed
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Qinghao Zhou
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.,CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Min Zhou
- Neurocritical Care Unit, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Zhishen Ge
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| |
Collapse
|
5
|
Cheng X, Wang L, Liu L, Shi S, Xu Y, Xu Z, Wei B, Li C. A sequentially responsive cascade nanoplatform for increasing chemo-chemodynamic therapy. Colloids Surf B Biointerfaces 2023; 222:113099. [PMID: 36584448 DOI: 10.1016/j.colsurfb.2022.113099] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/27/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Poly(lactide-co-glycolide) (PLGA) is promising carrier material for drugs delivery in cancer therapy. However, the slow degradation and lack of targeting have greatly limited the clinical effectiveness of PLGA-based nanomedicines. Herein, we fabricated a hybrid nanosystem (3 P @ He/Pt-NPs) comprising of acid-sensitive polymer (mPOE-PLGA), active-targeting polymer (PBA-PLGA) and therapeutic agents (hemin+cisplatin) to combat these problems. In neutral environment, PEGylation can effectively improve the blood stability and circulation time of hybrid nanosystem. After reaching tumor regions, this nanosystem efficiently increased cellular uptake by dePEGylation and PBA-mediated active-targeting. Furthermore, encapsulated hemin could catalyze the oxygen bubbles generation, which remarkably increasing the drugs release rate. Subsequently, hybrid particles produced a higher cell-killing effect to lung cancer cells (A549) by the combination therapy (chemotherapy and chemodynamic therapy (CDT)). Importantly, cisplatin further amplified CDT effect by inducing H2O2 regeneration owing to the cascade enzymatic reactions, while hemin decreased intracellular glutathione (GSH) level, resulting in a low detoxification effect to cisplatin. Thus, hybrid particles could efficiently inhibit drug-resistant tumor growth and the inhibition rate reached 83.2%. Overall, this hybrid polymer nanosystem improve the drawbacks of PLGA-based nanocarriers, and can realize a cascading enhanced tumor treatment.
Collapse
Affiliation(s)
- Xu Cheng
- School of Life Sciences, Anqing Normal University, Anqing 246052, PR China
| | - Lu Wang
- School of Life Sciences, Anqing Normal University, Anqing 246052, PR China
| | - Liwen Liu
- School of Life Sciences, Anqing Normal University, Anqing 246052, PR China
| | - Shuiqing Shi
- School of Life Sciences, Anqing Normal University, Anqing 246052, PR China
| | - Yingran Xu
- School of Life Sciences, Anqing Normal University, Anqing 246052, PR China
| | - Zhengrong Xu
- School of Life Sciences, Anqing Normal University, Anqing 246052, PR China
| | - Bing Wei
- Research Center of Anti-aging Chinese Herbal Medicine of Anhui Province, Biology and Food Engineering School, Fuyang Normal University, Fuyang 236037, PR China.
| | - Conghu Li
- School of Life Sciences, Anqing Normal University, Anqing 246052, PR China.
| |
Collapse
|
6
|
Lee Y, Song N, Kim N, Yang M, Kwon G, Hyeon H, Jung E, Park SC, Kim C, Lee D. Oxidative Stress Amplifying Polyprodrug Micelles as Drug Carriers for Combination Anticancer Therapy. Biomacromolecules 2022; 23:3887-3898. [PMID: 36007196 DOI: 10.1021/acs.biomac.2c00700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cancer cells are more vulnerable to reactive oxygen species (ROS)-mediated oxidative stress than normal cells due to disturbed redox balance. It can be postulated that ROS-generating drug carriers exert anticancer actions, leading to combination anticancer therapy with drug payloads. Here, we report a ROS-generating polyprodrug of cinnamaldehyde (CA) that not only serves as a drug carrier but also synergizes with drug payloads. The polyprodrug of CA (pCA) incorporates ROS-generating CA in the backbone of an amphiphilic polymer through an acid-cleavable acetal linkage. pCA could self-assemble with tumor-targeting lipopeptide (DSPE-PEG-RGD) and encapsulate doxorubicin (DOX) to form T-pCAD micelles. At acidic pH, T-pCAD micelles release both CA and DOX to exert synergistic anticancer actions. Animal studies using mouse xenograft models revealed that T-pCAD micelles accumulate in tumors preferentially and suppress the tumor growth significantly. Based on the oxidative stress amplification and acid-responsiveness, ROS-generating pCAD micelles hold tremendous potential as drug carriers for combination anticancer therapy.
Collapse
Affiliation(s)
- Yujin Lee
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Chonbuk 54896, Republic of Korea
| | - Nanhee Song
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Chonbuk 54896, Republic of Korea
| | - Nuri Kim
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Chonbuk 54896, Republic of Korea
| | - Manseok Yang
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Chonbuk 54896, Republic of Korea
| | - Gayoung Kwon
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Chonbuk 54896, Republic of Korea
| | - Hyejin Hyeon
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Chonbuk 54896, Republic of Korea
| | - Eunkyeong Jung
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Chonbuk 54896, Republic of Korea
| | - Seong-Cheol Park
- Department of Polymer Engineering, Sunchon National University, Sunchon, Junganr-ro 255, Chonnam 57922, Republic of Korea
| | - Chunho Kim
- Radiation and Medical Research Center, Korea Institute of Radiation and Medical Science, Nowonro 75, Nowon-Gu, Seoul 01812, Republic of Korea
| | - Dongwon Lee
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Chonbuk 54896, Republic of Korea.,Department of Polymer Nano Science and Technology, Jeonbuk National University, Baekjedaero 567, Jeonju, Chonbuk 54896, Republic of Korea
| |
Collapse
|
7
|
Jung E, Jeong SW, Lee Y, Jeon C, Shin H, Song N, Lee Y, Lee D. Self-deliverable and self-immolative prodrug nanoassemblies as tumor targeted nanomedicine with triple cooperative anticancer actions. Biomaterials 2022; 287:121681. [PMID: 35917709 DOI: 10.1016/j.biomaterials.2022.121681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 11/26/2022]
Abstract
Stimulus-responsive self-assembling prodrug-based nanomedicine has emerged as a novel paradigm in controlled drug delivery. All-trans retinoic acid (RA), one of vitamin A metabolites, induces apoptotic cancer cell death, but its clinical applications are limited by weak anticancer efficacy. To fully maximize the therapeutic potential of RA, we exploited the unique chemistry of arylboronic acid which undergoes hydrogen peroxide (H2O2)-triggered degradation to release quinone methide (QM) that alkylates glutathione (GSH) to disrupt redox homeostasis and is also converted into hydroxybenzyl alcohol (HBA) to suppress the expression of vascular endothelial growth factor (VEGF). Here, we report that boronated retinoic acid prodrug (RABA) can be formulated into self-deliverable nanoassemblies which release both RA and QM in a H2O2-triggered self-immolative manner to exert cooperative anticancer activities. RABA nanoassemblies exert anticancer effects by inducing reactive oxygen species (ROS)-mediated apoptosis, eliciting immunogenic cell death (ICD) and suppressing angiogenic VEGF expression. The excellent anticancer efficacy of RABA nanoassemblies can be explained by benefits of self-assembling prodrug-based drug self-delivery and cooperative anticancer actions. The design strategy of RABA would provide a new insight into the rational design of self-deliverable and self-immolative boronated prodrug nanoassemblies for targeted cancer therapy.
Collapse
Affiliation(s)
- Eunkyeong Jung
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Seung Won Jeong
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Yeongjong Lee
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Chanhee Jeon
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Hyunbin Shin
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Nanhee Song
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Yujin Lee
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Dongwon Lee
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Jeonbuk, 54896, Republic of Korea; Department of Polymer⋅Nano Science and Technology, Jeonbuk National University, Baekjedaero 567, Jeonju, Jeonbuk, 54896, Republic of Korea.
| |
Collapse
|
8
|
Wang J, Yang Y, Huang L, Kong L, Wang X, Shi J, Lü Y, Mu H, Duan J. Development of responsive chitosan-based hydrogels for the treatment of pathogen-induced skin infections. Int J Biol Macromol 2022; 219:1009-1020. [PMID: 35926673 DOI: 10.1016/j.ijbiomac.2022.07.212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 07/08/2022] [Accepted: 07/25/2022] [Indexed: 11/27/2022]
Abstract
Vancomycin (Van) remains one of the first-line drugs for the treatment of wound infections caused by methicillin-resistant Staphylococcus aureus (MRSA). However, the unsatisfactory bioavailability of vancomycin alone has greatly limited its potential health benefits. Here a responsive chitosan-based hydrogel was developed as the delivery system which not only would reduce this side effect but also increase efficacy of vancomycin. The hydrogel was prepared by grafting chitosan and cinnamaldehyde-based thioacetal (CTA) together with ginipin (G) as the crosslinker. Upon exposure to reactive oxygen species which were enriched in the bacterial wound, the hydrogel can locally degrade and sustainably release the loaded vancomycin near the lesion to compete with the troubling MRSA. Compared with vancomycin alone, the chitosan-based hydrogel loaded with vancomycin demonstrated accelerated acute wound healing. This achievement reveals that this multi-functional hydrogel may be a promising drug-delivery device for improving the efficacy of local antibiotic therapy.
Collapse
Affiliation(s)
- Junjie Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yu Yang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China
| | - Lijie Huang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lili Kong
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xing Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingru Shi
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yinghua Lü
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Haibo Mu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Jinyou Duan
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
9
|
Jung E, Song N, Lee Y, Kwon G, Kwon S, Lee D. H2O2-activatable hybrid prodrug nanoassemblies as a pure nanodrug for hepatic ischemia/reperfusion injury. Biomaterials 2022; 284:121515. [DOI: 10.1016/j.biomaterials.2022.121515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 11/02/2022]
|
10
|
Roles of DNA polymerase ζ in the radiotherapy sensitivity and oxidative stress of lung cancer cells. Cancer Chemother Pharmacol 2022; 89:313-321. [DOI: 10.1007/s00280-021-04360-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/31/2021] [Indexed: 11/26/2022]
|
11
|
Song N, Park M, Kim N, Lee Y, Jung E, Lee D. Tumor-targeting oxidative stress nanoamplifiers as anticancer nanomedicine with immunostimulating activity. Biomater Sci 2022; 10:6160-6171. [DOI: 10.1039/d2bm00601d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
GSH depleting prodrugs and ROS generators self-assemble to generate oxidative stress nanoamplifiers that can preferentially kill cancer cells and exert immunostimulating activity.
Collapse
Affiliation(s)
- Nanhee Song
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Miran Park
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Nuri Kim
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Yujin Lee
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Eunkyeong Jung
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Jeonbuk, 54896, Republic of Korea
- Department of NanoEngineering, University of California San Diego, La Jolla, 92093, CA, USA
| | - Dongwon Lee
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Jeonbuk, 54896, Republic of Korea
- Department of Polymer Nano Science and Technology, Jeonbuk National University, Baekjedaero 567, Jeonju, Jeonbuk, 54896, Republic of Korea
| |
Collapse
|
12
|
Lu N, Xi L, Zha Z, Wang Y, Han X, Ge Z. Acid-responsive endosomolytic polymeric nanoparticles with amplification of intracellular oxidative stress for prodrug delivery and activation. Biomater Sci 2021; 9:4613-4629. [PMID: 34190224 DOI: 10.1039/d1bm00159k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Prodrug strategy especially in the field of chemotherapy of cancers possesses significant advantages reducing the side toxicity of anticancer drugs. However, high-efficiency delivery and in situ activation of prodrugs for tumor growth suppression are still a great challenge. Herein, we report rationally engineered pH-responsive endosomolytic polymeric micelles for the delivery of an oxidation-activable prodrug into the cytoplasm of cancer cells and amplification of intracellular oxidative stress for further prodrug activation. The prepared block copolymers consist of a poly(ethylene glycol) (PEG) block and a segment grafted by endosomolytic moieties and acetal linkage-connected cinnamaldehyde groups. The amphiphilic diblock copolymers can self-assemble to form micelles in water for loading the oxidation-activable phenylboronic pinacol ester-caged camptothecin prodrug (ProCPT). The obtained micelles can release free cinnamaldehyde under acidic conditions in tumor tissues and endo/lysosomes followed by efficient endosomal escape, which further induces enhancement of intracellular reactive oxygen species (ROS) to activate the prodrugs. Simultaneously, intracellular glutathione (GSH) can be reduced by quinone methide that was produced during prodrug activation. The ProCPT-loaded micelles can finally achieve efficient tumor accumulation and retention as well as effective tumor growth inhibition. More importantly, hematological and pathological analysis of toxicity reveals that the ProCPT-loaded micelles do not cause obvious toxic side effects toward important organs of mice. A positive immunomodulatory microenvironment in tumor tissue and serum can be detected after treatment with ProCPT-loaded micelles. Therefore, the endosomolytic ProCPT-loaded micelles exert synergistic therapeutic effects toward tumors through amplification of intracellular oxidative stress and activation of the prodrugs.
Collapse
Affiliation(s)
- Nannan Lu
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, China.
| | - Longchang Xi
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China.
| | - Zengshi Zha
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China.
| | - Yuheng Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China.
| | - Xinghua Han
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, China.
| | - Zhishen Ge
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China.
| |
Collapse
|
13
|
Cheng X, Xu HD, Ran HH, Liang G, Wu FG. Glutathione-Depleting Nanomedicines for Synergistic Cancer Therapy. ACS NANO 2021; 15:8039-8068. [PMID: 33974797 DOI: 10.1021/acsnano.1c00498] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cancer cells frequently exhibit resistance to various molecular and nanoscale drugs, which inevitably affects the drugs' therapeutic outcomes. Overexpression of glutathione (GSH) has been observed in many cancer cells, and solid evidence has corroborated the resulting tumor resistance to a variety of anticancer therapies, suggesting that this biochemical characteristic of cancer cells can be developed as a potential target for cancer treatments. The single treatment of GSH-depleting agents can potentiate the responses of the cancer cells to different cell death stimuli; therefore, as an adjunctive strategy, GSH depletion is usually combined with mainstream cancer therapies for enhancing the therapeutic outcomes. Propelled by the rapid development of nanotechnology, GSH-depleting agents can be readily constructed into anticancer nanomedicines, which have shown a steep rise over the past decade. Here, we review the common GSH-depleting nanomedicines which have been widely applied in synergistic cancer treatments in recent years. Some current challenges and future perspectives for GSH depletion-based cancer therapies are also presented. With the understanding of the structure-property relationship and action mechanisms of these biomaterials, we hope that the GSH-depleting nanotechnology will be further developed to realize more effective disease treatments and even achieve successful clinical translations.
Collapse
Affiliation(s)
- Xiaotong Cheng
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P.R. China
| | - Hai-Dong Xu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P.R. China
| | - Huan-Huan Ran
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P.R. China
| | - Gaolin Liang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P.R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, P.R. China
| |
Collapse
|
14
|
Xu J, Hu T, Zhang M, Feng P, Wang X, Cheng X, Tang R. A sequentially responsive nanogel via Pt(IV) crosslinking for overcoming GSH-mediated platinum resistance. J Colloid Interface Sci 2021; 601:85-97. [PMID: 34058555 DOI: 10.1016/j.jcis.2021.05.107] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022]
Abstract
Chemotherapy efficiency of platinum(II) (Pt(II)) is often attenuated owing to the low intracellular drugs concentration and glutathione (GSH)-mediated detoxification. To address these problems, we fabricated a step-by-step responsive nanogel (~160 nm) by copolymerization between four functional monomers. Hydrophilic methoxypolyethylene glycols (mPEG) distributedrandomly on the surface of particles endowed the nanogel with "stealth" property in blood circulation, while the chemical crosslinking inside particles by platinum(IV) (Pt(IV)) linker remarkably increased the stability of nanogel in vivo. These advantages of nanogels leaded to higher accumulation at tumor region (6.4% ID/g), followed by triggering the dePEGylation effect by the cleavage of ortho ester at tumoral extracellular pH. Meanwhile, the exposed phenylboric acid (PBA) could significantly increase cellular uptake and intracellular drugs levels by targteing sialic acid residues on the cells membrane. More importantly, this nanogels could further deplete intracellular glutathione (GSH) by the dual-regulation of platinum(IV) and arylboronic ester, resulting in enhanced platinum(II) toxicity both in vitro and in vivo, eventually achieving superior inhibition rate (79.14%) in A549/DDP tumor. Thus, the sequentially responsive nanogel could be considered as an effective strategy for cancer treatment.
Collapse
Affiliation(s)
- Jiaxi Xu
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui Province 230601, PR China
| | - Ting Hu
- School of Life Sciences, Anqing Normal University, Anqing 246052, PR China
| | - Mingzhu Zhang
- School of Life Sciences, Anqing Normal University, Anqing 246052, PR China
| | - Pei Feng
- School of Life Sciences, Anqing Normal University, Anqing 246052, PR China
| | - Xin Wang
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui Province 230601, PR China
| | - Xu Cheng
- School of Life Sciences, Anqing Normal University, Anqing 246052, PR China; Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui Province 230601, PR China.
| | - Rupei Tang
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Biomanufacturing, School of Life Sciences, Anhui University, 111 Jiulong Road, Hefei, Anhui Province 230601, PR China
| |
Collapse
|
15
|
Jung E, Lee J, Lee Y, Seon S, Park M, Song C, Lee D. Tumor-Targeting H 2O 2-Responsive Photosensitizing Nanoparticles with Antiangiogenic and Immunogenic Activities for Maximizing Anticancer Efficacy of Phototherapy. ACS APPLIED BIO MATERIALS 2021; 4:4450-4461. [PMID: 35006857 DOI: 10.1021/acsabm.1c00210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Phototherapy including photothermal therapy (PTT) and photodynamic therapy (PDT) uses photosensitizers and light to kill cancer cells and has become a promising therapeutic modality because of advantages such as minimal invasiveness and high cancer selectivity. However, PTT or PDT as a single treatment modality has insufficient therapeutic efficacy. Moreover, oxygen consumption by PDT activates angiogenic factors and leads to cancer recurrence and progression. Therefore, the therapeutic outcomes of phototherapy would be maximized by employing photosensitizers for concurrent PTT and PDT and suppressing angiogenic factors. Therefore, integrating photosensitive agents and antiangiogenic agents in a single nanoplatform would be a promising strategy to maximize the therapeutic efficacy of phototherapy. In this study, we developed hyaluronic acid-coated fluorescent boronated polysaccharide (HA-FBM) nanoparticles as a combination therapeutic agent for phototherapy and antiangiogenic therapy. Upon a single near-infrared laser irradiation, HA-FBM nanoparticles generated heat and singlet oxygen simultaneously to kill cancer cells and also induced immunogenic cancer cell death. Beside their fundamental roles as photosensitizers, HA-FBM nanoparticles exerted antiangiogenic effects by suppressing the vascular endothelial growth factor (VEGF) and cancer cell migration. In a mouse xenograft model, intravenously injected HA-FBM nanoparticles targeted tumors by binding CD44-overexpressing cancer cells and suppressed angiogenic VEGF expression. Upon laser irradiation, HA-FBM nanoparticles remarkably eradicated tumors and increased anticancer immunity. Given their synergistic effects of phototherapy and antiangiogenic therapy from tumor-targeting HA-FBM nanoparticles, we believe that integrating the photosensitizers and antiangiogenic agents into a single nanoplatform presents an attractive strategy to maximize the anticancer therapeutic efficacy of phototherapy.
Collapse
Affiliation(s)
- Eunkyeong Jung
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Jeonghun Lee
- School of Advanced Materials Discovery, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Yeongjong Lee
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Semee Seon
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Miran Park
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Chulgyu Song
- Department of Electronics Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Dongwon Lee
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Baekjedaero 567, Jeonju, Jeonbuk 54896, Republic of Korea.,Department of Polymer Nano Science and Technology, Jeonbuk National University, Baekjedaero 567, Jeonju, Jeonbuk 54896, Republic of Korea
| |
Collapse
|
16
|
Mishra P, Gupta P, Pruthi V. Cinnamaldehyde incorporated gellan/PVA electrospun nanofibers for eradicating Candida biofilm. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111450. [PMID: 33321588 DOI: 10.1016/j.msec.2020.111450] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022]
Abstract
Immunocompromised patients encounter fungal infections more frequently than healthy individuals. Conventional drugs associated health risk and resistance, portrayed fungal infections as a global health problem. This issue needs to be answered immediately by designing a novel anti-fungal therapeutic agent. Phytoactive molecules based therapeutics are most suitable candidate due to their low cytotoxicity and minimal side effects to the host. In this study, cinnamaldehyde (CA), an FDA approved phytoactive molecule present in cinnamon essential oil was incorporated into gellan (GA)/poly vinyl alcohol (PVA) based electrospun nanofibers to resolve the issues like low water solubility, high volatility and irritant effect associated with CA and also to enhance its therapeutic applications. The drug encapsulation, morphology and physical properties of the synthesized CA nanofibers were evaluated by FESEM, AFM, TGA, FTIR and static water contact angle analysis. The average diameters of CA encapsulated GA/PVA nanofibers and GA/PVA nanofibers were recorded to be 278.5 ± 57.8 nm and 204.03 ± 39.14 nm, respectively. These nanofibers were evaluated for their anti-biofilm activity against Candida using XTT (2, 3-bis (2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)-carbonyl]-2H-tetrazolium salt) reduction assay. Data demonstrated that CA encapsulated GA/PVA nanofibers can effectively eradicate 89.29% and 50.45% of Candida glabrata and Candida albicans biofilm respectively. CA encapsulated nanofibers exhibited brilliant antimicrobial property against Staphylococcus aureus and Pseudomonas aeruginosa. The cytotoxicity assay demonstrated that nanofibers loaded with CA have anticancer properties as it reduces cell viability of breast cancer cells (MCF-7) by 27.7%. These CA loaded GA/PVA (CA-GA/PVA) nanofibers could be used as novel wound dressing material and coatings on biomedical implants to eradicate biofilm.
Collapse
Affiliation(s)
- Purusottam Mishra
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Payal Gupta
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Vikas Pruthi
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| |
Collapse
|
17
|
Cheng X, Lv X, Xu J, Zheng Y, Wang X, Tang R. Pluronic micelles with suppressing doxorubicin efflux and detoxification for efficiently reversing breast cancer resistance. Eur J Pharm Sci 2020; 146:105275. [PMID: 32087259 DOI: 10.1016/j.ejps.2020.105275] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/15/2020] [Accepted: 02/18/2020] [Indexed: 12/28/2022]
Abstract
The antitumor activity of doxorubicin (DOX) is often limited owing to the occurrence of multidrug resistance (MDR) during treatment. Herein, we developed hybrid polymeric micelles, which consisted of pluronic F127 as long-circulating helper in blood, and phenylboronic ester-grafted pluronic P123 (PHE) as efflux and detoxification regulator to efficiently deliver DOX and reverse MDR in vivo. Hybrid F127/PHE micelles exhibited higher stability and drug encapsulation (~80%) than simple F127/P123 micelles due to its lower CMC, and displayed in vitro drug release in a hydrogen peroxide (H2O2)-sensitive manner. Besides, DOX-loaded hybrid micelles (F127/PHE-DOX) possessed higher cell-killing ability and induce more apoptotic in MDR-cells than other groups, which was probably because it not only could greatly increase intracellular drug concentration by inhibiting P-gp mediated drug efflux, but also promote reactive oxygen species (ROS) generation by decreasing glutathione (GSH) levels. Besides, in vivo evaluation indicated that F127/PHE-DOX could well accumulate at tumor regions and exhibit the strongest tumor growth inhibition (TGI 87.87%) accompanied with low side effects. As a result, F127/PHE micelles had great potentials as a platform for anticancer drugs delivery and tumor MDR reversal in clinical application.
Collapse
Affiliation(s)
- Xu Cheng
- Engineering Research Center for Biomedical Materials, School of Life Sciences, Anhui University, Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui Province 230601, China
| | - Xiaodong Lv
- Engineering Research Center for Biomedical Materials, School of Life Sciences, Anhui University, Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui Province 230601, China
| | - Jiaxi Xu
- Engineering Research Center for Biomedical Materials, School of Life Sciences, Anhui University, Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui Province 230601, China
| | - Yan Zheng
- Engineering Research Center for Biomedical Materials, School of Life Sciences, Anhui University, Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui Province 230601, China
| | - Xin Wang
- Engineering Research Center for Biomedical Materials, School of Life Sciences, Anhui University, Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui Province 230601, China
| | - Rupei Tang
- Engineering Research Center for Biomedical Materials, School of Life Sciences, Anhui University, Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui Province 230601, China.
| |
Collapse
|
18
|
Hong E, Hyun H, Lee H, Jung E, Lee D. Acid-sensitive oxidative stress inducing and photoabsorbing polysaccharide nanoparticles for combinational anticancer therapy. Int J Pharm 2020; 574:118893. [DOI: 10.1016/j.ijpharm.2019.118893] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/04/2019] [Accepted: 11/17/2019] [Indexed: 01/29/2023]
|
19
|
Dong H, Pang L, Cong H, Shen Y, Yu B. Application and design of esterase-responsive nanoparticles for cancer therapy. Drug Deliv 2019; 26:416-432. [PMID: 30929527 PMCID: PMC6450553 DOI: 10.1080/10717544.2019.1588424] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 02/22/2019] [Accepted: 02/25/2019] [Indexed: 12/11/2022] Open
Abstract
Nanoparticles have been developed for tumor treatment due to the enhanced permeability and retention effects. However, lack of specific cancer cells selectivity results in low delivery efficiency and undesired side effects. In that case, the stimuli-responsive nanoparticles system designed for the specific structure and physicochemical properties of tumors have attracted more and more attention of researchers. Esterase-responsive nanoparticle system is widely used due to the overexpressed esterase in tumor cells. For a rational designed esterase-responsive nanoparticle, ester bonds and nanoparticle structures are the key characters. In this review, we overviewed the design of esterase-responsive nanoparticles, including ester bonds design and nano-structure design, and analyzed the fitness of each design for different application. In the end, the outlook of esterase-responsive nanoparticle is looking forward.
Collapse
Affiliation(s)
- Haonan Dong
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong, P.R. China
| | - Long Pang
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong, P.R. China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong, P.R. China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, Shandong, P.R. China
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong, P.R. China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong, P.R. China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, Shandong, P.R. China
| |
Collapse
|
20
|
Kim HJ, Min KH, Lee HJ, Hwang YS, Lee SC. Fenton-like reaction performing mineralized nanocarriers as oxidative stress amplifying anticancer agents. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Yoo D, Jung E, Noh J, Hyun H, Seon S, Hong S, Kim D, Lee D. Glutathione-Depleting Pro-Oxidant as a Selective Anticancer Therapeutic Agent. ACS OMEGA 2019; 4:10070-10077. [PMID: 31460099 PMCID: PMC6648603 DOI: 10.1021/acsomega.9b00140] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/28/2019] [Indexed: 05/07/2023]
Abstract
A main challenge in the development of anticancer drugs that eradicate cancer cells specifically with minimal toxicity to normal cells is to identify the cancer-specific properties. Cancer cells sustain a higher level of reactive oxygen species, owing to metabolic and signaling aberrations and unrestrained growth. Cancer cells are also furnished with a powerful reducing environment, owing to the overproduction of antioxidants such as glutathione (GSH). Therefore, the altered redox balance is probably the most prevailing property of cancer cells distinct from normal cells, which could serve as a plausible therapeutic target. In this work, we developed a GSH-depleting pro-oxidant, benzoyloxy dibenzyl carbonate, termed B2C, which is capable of rapidly declining GSH and elevating oxidative stress to a threshold level above which cancer cells cannot survive. B2C was designed to release quinone methide (QM) that rapidly depletes GSH through esterase-mediated hydrolysis. B2C was able to rapidly deplete GSH and induce an overwhelming level of oxidative stress in cancer cells, leading to mitochondrial disruption, activation of procaspase-3 and PARP-1, and cleavage of Bcl-2. In the study of tumor xenograft models, intravenously injected B2C caused apoptotic cell death in tumors and significantly suppressed tumor growth. These findings provide a new insight into the design of more effective anticancer drugs, which exploit altered redox balance in cancer cells.
Collapse
Affiliation(s)
- Donghyuck Yoo
- Department
of BIN Convergence Technology and Department of Polymer Nano Science
and Technology, Chonbuk National University, Backjedaero 567, Jeonju 54896, Republic of Korea
| | - Eunkyeong Jung
- Department
of BIN Convergence Technology and Department of Polymer Nano Science
and Technology, Chonbuk National University, Backjedaero 567, Jeonju 54896, Republic of Korea
| | - Joungyoun Noh
- Department
of BIN Convergence Technology and Department of Polymer Nano Science
and Technology, Chonbuk National University, Backjedaero 567, Jeonju 54896, Republic of Korea
| | - Hyejin Hyun
- Department
of BIN Convergence Technology and Department of Polymer Nano Science
and Technology, Chonbuk National University, Backjedaero 567, Jeonju 54896, Republic of Korea
| | - Semee Seon
- Department
of BIN Convergence Technology and Department of Polymer Nano Science
and Technology, Chonbuk National University, Backjedaero 567, Jeonju 54896, Republic of Korea
| | - Seri Hong
- Department
of BIN Convergence Technology and Department of Polymer Nano Science
and Technology, Chonbuk National University, Backjedaero 567, Jeonju 54896, Republic of Korea
| | - Dongin Kim
- Department
of Pharmaceutical Sciences, Texas A&M
University, College
Station, Texas 77843, United States
| | - Dongwon Lee
- Department
of BIN Convergence Technology and Department of Polymer Nano Science
and Technology, Chonbuk National University, Backjedaero 567, Jeonju 54896, Republic of Korea
- E-mail:
| |
Collapse
|
22
|
Berwin Singh SV, Jung E, Noh J, Yoo D, Kang C, Hyeon H, Kim GW, Khang G, Lee D. Hydrogen peroxide-activatable polymeric prodrug of curcumin for ultrasound imaging and therapy of acute liver failure. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 16:45-55. [DOI: 10.1016/j.nano.2018.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 10/09/2018] [Accepted: 11/07/2018] [Indexed: 01/23/2023]
|
23
|
Noh J, Jung E, Lee J, Hyun H, Hong S, Lee D. Engineered Polymeric Micelles for Combinational Oxidation Anticancer Therapy through Concurrent HO-1 Inhibition and ROS Generation. Biomacromolecules 2019; 20:1109-1117. [DOI: 10.1021/acs.biomac.8b01802] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
24
|
Noh J, Jung E, Yoo D, Kang C, Kim C, Park S, Khang G, Lee D. Dual Imaging-Guided Oxidative-Photothermal Combination Anticancer Therapeutics. ACS APPLIED MATERIALS & INTERFACES 2018; 10:40424-40433. [PMID: 30427657 DOI: 10.1021/acsami.8b14968] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Heme oxygenase-1 (HO-1) is a stress-response protein with potent cytoprotective and antioxidant activity, and its expression in cancer cells is enhanced in response to chemotherapy and radiotherapy. HO-1 is known to serve as a shield to protect cancer cells from anticancer therapy and attenuate apoptotic signals. It can be therefore reasoned that inhibition of HO-1 reduces the antioxidant level, making cancer cells more sensitive to photothermal heating. In this work, we developed dual imaging-guided oxidative-photothermal combination nanotherapeutics (OPCN) consisting of amphiphilic polymers conjugated with zinc protoporphyrin as a HO-1 inhibitor and fluorescent IR820 as a photothermal agent. A combination of OPCN and near-infrared (NIR) laser irradiation markedly increased the temperature and exerted significant toxicity through induction of apoptosis. In a mouse model of xenografts, tumors were identified by the strong fluorescence and photoacoustic signals. OPCN combined with NIR laser irradiation resulted in effective and complete thermal ablation of tumors without discernable side effects and tumor recurrence. We believe that OPCN hold tremendous translational potential for dual imaging-guided oxidative-photothermal combination anticancer therapy.
Collapse
Affiliation(s)
| | | | | | | | - Chunho Kim
- Korea Institute of Radiological & Medical Sciences , Nowonro 75, Nowon-gu, Seoul 01812 , Republic of Korea
| | - Sangjun Park
- Korea Institute of Radiological & Medical Sciences , Nowonro 75, Nowon-gu, Seoul 01812 , Republic of Korea
| | | | | |
Collapse
|
25
|
Xu L, Zhao M, Zhang H, Gao W, Guo Z, Zhang X, Zhang J, Cao J, Pu Y, He B. Cinnamaldehyde-Based Poly(ester-thioacetal) To Generate Reactive Oxygen Species for Fabricating Reactive Oxygen Species-Responsive Nanoparticles. Biomacromolecules 2018; 19:4658-4667. [DOI: 10.1021/acs.biomac.8b01423] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Long Xu
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Mingying Zhao
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Hai Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Wenxia Gao
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Zhaoyuan Guo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Xuequan Zhang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Jianfeng Zhang
- School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Jun Cao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Bin He
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| |
Collapse
|
26
|
Verma G, Chashoo G, Ali A, Khan MF, Akhtar W, Ali I, Akhtar M, Alam MM, Shaquiquzzaman M. Synthesis of pyrazole acrylic acid based oxadiazole and amide derivatives as antimalarial and anticancer agents. Bioorg Chem 2018; 77:106-124. [PMID: 29353728 DOI: 10.1016/j.bioorg.2018.01.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/31/2017] [Accepted: 01/03/2018] [Indexed: 01/03/2023]
Abstract
Depravity of malaria in terms of morbidity and mortality in human beings makes it a major health issue in tropical and subtropical areas of the globe. Drug counterfeiting and non-adherence to the treatment regimen have significantly contributed to development and spread of multidrug resistance that has highlighted the need for development of novel and more efficient antimalarial drugs. Complexity associated with cancer disease and prevalence of diversified cell populations vindicates highly specific treatment options for treatment of cancer. Resistance to these anticancer agents has posed a great hindrance in successful treatment of cancer. Pondering this ongoing situation, it was speculated to develop novel compounds targeting malaria and cancer. Moving on the same aisle, we synthesized pyrazole acrylic acid based oxadiazole and amide derivatives using multi-step reaction pathways (6a-x; 6a'-h'). Schizont maturation inhibition assay was employed to determine antimalarial potential. Compound 6v emerged as the most potent antimalarial agent targeting falcipain-2 enzyme. Anticancer activity was done using sulforhodamine B assay. Compounds 6b' and 6g' demonstrated promising results against all the tested cell lines. Further, Microscopic view clearly indicated formation of apoptotic bodies, chromatin condensation, shrinkage of cells and bleb formation. Validation of the results was achieved using molecular docking studies. From the obtained results, it was observed that cyclization (oxadiazole) favored antimalarial activity while non-cyclized compounds (amides) emerged as better anticancer agents.
Collapse
Affiliation(s)
- Garima Verma
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (Formerly Faculty of Pharmacy), Jamia Hamdard, New Delhi 110062, India
| | - Gousia Chashoo
- Cancer Pharmacology Division, Indian Institute of Integrative Medicine (CSIR), Canal Road, Jammu 180001, India
| | - Asif Ali
- Natural Product Chemistry Division, Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Mohemmed Faraz Khan
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (Formerly Faculty of Pharmacy), Jamia Hamdard, New Delhi 110062, India
| | - Wasim Akhtar
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (Formerly Faculty of Pharmacy), Jamia Hamdard, New Delhi 110062, India
| | - Israr Ali
- Department of Flow Chemistry GP&T, R&D II, Sun Pharmaceutical Industries Ltd., Gurugram, Haryana, India
| | - Mymoona Akhtar
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (Formerly Faculty of Pharmacy), Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Mumtaz Alam
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (Formerly Faculty of Pharmacy), Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Shaquiquzzaman
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (Formerly Faculty of Pharmacy), Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
27
|
Lee S, Stubelius A, Olejniczak J, Jang H, Huu VAN, Almutairi A. Chemical amplification accelerates reactive oxygen species triggered polymeric degradation. Biomater Sci 2018; 6:107-114. [DOI: 10.1039/c7bm00758b] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Chemical amplification strategy is employed to accelerate degradation of ROS-responsive polymeric nanoparticles.
Collapse
Affiliation(s)
- Sangeun Lee
- UCSD Center of Excellence in Nanomedicine and Engineering
- University of California San Diego
- La Jolla
- USA
- Departments of NanoEngineering
| | - Alexandra Stubelius
- UCSD Center of Excellence in Nanomedicine and Engineering
- University of California San Diego
- La Jolla
- USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences
| | - Jason Olejniczak
- UCSD Center of Excellence in Nanomedicine and Engineering
- University of California San Diego
- La Jolla
- USA
| | - Hongje Jang
- III. Institute of Physics
- Georg August University Goettingen
- D-37077 Goettingen
- Germany
| | - Viet Anh Nguyen Huu
- UCSD Center of Excellence in Nanomedicine and Engineering
- University of California San Diego
- La Jolla
- USA
| | - Adah Almutairi
- UCSD Center of Excellence in Nanomedicine and Engineering
- University of California San Diego
- La Jolla
- USA
- Departments of NanoEngineering
| |
Collapse
|
28
|
Yin W, Li J, Ke W, Zha Z, Ge Z. Integrated Nanoparticles To Synergistically Elevate Tumor Oxidative Stress and Suppress Antioxidative Capability for Amplified Oxidation Therapy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:29538-29546. [PMID: 28799751 DOI: 10.1021/acsami.7b08347] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The improved antioxidant system of cancer cells renders them well-adaptive to the intrinsic oxidative stress in tumor tissues. On the other hand, cancer cells are more sensitive to elevated tumor oxidative stress as compared with normal cells due to their deficient reactive oxygen species-eliminating systems. Oxidation therapy of cancers refers to the strategy of killing cancer cells through selectively increasing the oxidative stress in tumor tissues. In this article, to amplify the oxidation therapy, we develop integrated nanoparticles with the properties to elevate tumor oxidative stress and concurrently suppress the antioxidative capability of cancer cells. The amphiphilic block copolymer micelles of poly(ethylene glycol)-b-poly[2-((((4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)oxy)carbonyl)oxy)ethyl methacrylate] (PEG-b-PBEMA) are integrated with palmitoyl ascorbate (PA) to form hybrid micelles (PA-Micelle). PA molecules at pharmacologic concentrations serve as a prooxidant to upregulate the hydrogen peroxide (H2O2) level in tumor sites and the PBEMA segment exhibits H2O2-triggered release of quinone methide for glutathione depletion to suppress the antioxidative capability of cancer cells, which synergistically and selectively kill cancer cells for tumor growth suppression. Given the significantly low side toxicity against normal tissues, this novel integrated nanoparticle design represents a novel class of nanomedicine systems for high-efficiency oxidation therapy with the potentials to be translated to clinical applications.
Collapse
Affiliation(s)
- Wei Yin
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China , Hefei 230026, Anhui, China
- Department of Pharmacology, Xinhua University of Anhui , Hefei 230088, China
| | - Junjie Li
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China , Hefei 230026, Anhui, China
| | - Wendong Ke
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China , Hefei 230026, Anhui, China
| | - Zengshi Zha
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China , Hefei 230026, Anhui, China
| | - Zhishen Ge
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China , Hefei 230026, Anhui, China
| |
Collapse
|