1
|
Hussein MA, ElTaher H, Mahmoud R, Sobh D, Al-Haggar M. Clinical manifestations in Egyptian Pompe disease patients: Molecular variability and enzyme replacement therapy (ERT) outcomes. Ital J Pediatr 2025; 51:13. [PMID: 39849595 PMCID: PMC11756172 DOI: 10.1186/s13052-025-01837-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 01/02/2025] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND Pompe disease is a rare genetic disorder caused by a deficiency of the enzyme acid alpha-glucosidase. This condition leads to muscle weakness, respiratory problems, and heart abnormalities in affected individuals. METHODS The aim of the study is to share our experience through cross sectional study of patients with infantile-onset Pompe disease (IOPD) with different genetic variations, resulting in diverse clinical presentations. We evaluated their phenotype, genotype, radiological and laboratory findings including their cross-reactive immunologic material (CRIM) status. Infantile Pompe disease was diagnosed by measurement of the activity of the enzyme alpha-glucosidase. The diagnosis was confirmed by molecular genetic testing using PCR amplification and sequencing of the acid alpha-glucosidase (GAA) gene. Routine two-D echocardiography, and multi-parametric ECG-gated cardiac magnetic resonance imaging (CMR) were done to patients six months after starting enzyme replacement therapy (ERT). RESULTS The results of our study revealed different genetic mutations among our patients, different CRIM status and also CMR abnormalities. CMR imaging revealed abnormalities in all cases that underwent the procedure, including myocardial and vascular changes, with feature tracking indicating issues across all parameters and LGE suggesting fibrosis. The patient with a positive immune response had the most severe cardiac abnormalities, despite improvements in muscle weakness and motor skills from ERT. This underscores that delayed diagnosis and ERT can lead to irreversible heart damage from autophagy buildup. CONCLUSION Pompe disease has various clinical presentations and results in significant CMR findings, which can be attributed to different genetic mutations. Early initiation of enzyme replacement therapy in infantile-onset Pompe disease is important to maximize its benefits.
Collapse
Affiliation(s)
| | - Heba ElTaher
- Pediatrics Department, Genetics Unit, Mansoura University, Mansoura, Egypt
| | - Ranim Mahmoud
- Pediatrics Department, Genetics Unit, Mansoura University, Mansoura, Egypt
| | - Donia Sobh
- Radiodiagnosis Department, Mansoura University, Mansoura, Egypt
| | - Mohammad Al-Haggar
- Pediatrics Department, Genetics Unit, Mansoura University, Mansoura, Egypt
| |
Collapse
|
2
|
Hu D, Li Y, Li R, Wang M, Zhou K, He C, Wei Q, Qian Z. Recent advances in reactive oxygen species (ROS)-responsive drug delivery systems for photodynamic therapy of cancer. Acta Pharm Sin B 2024; 14:5106-5131. [PMID: 39807318 PMCID: PMC11725102 DOI: 10.1016/j.apsb.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/21/2024] [Accepted: 09/28/2024] [Indexed: 01/16/2025] Open
Abstract
Reactive oxygen species (ROS)-responsive drug delivery systems (DDSs) have garnered significant attention in cancer research because of their potential for precise spatiotemporal drug release tailored to high ROS levels within tumors. Despite the challenges posed by ROS distribution heterogeneity and endogenous supply constraints, this review highlights the strategic alliance of ROS-responsive DDSs with photodynamic therapy (PDT), enabling selective drug delivery and leveraging PDT-induced ROS for enhanced therapeutic efficacy. This review delves into the biological importance of ROS in cancer progression and treatment. We elucidate in detail the operational mechanisms of ROS-responsive linkers, including thioether, thioketal, selenide, diselencide, telluride and aryl boronic acids/esters, as well as the latest developments in ROS-responsive nanomedicines that integrate with PDT strategies. These insights are intended to inspire the design of innovative ROS-responsive nanocarriers for enhanced cancer PDT.
Collapse
Affiliation(s)
- Danrong Hu
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yicong Li
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ran Li
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Meng Wang
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kai Zhou
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chengqi He
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Quan Wei
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiyong Qian
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Ali O, Okumura B, Shintani Y, Sugiura S, Shibata A, Higashi SL, Ikeda M. Oxidation-Responsive Supramolecular Hydrogels Based on Glucosamine Derivatives with an Aryl Sulfide Group. Chembiochem 2024; 25:e202400459. [PMID: 38924281 DOI: 10.1002/cbic.202400459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Supramolecular hydrogels can be obtained via self-assembly of small molecules in aqueous environments. In this study, we describe the development of oxidation-responsive supramolecular hydrogels comprising glucosamine derivatives with an aryl sulfide group. We demonstrate that hydrogen peroxide can induce a gel-sol transition through the oxidation of the sulfide group to the corresponding sulfoxide. Furthermore, we show that this oxidation responsiveness can be extended to photo-responsiveness with the aid of a photosensitizer.
Collapse
Affiliation(s)
- Onaza Ali
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Bioru Okumura
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Yuki Shintani
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Shintaro Sugiura
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Aya Shibata
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Sayuri L Higashi
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- Institute of Advanced Study, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- Institute of Advanced Study, Center for One Medicine Innovative Translational Research (COMIT), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Masato Ikeda
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- Institute of Advanced Study, Center for One Medicine Innovative Translational Research (COMIT), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- Institute for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| |
Collapse
|
4
|
Liu J, You X, Wang L, Zeng J, Huang H, Wu J. ROS-Responsive and Self-Tumor Curing Methionine Polymer Library Based Nanoparticles with Self-Accelerated Drug Release and Hydrophobicity/Hydrophilicity Switching Capability for Enhanced Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401438. [PMID: 38693084 DOI: 10.1002/smll.202401438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/19/2024] [Indexed: 05/03/2024]
Abstract
The applications of amino acid-based polymers are impeded by their limited structure and functions. Herein, a small library of methionine-based polymers (Met-P) with programmed structure and reactive oxygen species (ROS)-responsive properties is developed for tumor therapy. The Met-P can self-assemble into sub-100 nm nanoparticles (NPs) and effectively load anticancer drugs (such as paclitaxel (PTX) (P@Met-P NPs)) via the nanoprecipitation method. The screened NPs with superior stability and high drug loading are further evaluated in vitro and in vivo. When encountering with ROS, the Met-P polymers will be oxidized and then switch from a hydrophobic to a hydrophilic state, triggering the rapid and self-accelerated release of PTX. The in vivo results indicated that the screened P@2Met10 NPs possessed significant anticancer performance and effectively alleviated the side effects of PTX. More interestingly, the blank 2Met10 NPs displayed an obvious self-tumor inhibiting efficacy. Furthermore, the other Met-P NPs (such as 2Met8, 4Met8, and 4Met10) are also found to exhibit varied self-anti-cancer capabilities. Overall, this ROS-responsive Met-P library is a rare anticancer platform with hydrophobic/hydrophilic switching, controlled drug release, and self-anticancer therapy capability.
Collapse
Affiliation(s)
- Jie Liu
- Department of Urology, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, 511518, China
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, 518107, China
| | - Xinru You
- Department of Urology, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, 511518, China
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, 518107, China
| | - Liying Wang
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, 518107, China
| | - Jianwen Zeng
- Department of Urology, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, 511518, China
- Guangdong Engineering Research Center of Urinary Continence and Reproductive Medicine, Qingyuan, Guangdong, 511518, China
| | - Hai Huang
- Department of Urology, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, 511518, China
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Jun Wu
- Department of Urology, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, 511518, China
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, Guangdong, 511400, China
- Division of Life Science, The Hong Kong University of Science and Technology, Hongkong SAR, 999077, China
| |
Collapse
|
5
|
Li Z, He Z, Huang Q, Kan M, Li H. Tuning Regioselectivity in the [3 + 2] Cycloaddition of Alkynyl Sulfonium Salts with Binucleophilic N-Aryl Amidines. Org Lett 2024. [PMID: 38788170 DOI: 10.1021/acs.orglett.4c01534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
A tunable reaction manifold of alkynyl sulfonium salts with binucleophilic N-aryl amidines in the absence of any transition metal catalyst is first reported. This methodology involves sequential addition/cyclization that is perfectly tuned by stepwise addition of K2CO3, affording a plethora of valuable 1,2,4- and 1,2,5-trisubstituted imidazoles in good yields with high regioselectivity. Importantly, trapping and isolation of the reactive intermediate unveiled the reaction mechanism of β-attack on the triple bond in this [3 + 2] cycloaddition reaction.
Collapse
Affiliation(s)
- Zhi Li
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Zhengjun He
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Qiang Huang
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Mei Kan
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Hongji Li
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| |
Collapse
|
6
|
Dean TT, Jelú-Reyes J, Allen AC, Moore TW. Peptide-Drug Conjugates: An Emerging Direction for the Next Generation of Peptide Therapeutics. J Med Chem 2024; 67:1641-1661. [PMID: 38277480 PMCID: PMC10922862 DOI: 10.1021/acs.jmedchem.3c01835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Building on recent advances in peptide science, medicinal chemists have developed a hybrid class of bioconjugates, called peptide-drug conjugates, that demonstrate improved efficacy compared to peptides and small molecules independently. In this Perspective, we discuss how the conjugation of synergistic peptides and small molecules can be used to overcome complex disease states and resistance mechanisms that have eluded contemporary therapies because of their multi-component activity. We highlight how peptide-drug conjugates display a multi-factor therapeutic mechanism similar to that of antibody-drug conjugates but also demonstrate improved therapeutic properties such as less-severe off-target effects and conjugation strategies with greater site-specificity. The many considerations that go into peptide-drug conjugate design and optimization, such as peptide/small-molecule pairing and chemo-selective chemistries, are discussed. We also examine several peptide-drug conjugate series that demonstrate notable activity toward complex disease states such as neurodegenerative disorders and inflammation, as well as viral and bacterial targets with established resistance mechanisms.
Collapse
|
7
|
Lim D, Lee W, Hong J, Gong J, Choi J, Kim J, Lim S, Yoo SH, Lee Y, Lee HS. Versatile Post-synthetic Modifications of Helical β-Peptide Foldamers Derived from a Thioether-Containing Cyclic β-Amino Acid. Angew Chem Int Ed Engl 2023; 62:e202305196. [PMID: 37309575 DOI: 10.1002/anie.202305196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/30/2023] [Accepted: 06/12/2023] [Indexed: 06/14/2023]
Abstract
We introduce a novel cyclic β-amino acid, trans-(3S,4R)-4-aminotetrahydrothiophene-3-carboxylic acid (ATTC), as a versatile building block for designing peptide foldamers with controlled secondary structures. We synthesized and characterized a series of β-peptide hexamers containing ATTC using various techniques, including X-ray crystallography, circular dichroism, and NMR spectroscopy. Our findings reveal that ATTC-containing foldamers can adopt 12-helical conformations similar to their isosteres and offer the possibility of fine-tuning their properties via post-synthetic modifications. In particular, chemoselective conjugation strategies demonstrate that ATTC provides unique post-synthetic modification opportunities, which expand their potential applications across diverse research areas. Collectively, our study highlights the versatility and utility of ATTC as an alternative to previously reported cyclic β-amino acid building blocks in both structural and functional aspects, paving the way for future research in the realm of peptide foldamers and beyond.
Collapse
Affiliation(s)
- Danim Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Center for Multiscale Chiral Architectures (CMCA), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Wonchul Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Center for Multiscale Chiral Architectures (CMCA), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Current address: Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Jungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Center for Multiscale Chiral Architectures (CMCA), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jintaek Gong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Center for Multiscale Chiral Architectures (CMCA), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Current address: Department of Chemistry Education, Sunchon National University, 255 Jungang-ro, Suncheon-si, Jeollanam-do, 57922, Republic of Korea
| | - Jonghoon Choi
- Center for Multiscale Chiral Architectures (CMCA), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Current address: Department of Chemistry Education, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Jaewook Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Center for Multiscale Chiral Architectures (CMCA), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Seolhee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Sung Hyun Yoo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Center for Multiscale Chiral Architectures (CMCA), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yunho Lee
- Center for Multiscale Chiral Architectures (CMCA), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Hee-Seung Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Center for Multiscale Chiral Architectures (CMCA), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
8
|
Zheng Y, Liu Y, Wu Z, Peng C, Wang Z, Yan J, Yan Y, Li Z, Liu C, Xue J, Tan H, Fu Q, Ding M. Photoallosteric Polymersomes toward On-Demand Drug Delivery and Multimodal Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210986. [PMID: 36852633 DOI: 10.1002/adma.202210986] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/16/2023] [Indexed: 06/16/2023]
Abstract
Allosteric transitions can modulate the self-assembly and biological function of proteins. It remains, however, tremendously challenging to design synthetic allosteric polymeric assemblies with spatiotemporally switchable hierarchical structures and functionalities. Here, a photoallosteric polymersome is constructed that undergoes a rapid conformational transition from β-sheet to α-helix upon exposure to near-infrared light irradiation. In addition to improving nanoparticle cell penetration and lysosome escape, photoinduced allosteric behavior reconstructs the vesicular membrane structure, which stimulates the release of hydrophilic cytolytic peptide melittin and hydrophobic kinase inhibitor sorafenib. Combining on-demand delivery of multiple therapeutics with phototherapy results in apoptosis and immunogenic death of tumor cells, remold the immune microenvironment and achieve an excellent synergistic anticancer efficacy in vivo without tumor recurrence and metastasis. Such a light-modulated allosteric transition in non-photosensitive polymers provides new insight into the development of smart nanomaterials for biosensing and drug delivery applications.
Collapse
Affiliation(s)
- Yi Zheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhongchao Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chuan Peng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zuojie Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jingyue Yan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yue Yan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zifen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Congcong Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jianxin Xue
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Hong Tan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Qiang Fu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mingming Ding
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
9
|
Cheng C, Ma J, Zhao J, Lu H, Liu Y, He C, Lu M, Yin X, Li J, Ding M. Redox-dual-sensitive multiblock copolymer vesicles with disulfide-enabled sequential drug delivery. J Mater Chem B 2023; 11:2631-2637. [PMID: 36794489 DOI: 10.1039/d2tb02686d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Based on disulfide-enriched multiblock copolymer vesicles, we present a straightforward sequential drug delivery system with dual-redox response that releases hydrophilic doxorubicin hydrochloride (DOX·HCl) and hydrophobic paclitaxel (PTX) under oxidative and reductive conditions, respectively. When compared to concurrent therapeutic delivery, the spatiotemporal control of drug release allows for an improved combination antitumor effect. The simple and smart nanocarrier has promising applications in the field of cancer therapy.
Collapse
Affiliation(s)
- Cheng Cheng
- Science and Technology Innovation Center, Guangyuan Central Hospital, Guangyuan 628000, China
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jiayun Ma
- Science and Technology Innovation Center, Guangyuan Central Hospital, Guangyuan 628000, China
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jinling Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Haiying Lu
- Science and Technology Innovation Center, Guangyuan Central Hospital, Guangyuan 628000, China
| | - Yang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Chuanshi He
- Department of Ultrasound Medical Center, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Man Lu
- Department of Ultrasound Medical Center, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaohong Yin
- Science and Technology Innovation Center, Guangyuan Central Hospital, Guangyuan 628000, China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Mingming Ding
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
10
|
Griffiths RC, Smith FR, Li D, Wyatt J, Rogers DM, Long JE, Cusin LML, Tighe PJ, Layfield R, Hirst JD, Müller MM, Mitchell NJ. Cysteine-Selective Modification of Peptides and Proteins via Desulfurative C-C Bond Formation. Chemistry 2023; 29:e202202503. [PMID: 36534955 PMCID: PMC10946470 DOI: 10.1002/chem.202202503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
The site-selective modification of peptides and proteins facilitates the preparation of targeted therapeutic agents and tools to interrogate biochemical pathways. Among the numerous bioconjugation techniques developed to install groups of interest, those that generate C(sp3 )-C(sp3 ) bonds are significantly underrepresented despite affording proteolytically stable, biogenic linkages. Herein, a visible-light-mediated reaction is described that enables the site-selective modification of peptides and proteins via desulfurative C(sp3 )-C(sp3 ) bond formation. The reaction is rapid and high yielding in peptide systems, with comparable translation to proteins. Using this chemistry, a range of moieties is installed into model systems and an effective PTM-mimic is successfully integrated into a recombinantly expressed histone.
Collapse
Affiliation(s)
- Rhys C. Griffiths
- School of ChemistryUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | - Frances R. Smith
- School of ChemistryUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | - Diyuan Li
- School of ChemistryUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | - Jasmine Wyatt
- Department of ChemistryKing's College LondonLondonSE1 1DB
| | - David M. Rogers
- School of ChemistryUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | - Jed E. Long
- School of Life SciencesUniversity of Nottingham Medical SchoolNottinghamNG7 2UHUK
| | - Lola M. L. Cusin
- School of Life SciencesUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | - Patrick J. Tighe
- School of Life SciencesUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | - Robert Layfield
- School of Life SciencesUniversity of Nottingham Medical SchoolNottinghamNG7 2UHUK
| | - Jonathan D. Hirst
- School of ChemistryUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
| | | | | |
Collapse
|
11
|
Xing Y, Wang Y, Ma D, Shen S, Song C, Zhang N, Bo T, Shi T, Huo S. N-Halosuccinimides mediated deprotection of cysteine-S protecting groups for one-pot regioselective synthesis of disulfide bonds in peptides under mild aqueous conditions. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
12
|
Zhang MQ, He PY, Hu JJ, Li YM. A rapid and selective methionine oxidative modification strategy. J Pept Sci 2023; 29:e3454. [PMID: 36181422 DOI: 10.1002/psc.3454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/08/2022]
Abstract
Considering the fact that site-selective late-stage diversification of peptides and proteins remains a challenge for biochemistry, strategies targeting low-abundance natural amino acids need to be further developed. As an extremely oxidation-sensitive and low-abundance amino acid, methionine emerges as a promising target for chemo- and site-selective modification. Herein we report an efficient and highly selective modification on methionine residues by one-pot O- and N-transfer reaction, generating sulfoximine-modified peptides with near-perfect conversion within 10 min. Moreover, the great tolerance to other natural amino acids has been demonstrated in reactions with various peptide substrates. To demonstrate the generality of this protocol, we have modified natural peptides and obtained sulfoximination products with high conversion rates. This methodology provides a novel strategy as the expansion of the methionine-based peptide functionalization toolbox.
Collapse
Affiliation(s)
- Meng-Qian Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Pei-Yang He
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Jin-Jian Hu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Yan-Mei Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China.,Beijing Institute for Brain Disorders, Beijing, China.,Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China
| |
Collapse
|
13
|
Fischer NH, Oliveira MT, Diness F. Chemical modification of proteins - challenges and trends at the start of the 2020s. Biomater Sci 2023; 11:719-748. [PMID: 36519403 DOI: 10.1039/d2bm01237e] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ribosomally expressed proteins perform multiple, versatile, and specialized tasks throughout Nature. In modern times, chemically modified proteins, including improved hormones, enzymes, and antibody-drug-conjugates have become available and have found advanced industrial and pharmaceutical applications. Chemical modification of proteins is used to introduce new functionalities, improve stability or drugability. Undertaking chemical reactions with proteins without compromising their native function is still a core challenge as proteins are large conformation dependent multifunctional molecules. Methods for functionalization ideally should be chemo-selective, site-selective, and undertaken under biocompatible conditions in aqueous buffer to prevent denaturation of the protein. Here the present challenges in the field are discussed and methods for modification of the 20 encoded amino acids as well as the N-/C-termini and protein backbone are presented. For each amino acid, common and traditional modification methods are presented first, followed by more recent ones.
Collapse
Affiliation(s)
- Niklas Henrik Fischer
- Department of Science and Environment, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark. .,Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Maria Teresa Oliveira
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Frederik Diness
- Department of Science and Environment, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark. .,Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| |
Collapse
|
14
|
Soodoo N, Bouzidi L, Narine S. Effect of Pendant Sulfide and Sulfonyl Groups on the Thermal, Flow, and Antioxidative Properties of Lipid-Based Aliphatic Monoesters. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Navindra Soodoo
- Trent Centre for Biomaterials Research, Departments of Physics & Astronomy and Chemistry, Trent University, Peterborough, OntarioK9J 7B8, Canada
| | - Laziz Bouzidi
- Trent Centre for Biomaterials Research, Departments of Physics & Astronomy and Chemistry, Trent University, Peterborough, OntarioK9J 7B8, Canada
| | - Suresh Narine
- Trent Centre for Biomaterials Research, Departments of Physics & Astronomy and Chemistry, Trent University, Peterborough, OntarioK9J 7B8, Canada
| |
Collapse
|
15
|
Ding Y, Pedersen SS, Lin A, Qian R, Ball ZT. Direct formation and site-selective elaboration of methionine sulfoximine in polypeptides. Chem Sci 2022; 13:14101-14105. [PMID: 36540816 PMCID: PMC9728511 DOI: 10.1039/d2sc04220g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/13/2022] [Indexed: 08/15/2024] Open
Abstract
Sulfoximines are emerging moieties for medicinal and biological chemistry, due in part to their efficacy in selective inhibition of amide-forming enzymes such as γ-glutamylcysteine synthetase. While small-molecule sulfoximines such as methionine sulfoximine (MSO) and its derivatives are well studied, structures with methionine sulfoximine residues within complex polypeptides have been generally inaccessible. This paper describes a straightforward means of late-stage one-step oxidation of methionine residues within polypeptides to afford NH-sulfoximines. We also present chemoselective subsequent elaboration, most notably by copper(ii)-mediated N-H cross-coupling at methionine sulfoximine residues with arylboronic acid reagents. This development serves as a strategy to incorporate diverse sulfoximine structures within natural polypeptides, and also identifies the methionine sulfoximine residue as a new site for bioorthogonal, chemoselective bioconjugation.
Collapse
Affiliation(s)
- Yuxuan Ding
- Department of Chemistry, Rice University Houston Texas 77005 USA
| | - Simon S Pedersen
- Department of Chemistry, Rice University Houston Texas 77005 USA
- Carbon Dioxide Activation Center (CADIAC), Interdisciplinary Nanoscience Center, Department of Chemistry, Aarhus University Gustav Wieds Vej 14 8000 Aarhus C Denmark
| | - Alex Lin
- Department of Chemistry, Rice University Houston Texas 77005 USA
| | - Ruoyu Qian
- Department of Chemistry, Rice University Houston Texas 77005 USA
| | - Zachary T Ball
- Department of Chemistry, Rice University Houston Texas 77005 USA
| |
Collapse
|
16
|
Oxidation of methionine-derived 2-hydroxyalkanoate unit in biosynthesized polyhydroxyalkanoate copolymers. Int J Biol Macromol 2022; 224:840-847. [DOI: 10.1016/j.ijbiomac.2022.10.170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022]
|
17
|
Wang X, Meng J, Zhao D, Tang S, Sun K. Synthesis and applications of thiosulfonates and selenosulfonates as free-radical reagents. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.08.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Criado-Gonzalez M, Mecerreyes D. Thioether-based ROS responsive polymers for biomedical applications. J Mater Chem B 2022; 10:7206-7221. [PMID: 35611805 DOI: 10.1039/d2tb00615d] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Reactive oxygen species (ROS) play a key role in several biological functions of living organisms such as regulation of cell signalling, production of some hormones, modulation of protein function or mediation of inflammation. In this regard, ROS responsive polymers are ideal candidates for the development of stimuli-responsive biomaterials for target therapies. Among different ROS-responsive polymers, those containing thioether groups are widely investigated in the biomedical field due to their hydrophobic to hydrophilic phase transition under oxidative conditions. This feature makes them able to self-assemble in aqueous solutions forming micellar-type nanoparticles or hydrogels to be mainly used as drug carriers for local therapies in damaged body areas characterized by high ROS production. This review article collects the main findings about the synthesis of thioether-based ROS responsive polymers and polypeptides, their self-assembly properties and ROS responsive behaviour for use as injectable nanoparticles or hydrogels. Afterward, the foremost applications of the thioether-based ROS responsive nanoparticles and hydrogels in the biomedical field, where cancer therapies are a key objective, will be discussed.
Collapse
Affiliation(s)
- Miryam Criado-Gonzalez
- POLYMAT, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain.
| | - David Mecerreyes
- POLYMAT, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain. .,Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
19
|
Li Y, Chang R, Chen YX. Recent advances in post-polymerization modifications on polypeptides: synthesis and applications. Chem Asian J 2022; 17:e202200318. [PMID: 35576055 DOI: 10.1002/asia.202200318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/05/2022] [Indexed: 11/12/2022]
Abstract
Polypeptides, a kind of very promising biomaterial, have shown a wide range of applications due to their excellent biocompatibility, easy accessibility, and structural variability. To synthesize polypeptides with desired functions, post-polymerization modification (PPM) plays an important role in introducing novel chemical structure on their side-chains. The key of PPM strategy is to develop highly selective and efficient reactions that can couple the additional functional moieties with pre-installed side-chain functionalities on polypeptides. In this minireview, classic PPM reactions and especially their recent progresses are summarized, including different modification approaches for unsaturated alkyl group, oxygen-containing functional group, nitrogen-containing functional group, sulfur-containing functional group and other special functional group on side chains. In addition, this review also highlights the applications of structure-diversified polypeptides generated via PPM strategy in the field of biomaterial.
Collapse
Affiliation(s)
- Yue Li
- Tsinghua University Department of Chemistry, Chemistry, CHINA
| | - Rong Chang
- Tsinghua University Department of Chemistry, Chemistry, CHINA
| | - Yong-Xiang Chen
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Haidian District, 100084, China, 100084, Beiing, CHINA
| |
Collapse
|
20
|
Ge C, Zhu J, Wu G, Ye H, Lu H, Yin L. ROS-Responsive Selenopolypeptide Micelles: Preparation, Characterization, and Controlled Drug Release. Biomacromolecules 2022; 23:2647-2654. [PMID: 35549178 DOI: 10.1021/acs.biomac.2c00399] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sulfur-containing polypeptides, capable of reactive oxygen species (ROS)-responsive structural change, are one of the most important building blocks for the construction of polypeptide-based drug delivery systems. However, the relatively low ROS sensitivity of side-chain thioethers limits the biomedical applications of these polypeptides because they usually require a high concentration of ROS beyond the pathological ROS level in the tumor microenvironment. Herein, we report the design and synthesis of a selenium-containing polypeptide, which undergoes random coil-to-extended helix and hydrophobic-to-hydrophilic transitions in the presence of 0.1% H2O2, a concentration that is much lower than the ROS requirement for thioether. ROS-responsive micelles were thus prepared from the amphiphilic copolymer consisting of the hydrophilic poly(ethylene glycol) (PEG) segment and hydrophobic selenopolypeptide segment and were used to encapsulate doxorubicin (DOX). The micelles could be sensitively dissociated inside tumor cells in consequence of ROS-triggered oxidation of side-chain selenoether and structural change of the micelles, thereby efficiently and selectively releasing the encapsulated DOX to kill cancer cells. This work provides an alternative design of ROS-responsive polypeptides with higher sensitivity than that of the existing sulfur-containing polypeptides, which may expand the biomedical applications of polypeptide materials.
Collapse
Affiliation(s)
- Chenglong Ge
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Junliang Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Guangqi Wu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Huan Ye
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Hua Lu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Lichen Yin
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| |
Collapse
|
21
|
Kato T, Lim B, Cheng Y, Pham AT, Maynard J, Moreau D, Poblador-Bahamonde AI, Sakai N, Matile S. Cyclic Thiosulfonates for Thiol-Mediated Uptake: Cascade Exchangers, Transporters, Inhibitors. JACS AU 2022; 2:839-852. [PMID: 35557769 PMCID: PMC9088311 DOI: 10.1021/jacsau.1c00573] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Indexed: 05/16/2023]
Abstract
Thiol-mediated uptake is emerging as a powerful method to penetrate cells. Cyclic oligochalcogenides (COCs) have been identified as privileged scaffolds to enable and inhibit thiol-mediated uptake because they can act as dynamic covalent cascade exchangers, i.e., every exchange produces a new, covalently tethered exchanger. In this study, our focus is on the essentially unexplored COCs of higher oxidation levels. Quantitative characterization of the underlying dynamic covalent exchange cascades reveals that the initial ring opening of cyclic thiosulfonates (CTOs) proceeds at a high speed even at a low pH. The released sulfinates exchange with disulfides in aprotic but much less in protic environments. Hydrophobic domains were thus introduced to direct CTOs into hydrophobic pockets to enhance their reactivity. Equipped with such directing groups, fluorescently labeled CTOs entered the cytosol of living cells more efficiently than the popular asparagusic acid. Added as competitive agents, CTOs inhibit the uptake of various COC transporters and SARS-CoV-2 lentivectors. Orthogonal trends found with different transporters support the existence of multiple cellular partners to account for the diverse expressions of thiol-mediated uptake. Dominant self-inhibition and high activity of dimers imply selective and synergistic exchange in hydrophobic pockets as distinguishing characteristics of thiol-mediated uptake with CTOs. The best CTO dimers with hydrophobic directing groups inhibit the cellular entry of SARS-CoV-2 lentivectors with an IC50 significantly lower than the previous best CTO, below the 10 μM threshold and better than ebselen. Taken together, these results identify CTOs as an intriguing motif for use in cytosolic delivery, as inhibitors of lentivector entry, and for the evolution of dynamic covalent networks in the broadest sense, with reactivity-based selectivity of cascade exchange emerging as a distinguishing characteristic that deserves further attention.
Collapse
|
22
|
Reddy RJ, Kumari AH, Sharadha N, Krishna GR. Solvent-Driven Mono- and Bis-sulfenylation of ( E)-β-Iodovinyl Sulfones with Thiols for Flexible Synthesis of 1,2-Thiosulfonylalkenes and 1,2-Dithioalkenes. J Org Chem 2022; 87:3934-3951. [PMID: 35245070 DOI: 10.1021/acs.joc.1c02444] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The nature of solvent is a key factor for stereoselective mono- and bis-thiolation of (E)-β-iodovinyl sulfones with thiols under basic conditions. A novel and unprecedented vicinal bisthiolation of (E)-β-iodovinyl sulfones with thiols under the influence of K2CO3/DMSO at room temperature for quick assembly of (E)-1,2-dithio-1-alkenes is presented. Solvent-induced stereoselective monosulfenylation of (E)-β-iodovinyl sulfones with thiols has also been established for the synthesis of both (E)- and (Z)-1,2-thiosulfonylethenes in MeCN and MeOH, respectively. Moreover, K2CO3-mediated desulfonylative-sulfenylation of (Z)-1,2-thiosulfonylethenes with thiols in DMSO furnished unsymmetrical (Z)-1,2-dithio-1-alkenes for the first time. The solvent-dependent versatile reactivity of (E)-β-iodovinyl sulfones has been successfully explored to provide a set of (E)-/(Z)-1,2-dithio-1-alkenes and (E)-/(Z)-1,2-thiosulfonyl-1-alkenes in good to high yields with excellent stereoselectivities. Notably, this operationally simple process utilizes a broad substrate scope with good functional group tolerance and compatibility. The efficacy of the process has been proven for gram-scale reactions, and plausible mechanistic models are outlined on the basis of experimental results and control experiments.
Collapse
Affiliation(s)
- Raju Jannapu Reddy
- Department of Chemistry, University College of Science, Osmania University, Hyderabad 500 007, India
| | - Arram Haritha Kumari
- Department of Chemistry, University College of Science, Osmania University, Hyderabad 500 007, India
| | - Nunavath Sharadha
- Department of Chemistry, University College of Science, Osmania University, Hyderabad 500 007, India
| | - Gamidi Rama Krishna
- X-ray Crystallography, CSIR-National Chemical Laboratory, Pune 411 008, India
| |
Collapse
|
23
|
Allouche EMD, Grinhagena E, Waser J. Hypervalent Iodine-Mediated Late-Stage Peptide and Protein Functionalization. Angew Chem Int Ed Engl 2022; 61:e202112287. [PMID: 34674359 PMCID: PMC9299824 DOI: 10.1002/anie.202112287] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Indexed: 12/20/2022]
Abstract
Hypervalent iodine compounds are powerful reagents for the development of novel transformations. As they exhibit low toxicity, high functional group tolerance, and stability in biocompatible media, they have been used for the functionalization of biomolecules. Herein, we report recent advances up to June 2021 in peptide and protein modification using hypervalent iodine reagents. Their use as group transfer or oxidizing reagents is discussed in this Minireview, including methods targeting polar, aromatic, or aliphatic amino acids and peptide termini.
Collapse
Affiliation(s)
- Emmanuelle M. D. Allouche
- Laboratory of Catalysis and Organic SynthesisInstitute of Chemical Sciences and EngineeringEcole Polytechnique Fédérale de Lausanne, EPFL, SB ISIC, LCSO, BCH 14021015LausanneSwitzerland
| | - Elija Grinhagena
- Laboratory of Catalysis and Organic SynthesisInstitute of Chemical Sciences and EngineeringEcole Polytechnique Fédérale de Lausanne, EPFL, SB ISIC, LCSO, BCH 14021015LausanneSwitzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic SynthesisInstitute of Chemical Sciences and EngineeringEcole Polytechnique Fédérale de Lausanne, EPFL, SB ISIC, LCSO, BCH 14021015LausanneSwitzerland
| |
Collapse
|
24
|
Allouche EMD, Grinhagena E, Waser J. Hypervalent Iodine‐Mediated Late‐Stage Peptide and Protein Functionalization. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Emmanuelle M. D. Allouche
- Laboratory of Catalysis and Organic Synthesis Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne, EPFL, SB ISIC, LCSO, BCH 1402 1015 Lausanne Switzerland
| | - Elija Grinhagena
- Laboratory of Catalysis and Organic Synthesis Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne, EPFL, SB ISIC, LCSO, BCH 1402 1015 Lausanne Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne, EPFL, SB ISIC, LCSO, BCH 1402 1015 Lausanne Switzerland
| |
Collapse
|
25
|
Ma D, Sun J, Shen S, Chen H, Xu W, Wang Y, Song C, Shi T, Huo S. Deprotection of S-Acetamidomethyl and 1,3-Thiazolidine-4-Carbonyl Protecting Groups from Cysteine Side Chains in Peptides by trans-[PtX 2(CN) 4] 2-: One-Pot Regioselective Synthesis of Disulfide Bonds. J Org Chem 2022; 87:1470-1476. [PMID: 34985274 DOI: 10.1021/acs.joc.1c02793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, we developed an efficient approach for disulfide bond formation in peptides utilizing the Pt(IV) complex trans-[PtBr2(CN)4]2- to mediate Acm and Thz deprotections. [PtBr2(CN)4]2- can oxidatively deprotect two Acm groups or deprotect one Thz group and one Acm group to directly form an intramolecular disulfide bond in peptides. Several disulfide-containing peptides with excellent yields were achieved via the deprotection method in an aqueous medium under aerobic conditions. Kinetic studies indicated that the dominant path of the reaction is of first-order in both [Pt(IV)] and [peptide]; moreover, the deprotection rate increased dramatically with the addition of NaBr. A mechanism including a bromide-bridge-mediated electron transfer process was proposed. Apamin, α-conotoxin SI, and the parallel homodimer of oxytocin, all containing two disulfide bonds, were synthesized regioselectively through a one-pot method by the combined use of the above deprotection approach with oxidants l-methionine selenoxide and [PtBr2(CN)4]2-. All of the reactions were completed within 30 min to afford good yields for these peptides.
Collapse
Affiliation(s)
- Dongying Ma
- College of Chemistry and Environmental Science, Key Laboratory of Analytical Science and Technology of Hebei Province, and MOE Key Laboratory of Medicinal Chemistry and Molecular Diagnostics, Hebei University, Baoding 071002, Hebei, P. R. China
| | - Jingjing Sun
- College of Chemistry and Environmental Science, Key Laboratory of Analytical Science and Technology of Hebei Province, and MOE Key Laboratory of Medicinal Chemistry and Molecular Diagnostics, Hebei University, Baoding 071002, Hebei, P. R. China
| | - Shigang Shen
- College of Chemistry and Environmental Science, Key Laboratory of Analytical Science and Technology of Hebei Province, and MOE Key Laboratory of Medicinal Chemistry and Molecular Diagnostics, Hebei University, Baoding 071002, Hebei, P. R. China
| | - Hua Chen
- College of Chemistry and Environmental Science, Key Laboratory of Analytical Science and Technology of Hebei Province, and MOE Key Laboratory of Medicinal Chemistry and Molecular Diagnostics, Hebei University, Baoding 071002, Hebei, P. R. China
| | - Wenzhi Xu
- College of Chemistry and Environmental Science, Key Laboratory of Analytical Science and Technology of Hebei Province, and MOE Key Laboratory of Medicinal Chemistry and Molecular Diagnostics, Hebei University, Baoding 071002, Hebei, P. R. China
| | - Yafang Wang
- College of Chemistry and Environmental Science, Key Laboratory of Analytical Science and Technology of Hebei Province, and MOE Key Laboratory of Medicinal Chemistry and Molecular Diagnostics, Hebei University, Baoding 071002, Hebei, P. R. China
| | - Changying Song
- College of Chemistry and Environmental Science, Key Laboratory of Analytical Science and Technology of Hebei Province, and MOE Key Laboratory of Medicinal Chemistry and Molecular Diagnostics, Hebei University, Baoding 071002, Hebei, P. R. China
| | - Tiesheng Shi
- College of Chemistry Chemical Engineering and Material Science, Zaozhuang University, Zaozhuang 277160, Shandong, P. R. China
| | - Shuying Huo
- College of Chemistry and Environmental Science, Key Laboratory of Analytical Science and Technology of Hebei Province, and MOE Key Laboratory of Medicinal Chemistry and Molecular Diagnostics, Hebei University, Baoding 071002, Hebei, P. R. China
| |
Collapse
|
26
|
|
27
|
Reddy RJ, Shankar A, Kumar JJ, Sharadha N, Krishna GR. Diethyl phosphite-mediated switchable synthesis of bis(imidazoheterocycles) derived disulfanes and sulfanes using imidazoheterocycles and octasulfur. NEW J CHEM 2022. [DOI: 10.1039/d1nj05226h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A unique diethyl phosphite-mediated switchable synthesis of bis(imidazoheterocycle)-derived disulfanes and sulfanes using imidazoheterocycles with sulfur is reported. Moreover, imidazo[1,2-a]pyridine-indole derived thioethers were also realized.
Collapse
Affiliation(s)
- Raju Jannapu Reddy
- Department of Chemistry, University College of Science, Osmania University, Hyderabad 500 007, India
| | - Angothu Shankar
- Department of Chemistry, University College of Science, Osmania University, Hyderabad 500 007, India
| | - Jangam Jagadesh Kumar
- Department of Chemistry, University College of Science, Osmania University, Hyderabad 500 007, India
| | - Nunavath Sharadha
- Department of Chemistry, University College of Science, Osmania University, Hyderabad 500 007, India
| | - Gamidi Rama Krishna
- X-ray Crystallography, CSIR-National Chemical Laboratory, Pune 411 008, India
| |
Collapse
|
28
|
Dai M, Belaïdi JP, Fleury G, Garanger E, Rielland M, Schultze X, Lecommandoux S. Elastin-like Polypeptide-Based Bioink: A Promising Alternative for 3D Bioprinting. Biomacromolecules 2021; 22:4956-4966. [PMID: 34751573 DOI: 10.1021/acs.biomac.1c00861] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Three-dimensional (3D) bioprinting offers a great alternative to traditional techniques in tissue reconstruction, based on seeding cells manually into a scaffold, to better reproduce organs' complexity. When a suitable bioink is engineered with appropriate physicochemical properties, such a process can advantageously provide a spatial control of the patterning that improves tissue reconstruction. The design of an adequate bioink must fulfill a long list of criteria including biocompatibility, printability, and stability. In this context, we have developed a bioink containing a precisely controlled recombinant biopolymer, namely, elastin-like polypeptide (ELP). This material was further chemoselectively modified with cross-linkable moieties to provide a 3D network through photopolymerization. ELP chains were additionally either functionalized with a peptide sequence Gly-Arg-Gly-Asp-Ser (GRGDS) or combined with collagen I to enable cell adhesion. Our ELP-based bioinks were found to be printable, while providing excellent mechanical properties such as stiffness and elasticity in their cross-linked form. Besides, they were demonstrated to be biocompatible, showing viability and adhesion of dermal normal human fibroblasts (NHF). Expressions of specific extracellular matrix (ECM) protein markers as pro-collagen I, elastin, fibrillin, and fibronectin were revealed within the 3D network containing cells after only 18 days of culture, showing the great potential of ELP-based bioinks for tissue engineering.
Collapse
Affiliation(s)
- Michèle Dai
- L'Oréal Recherche Avancée, 1 avenue Eugène Schueller, 93600 Aulnay-sous-Bois, France.,Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | - Jean-Philippe Belaïdi
- L'Oréal Recherche Avancée, 1 avenue Eugène Schueller, 93600 Aulnay-sous-Bois, France
| | - Guillaume Fleury
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | - Elisabeth Garanger
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | - Maïté Rielland
- L'Oréal Recherche Avancée, 1 avenue Eugène Schueller, 93600 Aulnay-sous-Bois, France
| | - Xavier Schultze
- L'Oréal Recherche Avancée, 1 avenue Eugène Schueller, 93600 Aulnay-sous-Bois, France
| | | |
Collapse
|
29
|
Scott WA, Gharakhanian EG, Bell AG, Evans D, Barun E, Houk KN, Deming TJ. Active Controlled and Tunable Coacervation Using Side-Chain Functional α-Helical Homopolypeptides. J Am Chem Soc 2021; 143:18196-18203. [PMID: 34669392 DOI: 10.1021/jacs.1c07925] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We report the development of new side-chain amino acid-functionalized α-helical homopolypeptides that reversibly form coacervate phases in aqueous media. The designed multifunctional nature of the side-chains was found to provide a means to actively control coacervation via mild, biomimetic redox chemistry as well as allow response to physiologically relevant environmental changes in pH, temperature, and counterions. These homopolypeptides were found to possess properties that mimic many of those observed in natural coacervate forming intrinsically disordered proteins. Despite ordered α-helical conformations that are thought to disfavor coacervation, molecular dynamics simulations of a polypeptide model revealed a high degree of side-chain conformational disorder and hydration around the ordered backbone, which may explain the ability of these polypeptides to form coacervates. Overall, the modular design, uniform nature, and ordered chain conformations of these polypeptides were found to provide a well-defined platform for deconvolution of molecular elements that influence biopolymer coacervation and tuning of coacervate properties for downstream applications.
Collapse
Affiliation(s)
- Wendell A Scott
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Eric G Gharakhanian
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Alexandra G Bell
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Declan Evans
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Ehab Barun
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Timothy J Deming
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States.,California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
30
|
Sun J, Li M, Lin M, Zhang B, Chen X. High Antibacterial Activity and Selectivity of the Versatile Polysulfoniums that Combat Drug Resistance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104402. [PMID: 34436803 DOI: 10.1002/adma.202104402] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Sulfonium-ion-containing polymers exhibit significant potential benefits for various applications. An efficient strategy to synthesize a type of antibacterial sulfonium-ion-bearing polypeptoids via a combination of ring-opening polymerization and a post-polymerization functionalization with various functional epoxides is presented. A systematic investigation is further performed in order to explore the influence of the overall hydrophobic/hydrophilic balance on the antimicrobial activity and selectivity of the prepared polysulfoniums. Notably, those chlorepoxypropane-modified polysulfoniums with an optimized amphiphilic balance show higher selectivity toward both Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus, than to red blood cells. The polymers also show great efficiency in inhibiting S. aureus biofilm formations, as well as in further eradicating the mature biofilms. Remarkably, negligible antibacterial resistance and cross-resistance to commercial antibiotics is shown in these polymers. The polysulfoniums further show their potent in vivo antimicrobial efficacy in a multidrug-resistant S. aureus infection model that is developed on mouse skin. Similar to the antimicrobial peptides, the polysulfoniums are demonstrated to kill bacteria through membrane disruption. The obtained polypeptoid sulfoniums, with high selectivity and potent antibacterial property, are excellent candidates for antibacterial treatment and open up new possibilities for the preparation of a class of innovative antimicrobials.
Collapse
Affiliation(s)
- Jing Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Min Li
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Min Lin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Bo Zhang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xuesi Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
31
|
Lechner VM, Nappi M, Deneny PJ, Folliet S, Chu JCK, Gaunt MJ. Visible-Light-Mediated Modification and Manipulation of Biomacromolecules. Chem Rev 2021; 122:1752-1829. [PMID: 34546740 DOI: 10.1021/acs.chemrev.1c00357] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chemically modified biomacromolecules-i.e., proteins, nucleic acids, glycans, and lipids-have become crucial tools in chemical biology. They are extensively used not only to elucidate cellular processes but also in industrial applications, particularly in the context of biopharmaceuticals. In order to enable maximum scope for optimization, it is pivotal to have a diverse array of biomacromolecule modification methods at one's disposal. Chemistry has driven many significant advances in this area, and especially recently, numerous novel visible-light-induced photochemical approaches have emerged. In these reactions, light serves as an external source of energy, enabling access to highly reactive intermediates under exceedingly mild conditions and with exquisite spatiotemporal control. While UV-induced transformations on biomacromolecules date back decades, visible light has the unmistakable advantage of being considerably more biocompatible, and a spectrum of visible-light-driven methods is now available, chiefly for proteins and nucleic acids. This review will discuss modifications of native functional groups (FGs), including functionalization, labeling, and cross-linking techniques as well as the utility of oxidative degradation mediated by photochemically generated reactive oxygen species. Furthermore, transformations at non-native, bioorthogonal FGs on biomacromolecules will be addressed, including photoclick chemistry and DNA-encoded library synthesis as well as methods that allow manipulation of the activity of a biomacromolecule.
Collapse
Affiliation(s)
- Vivian M Lechner
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Manuel Nappi
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Patrick J Deneny
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Sarah Folliet
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - John C K Chu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Matthew J Gaunt
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
32
|
Brewster RC, Hulme AN. Halomethyl-Triazoles for Rapid, Site-Selective Protein Modification. Molecules 2021; 26:molecules26185461. [PMID: 34576931 PMCID: PMC8471731 DOI: 10.3390/molecules26185461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
Post-translational modifications (PTMs) are used by organisms to control protein structure and function after protein translation, but their study is complicated and their roles are not often well understood as PTMs are difficult to introduce onto proteins selectively. Designing reagents that are both good mimics of PTMs, but also only modify select amino acid residues in proteins is challenging. Frequently, both a chemical warhead and linker are used, creating a product that is a misrepresentation of the natural modification. We have previously shown that biotin-chloromethyl-triazole is an effective reagent for cysteine modification to give S-Lys derivatives where the triazole is a good mimic of natural lysine acylation. Here, we demonstrate both how the reactivity of the alkylating reagents can be increased and how the range of triazole PTM mimics can be expanded. These new iodomethyl-triazole reagents are able to modify a cysteine residue on a histone protein with excellent selectivity in 30 min to give PTM mimics of acylated lysine side-chains. Studies on the more complicated, folded protein SCP-2L showed promising reactivity, but also suggested the halomethyl-triazoles are potent alkylators of methionine residues.
Collapse
|
33
|
Oh J, Khan A. Main-Chain Polysulfonium Salts: Development of Non-Ammonium Antibacterial Polymers Similar in Their Activity to Antibiotic Drugs Vancomycin and Kanamycin. Biomacromolecules 2021; 22:3534-3542. [PMID: 34251178 DOI: 10.1021/acs.biomac.1c00627] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Typically, quaternary ammonium polymers are employed for antibacterial purposes. However, a century of use has led bacteria to develop resistance to such materials. Therefore, attention is now turning toward other cationic moieties. In this context, the present work explores sulfur-based main-chain cationic polymers. The results indicate that sulfonium polymers with a β-hydroxy motif do not suffer from structural instability issues as is commonly observed in cationic polythioethers. Furthermore, they can be highly effective toward important Gram-positive bacterial strains such as Mycobacterium smegmatis, a model organism to develop drugs against rapidly spreading tuberculosis infections. More importantly, however, more challenging Gram-negative strains such as Escherichia coli can also be targeted by the polysulfoniums with equal effectiveness. Interestingly, side-chain sulfonium polyelectrolytes are observed to be devoid of any significant antibacterial activity. Finally, a comparison with kanamycin and vancomycin suggests the present polymers to be similarly effective as the bactericidal antibiotic drugs. Overall, these results indicate the effectiveness of the main-chain trivalent β-hydroxy sulfonium motif for the development of novel antibacterial polymers with a non-ammonium structure.
Collapse
Affiliation(s)
- Junki Oh
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, South Korea
| | - Anzar Khan
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, South Korea
| |
Collapse
|
34
|
Laurent Q, Martinent R, Lim B, Pham AT, Kato T, López-Andarias J, Sakai N, Matile S. Thiol-Mediated Uptake. JACS AU 2021; 1:710-728. [PMID: 34467328 PMCID: PMC8395643 DOI: 10.1021/jacsau.1c00128] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Indexed: 05/19/2023]
Abstract
This Perspective focuses on thiol-mediated uptake, that is, the entry of substrates into cells enabled by oligochalcogenides or mimics, often disulfides, and inhibited by thiol-reactive agents. A short chronology from the initial observations in 1990 until today is followed by a summary of cell-penetrating poly(disulfide)s (CPDs) and cyclic oligochalcogenides (COCs) as privileged scaffolds in thiol-mediated uptake and inhibitors of thiol-mediated uptake as potential antivirals. In the spirit of a Perspective, the main part brings together topics that possibly could help to explain how thiol-mediated uptake really works. Extreme sulfur chemistry mostly related to COCs and their mimics, cyclic disulfides, thiosulfinates/-onates, diselenolanes, benzopolysulfanes, but also arsenics and Michael acceptors, is viewed in the context of acidity, ring tension, exchange cascades, adaptive networks, exchange affinity columns, molecular walkers, ring-opening polymerizations, and templated polymerizations. Micellar pores (or lipid ion channels) are considered, from cell-penetrating peptides and natural antibiotics to voltage sensors, and a concise gallery of membrane proteins, as possible targets of thiol-mediated uptake, is provided, including CLIC1, a thiol-reactive chloride channel; TMEM16F, a Ca-activated scramblase; EGFR, the epithelial growth factor receptor; and protein-disulfide isomerase, known from HIV entry or the transferrin receptor, a top hit in proteomics and recently identified in the cellular entry of SARS-CoV-2.
Collapse
Affiliation(s)
- Quentin Laurent
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Rémi Martinent
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Bumhee Lim
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Anh-Tuan Pham
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Takehiro Kato
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | | | - Naomi Sakai
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Stefan Matile
- Department of Organic Chemistry, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
35
|
Yao Q, Wu G, Hao H, Lu H, Gao Y. Redox-Mediated Reversible Supramolecular Assemblies Driven by Switch and Interplay of Peptide Secondary Structures. Biomacromolecules 2021; 22:2563-2572. [PMID: 33961410 DOI: 10.1021/acs.biomac.1c00300] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The construction of reversible supramolecular self-assembly in vivo remains a significant challenge. Here, we demonstrate the redox-triggered reversible supramolecular self-assembly governed by the "check and balance" of two secondary conformations within a brushlike peptide-selenopolypeptide conjugate. The conjugate constitutes a polypeptide backbone whose side chain contains selenoether functional moieties and double bonds to be readily grafted with β-sheet-prone short-peptide NapFFC. The backbone of the conjugate initially assumes a robust and rigid α-helical conformation, which inhibits the supramolecular assembly of the short peptide in the side chain and yields an overall irregular aggregate morphology under native/reduced conditions. Upon oxidation of the selenoether to more hydrophilic selenoxide, the backbone helix switches to a flexible and disordered conformation, which unleashes the side-chain NapFFC self-assembly into nanofibrils via the adoption of β-sheet conformation. The reversible switch of the supramolecular morphology enables efficient loading and tumor-microenvironment-triggered release of anticancer drugs for in vivo cancer treatment with satisfactory efficacy and biocompatibility. The interplay and interaction between two well-defined secondary structures within one scaffold offer tremendous opportunity for the design and construction of functional supramolecular biomaterials.
Collapse
Affiliation(s)
- Qingxin Yao
- CAS Center of Excellence for Nanoscience, Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guangqi Wu
- Beijing National Laboratory for Molecular Sciences Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Hao Hao
- CAS Center of Excellence for Nanoscience, Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Hua Lu
- Beijing National Laboratory for Molecular Sciences Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Yuan Gao
- CAS Center of Excellence for Nanoscience, Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety, Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
36
|
Preparation and solution properties of helical sulfonium-based polypeptides and their polyelectrolyte complexes. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Sevrain CM, Fontaine D, Bauduin A, Guéguinou M, Zhang BL, Chantôme A, Mahéo K, Pasqualin C, Maupoil V, Couthon H, Vandier C, Jaffrès PA. Thio-ether functionalized glycolipid amphiphilic compounds reveal a potent activator of SK3 channel with vasorelaxation effect. Org Biomol Chem 2021; 19:2753-2766. [PMID: 33687423 DOI: 10.1039/d1ob00021g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The modulation of SK3 ion channels can be efficiently and selectively achieved by using the amphiphilic compound Ohmline (a glyco-glycero-ether-lipid). We report herein a series of Ohmline analogues featuring the replacement of one ether function by a thioether function located at the same position or shifted close to its initial position. The variation of the lipid chain length and the preparation of two analogues featuring either one sulfoxide or one sulfone moiety complete this series. Patch clamp measurements indicate that the presence of the thioether function (compounds 7 and 17a) produces strong activators of SK3 channels, whereas the introduction of a sulfoxide or a sulfone function at the same place produces amphiphiles devoid of an effect on SK3 channels. Compounds 7 and 17a are the first amphiphilic compounds featuring strong activation of SK3 channels (close to 200% activation). The cytosolic calcium concentration determined from fluorescence at 3 different times for compound 7b (13 min, 1 h, 24 h) revealed that the effect is different suggesting that the compound could be metabolized over time. This compound could be used as a strong SK3 activator for a short time. The capacity of 7b to activate SK3 was then used to induce vasorelaxation via an endothelium-derived hyperpolarization (EDH) pathway. For the first time, we report that an amphiphilic compound can affect the endothelium dependent vasorelaxation.
Collapse
Affiliation(s)
- Charlotte M Sevrain
- Univ. Brest, CNRS, CEMCA UMR 6521, 6 Avenue Victor Le Gorgeu, Brest, F-29238 Brest, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
García-Calvo J, López-Andarias J, Sakai N, Matile S. The primary dipole of flipper probes. Chem Commun (Camb) 2021; 57:3913-3916. [PMID: 33871529 DOI: 10.1039/d1cc00860a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite their growing popularity in biology to image membrane tension, central design principles of flipper probes have never been validated. Here we report that upon deletion of their primary dipole, from electron-poor and electron-rich dithienothiophenes, absorptions blue-shift, lifetimes shorten dramatically, and mechanosensitivity in cells vanishes not partially, but completely.
Collapse
Affiliation(s)
- José García-Calvo
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland.
| | | | - Naomi Sakai
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland.
| | - Stefan Matile
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
39
|
Kordbacheh S, Kasko AM. Peptide and protein engineering by modification of backbone and sidechain functional groups. POLYM INT 2021. [DOI: 10.1002/pi.6208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Shadi Kordbacheh
- Department of Bioengineering University of California Los Angeles CA USA
| | - Andrea M Kasko
- Department of Bioengineering University of California Los Angeles CA USA
- California Nanosystems Institute Los Angeles CA USA
| |
Collapse
|
40
|
Yang H, Zhang L, Li J, Jin Y, Zou J, Huang J, Zhou R, Huang M, Wu C. Cell surface properties and transcriptomic analysis of cross protection provided between heat adaptation and acid stress in Tetragenococcus halophilus. Food Res Int 2021; 140:110005. [PMID: 33648238 DOI: 10.1016/j.foodres.2020.110005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/01/2020] [Accepted: 12/08/2020] [Indexed: 11/16/2022]
Abstract
Cross protection is a widely existed phenomenon in microorganisms which subjected to a mild stress develop tolerance to other stresses, yet the underlying mechanisms for this protection have not been fully elucidated. Here, we report that heat preadaptation induced cross protection against acid stress in Tetragenococcus halophilus, and the cross protective mechanisms were revealed based on cell surface characterizations and transcriptomic analysis. The results showed that heat preadaptation of T. halophilus at 45 °C for 1.5 h improved the acid tolerance of cells at pH 2.5, and the preadapted cells exhibited higher pHi compared with the un-preadapted cells during acid stress. Analysis of the cell surface properties suggested that the heat-treated cells displayed smoother surface, lower roughness and higher integrity than those of untreated cells. Meanwhile, the distributions of membrane fatty acids also changed in response to acid stress, and the treated cells reveled lower ratio of unsaturated to saturated fatty acids. RNA-Sequencing was employed to further elucidate the cross protective mechanism induced by heat preadaptation, and the results showed that the differentially expressed genes (DGEs) were mainly involved in cellular metabolism and membrane transport during heat preadaptation. A detailed analysis of gene expression profile of cells between heat treated and untreated revealed that genes associated with energy metabolism, amino acid metabolism and genetic information processing were induced upon heat stress. Results presented in this study may broaden our understanding on cross protection and provide a potential strategy to enhance the performance of cells during industrial processes.
Collapse
Affiliation(s)
- Huan Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Liang Zhang
- Luzhou Laojiao Group Co., Ltd, Luzhou 646000, China
| | - Jinsong Li
- Luzhou Laojiao Group Co., Ltd, Luzhou 646000, China
| | - Yao Jin
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | | | - Jun Huang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Rongqing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Mingquan Huang
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China.
| | - Chongde Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China; Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
41
|
Liu J, Huang J, Xin P, Liu G, Wu J. Biomedical applications of methionine-based systems. Biomater Sci 2021; 9:1961-1973. [PMID: 33537687 DOI: 10.1039/d0bm02180f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Methionine (Met), an essential amino acid in the human body, possesses versatile features based on its chemical modification, cell metabolism and metabolic derivatives. Benefitting from its multifunctional properties, Met holds immense potential for biomedical applications. In this review, we systematically summarize the recent progress in Met-based strategies for biomedical applications. First, given the unique structural characteristics of Met, two chemical modification methods are briefly introduced. Subsequently, due to the disordered metabolic state of tumor cells, applications of Met in cancer treatment and diagnosis are summarized in detail. Furthermore, the efficacy of S-adenosylmethionine (SAM), as the most important metabolic derivative of Met, for treating liver diseases is mentioned. Finally, we analyze the current challenges and development trends of Met in the biomedical field, and suggest that Met-restriction therapy might be a promising approach to treat COVID-19.
Collapse
Affiliation(s)
- Jie Liu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | | | | | | | | |
Collapse
|
42
|
Chen X, Zhong J, Jiang X, He Z, Quan Y, Zhong S, Li G, Huang Y. Structure and Oxidation Effects on Conformation and Thermoresponsiveness of the OEGylated Poly(glutamic acid)-Bearing Side-Chain Thioether Linkers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:1288-1296. [PMID: 33433225 DOI: 10.1021/acs.langmuir.0c03351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A series of side-chain thioether-linked OEGylated poly(glutamic acid) (PGAs) have been synthesized by "thiol-ene" synthetic methodology, where both the oligo-ethylene glycol (OEG) length and the hydrophobic linkers at the side chains are varied to learn how these structural features affect the secondary structure and thermoresponsive behaviors in water. Before side-chain oxidation, the structural factors affecting the α-helicity include the backbone length, the OEG length, and the hydrophobic linkers' length at the side chains; however, the OEG length plays the most crucial role among these factors because longer OEG around the peripheral side chains can stop water penetration into the backbone to disturb the intramolecular H bonds, which finally allows stabilizing the α-helix; after the oxidation, the polypeptides show increased α-helicity because of the enhanced hydrophilicity. More interestingly, a rare oxidation-induced conformation transition from the ordered β-sheet to the ordered α-helix can be achieved. In addition, only the OEGylated poly(glutamic acids) (PGAs) with shorter hydrophobic linkers and longer OEG can display the thermoresponsive properties before the oxidation but the subsequent oxidation can cause the polypeptides bearing longer hydrophobic linkers to exhibit the thermosensitivity since sulfone formation at the side chain can lead to final hydrophilicity-hydrophobicity balance. This work is meaningful to understand the secondary structure-associated solution behaviors of the synthetic polypeptides.
Collapse
Affiliation(s)
- Xueyuan Chen
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Junyang Zhong
- Key Lab of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Xinlin Jiang
- Key Lab of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Ziqing He
- Key Lab of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Yusi Quan
- Key Lab of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Songjing Zhong
- Key Lab of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| | - Guangji Li
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Yugang Huang
- Key Lab of Molecular Target and Clinical Pharmacology, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, Guangdong, China
| |
Collapse
|
43
|
Jiang Y, Dong S, Qin G, Liu L, Zhao H. Oxidation and ATP dual-responsive block copolymer containing tertiary sulfoniums: self-assembly, protein complexation and triggered release. Polym Chem 2021. [DOI: 10.1039/d0py01622e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Alkylation of thioether-containing block copolymer simultaneously incorporated sulfoniums and phenylboronic acid moieties. The co-assembly of this cationic polymer and protein generated micelles with an H2O2-and ATP-responsive release profile.
Collapse
Affiliation(s)
- Yanfen Jiang
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
| | - Shuqi Dong
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
| | - Guoyang Qin
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
| | - Li Liu
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
| | - Hanying Zhao
- Key Laboratory of Functional Polymer Materials
- Ministry of Education
- Institute of Polymer Chemistry
- College of Chemistry
- Nankai University
| |
Collapse
|
44
|
Single electron transfer-based peptide/protein bioconjugations driven by biocompatible energy input. Commun Chem 2020; 3:171. [PMID: 36703459 PMCID: PMC9814624 DOI: 10.1038/s42004-020-00413-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/13/2020] [Indexed: 01/29/2023] Open
Abstract
Bioconjugation reactions play a central facilitating role in engendering modified peptides and proteins. Early progress in this area was inhibited by challenges such as the limited range of substrates and the relatively poor biocompatibility of bioconjugation reagents. However, the recent developments in visible-light induced photoredox catalysis and electrochemical catalysis reactions have permitted significant novel reactivities to be developed in the field of synthetic and bioconjugation chemistry. This perspective describes recent advances in the use of biocompatible energy input for the modification of peptides and proteins mainly, via the single electron transfer (SET) process, as well as key future developments in this area.
Collapse
|
45
|
Dong S, Jiang Y, Qin G, Liu L, Zhao H. Methionine-Based pH and Oxidation Dual-Responsive Block Copolymer: Synthesis and Fabrication of Protein Nanogels. Biomacromolecules 2020; 21:4063-4075. [PMID: 32914964 DOI: 10.1021/acs.biomac.0c00879] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this paper, we synthesized a block copolymer containing pendent thioether functionalities by reversible addition-fragmentation chain transfer polymerization of a tert-butyloxycarbonyl (Boc)-l-methionine-(2-methacryloylethyl)ester (Boc-METMA) monomer using a poly(ethylene glycol) (PEG)-based chain transfer agent. The deprotection of Boc groups resulted in an oxidation and pH dual-responsive cationic block copolymer PEG-b-P(METMA). The block copolymer PEG-b-P(METMA) possessing protonable amine groups was water-soluble at pH < 6.0 and self-assembled to form spherical micelles at pH > 6.0. In the presence of H2O2, the micelles first became highly swollen with time and completely disassembled at last, demonstrating the H2O2-responsive feature because of the oxidation of hydrophobic thioether to hydrophilic sulfoxide. The anticancer drug curcumin (Cur) was entrapped in the polymeric micelles and the Cur-loaded micelles displayed a H2O2-triggered release profile as well as a pH-dependent release behavior, making PEG-b-P(METMA) micelles promising nanocarriers for reactive oxygen species-responsive drug delivery. Taking advantage of the protonated amine groups, the cationic polyelectrolyte PEG-b-P(METMA) formed polyion complex micelles with glucose oxidase (GOx) through electrostatic interactions at pH 5.8. By cross-linking the cores of PIC micelles with glutaraldehyde, the PIC micelles were fixed to generate stable GOx nanogels under physiological conditions. The GOx nanogels were glucose-responsive and exhibited glucose-dependent H2O2-generation activity in vitro and improved storage and thermal stability of GOx. Cur can be encapsulated in the GOx nanogels, and the Cur-loaded GOx nanogels demonstrate the glucose-responsive release profile. The GOx nanogels displayed high cytotoxicity to 4T1 cells and were effectively internalized by the cells. Therefore, these GOx nanogels have potential applications in the areas of cancer starvation and oxidation therapy.
Collapse
Affiliation(s)
- Shuqi Dong
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yanfen Jiang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Guoyang Qin
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Li Liu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Hanying Zhao
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, P. R. China
| |
Collapse
|
46
|
Geng X, Congdon TR, Anees P, Greschner AA, Vetrone F, Gauthier MA. Surface vs. core N/S/Se-heteroatom doping of carbon nanodots produces divergent yet consistent optical responses to reactive oxygen species. NANOSCALE ADVANCES 2020; 2:4024-4033. [PMID: 36132774 PMCID: PMC9417739 DOI: 10.1039/d0na00439a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/15/2020] [Indexed: 06/13/2023]
Abstract
Carbon nanodots (CNDs) have attracted substantial scientific curiosity because of their intriguing stimuli-responsive optical properties. However, one obstacle to the more widespread use of CNDs as transducers for e.g., biodetection systems is incomplete knowledge regarding the underlying chemical changes responsible for this responsiveness, and how these chemical features can be engineered via the precursors chosen for CND synthesis. This study demonstrates that the precursor's functional groups play a key role in directing N/S/Se heteroatom dopants either towards the surface of the CNDs, towards the aromatic core, or towards small organic fluorophores in the core. Divergent optical properties, which were consistent amongst groups of CNDs prepared with similar precursors, were obtained including either a decrease or increase of fluorescence intensity in the presence of hydrogen peroxide. Moreover, CNDs were identified with orthogonal responsiveness to radical (hydroxyl radicals, ˙OH; down to 2.5 μM) vs. non-radical oxidants (H2O2; down to 50 μM), which suggests that control of the chemistry of CNDs via the choice of precursor could yield probes that are specific to certain sub-species of reactive oxygen species or entirely different molecules altogether, based on the way they chemically-modify the surface (respond faster) and core functional groups (respond slower) associated with chromophores/fluorophores of which the CNDs are composed.
Collapse
Affiliation(s)
- Xu Geng
- Institut National de la Recherche Scientifique (INRS), EMT Research Center 1650 Boul. Lionel-Boulet Varennes J3X 1S2 Canada
- School of Basic Medical Science, Henan University Kaifeng 475004 P. R. China
| | - Thomas R Congdon
- Institut National de la Recherche Scientifique (INRS), EMT Research Center 1650 Boul. Lionel-Boulet Varennes J3X 1S2 Canada
| | - Palapuravan Anees
- Institut National de la Recherche Scientifique (INRS), EMT Research Center 1650 Boul. Lionel-Boulet Varennes J3X 1S2 Canada
| | - Andrea A Greschner
- Institut National de la Recherche Scientifique (INRS), EMT Research Center 1650 Boul. Lionel-Boulet Varennes J3X 1S2 Canada
| | - Fiorenzo Vetrone
- Institut National de la Recherche Scientifique (INRS), EMT Research Center 1650 Boul. Lionel-Boulet Varennes J3X 1S2 Canada
| | - Marc A Gauthier
- Institut National de la Recherche Scientifique (INRS), EMT Research Center 1650 Boul. Lionel-Boulet Varennes J3X 1S2 Canada
| |
Collapse
|
47
|
Selis F, Sandomenico A, Cantile M, Sanna R, Calvanese L, Falcigno L, Dell'Omo P, Esperti A, De Falco S, Focà A, Caporale A, Iaccarino E, Truppo E, Scaramuzza S, Tonon G, Ruvo M. Generation and testing of engineered multimeric Fabs of trastuzumab. Int J Biol Macromol 2020; 164:4516-4531. [PMID: 32941911 DOI: 10.1016/j.ijbiomac.2020.09.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 11/15/2022]
Abstract
Recombinant antibodies fragments in several new formats are routinely investigated and used in diagnostic and therapeutic applications as anti-cancers molecules. New antibody formats are generated to compensate the need for multispecificity and site-specific introduction of fluorescent dyes, cytotoxic payloads or for generating semisynthetic multimeric molecules. Fabs of trastuzumab bearing transglutaminase (MTG) reactive sites were generated by periplasmic expression in E. coli and purified. Multimeric Fabs were generated by either disulfide bridge formation or by using MTG-sensitive peptide linkers. Binding to receptor was assessed by ELISA and SPR methods. Internalization and growth inhibition assays were performed on BT-474 and SKBR3 Her2+ cells. Fabs were successfully produced and dimerized or trimerized using MTG and suitably designed peptide linkers. Site-specific derivatizations with fluorophores were similarly achieved. The monomeric, dimeric and trimeric variants bind the receptor with affinities similar or superior to the full antibody. Fab and Fab2 are rapidly internalized in Her2+ cells and exhibit growth inhibition abilities similar to the full antibody. Altogether, the data show that the recombinant Fabs can be produced in E. coli and converted into multimeric variants by MTG-based bioconjugation. Similar approaches are extendable to the introduction of cytotoxic payloads for the generation of novel Antibody Drug Conjugates.
Collapse
Affiliation(s)
| | | | | | | | - Luisa Calvanese
- Dipartimento di Farmacia and CIRPeB, Università di Napoli Federico II, Napoli, Italy
| | - Lucia Falcigno
- Dipartimento di Farmacia and CIRPeB, Università di Napoli Federico II, Napoli, Italy
| | | | | | - Sandro De Falco
- Istituto di Genetica e Biofisica - CNR, Napoli, Italy; Anbition srl, Napoli, Italy
| | - Annalia Focà
- Istituto di Biostrutture e Bioimmagini - CNR, Napoli, Italy
| | | | | | | | | | | | - Menotti Ruvo
- Istituto di Biostrutture e Bioimmagini - CNR, Napoli, Italy; Anbition srl, Napoli, Italy.
| |
Collapse
|
48
|
Hu B, Lian Z, Zhou Z, Shi L, Yu Z. Reactive Oxygen Species-Responsive Adaptable Self-Assembly of Peptides toward Advanced Biomaterials. ACS APPLIED BIO MATERIALS 2020; 3:5529-5551. [DOI: 10.1021/acsabm.0c00758] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Binbin Hu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University Weijin Road 94, Tianjin 300071, China
| | - Zhengwen Lian
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University Weijin Road 94, Tianjin 300071, China
| | - Zhifei Zhou
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University Weijin Road 94, Tianjin 300071, China
| | - Linqi Shi
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University Weijin Road 94, Tianjin 300071, China
| | - Zhilin Yu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University Weijin Road 94, Tianjin 300071, China
| |
Collapse
|
49
|
Imamura R, Masuko K, Mori H. RAFT
polymerization of tertiary sulfonium zwitterionic monomer in aqueous media for synthesis of protein stabilizing double hydrophilic block copolymers. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ryutaro Imamura
- Graduate School of Organic Materials Science, Yamagata University Yamagata Japan
- NOF CORPORATION Ibaraki Japan
| | - Kazunori Masuko
- Graduate School of Organic Materials Science, Yamagata University Yamagata Japan
| | - Hideharu Mori
- Graduate School of Organic Materials Science, Yamagata University Yamagata Japan
| |
Collapse
|
50
|
Leigh T, Fernandez-Trillo P. Helical polymers for biological and medical applications. Nat Rev Chem 2020; 4:291-310. [PMID: 37127955 DOI: 10.1038/s41570-020-0180-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2020] [Indexed: 12/14/2022]
Abstract
Helices are the most prevalent secondary structure in biomolecules and play vital roles in their activity. Chemists have been fascinated with mimicking this molecular conformation with synthetic materials. Research has now been devoted to the synthesis and characterization of helical materials, and to understand the design principles behind this molecular architecture. In parallel, work has been done to develop synthetic polymers for biological and medical applications. We now have access to materials with controlled size, molecular conformation, multivalency or functionality. As a result, synthetic polymers are being investigated in areas such as drug and gene delivery, tissue engineering, imaging and sensing, or as polymer therapeutics. Here, we provide a critical view of where these two fields, helical polymers and polymers for biological and medical applications, overlap. We have selected relevant polymer families and examples to illustrate the range of applications that can be targeted and the impact of the helical conformation on the performance. For each family of polymers, we briefly describe how they can be prepared, what helical conformations are observed and what parameters control helicity. We close this Review with an outlook of the challenges ahead, including the characterization of helicity through the process and the identification of biocompatibility.
Collapse
|