1
|
Yoshikawa R, Hamada S, Matsuo JI. Strain-promoted azide-alkyne cycloaddition enhanced by secondary interactions. Org Biomol Chem 2025. [PMID: 39821266 DOI: 10.1039/d4ob01752h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Azide-alkyne cycloaddition of cyclooct-2-yn-1-ol and 2-(azidophenyl)boronic acid proceeded rapidly at room temperature with complete regioselectivity to afford a triazole having a boronate ester group. The secondary interaction to form a boronate ion contributed to cycloaddition rate acceleration and the control of regioselectivity. The interaction to form an imine or hemiaminal was also evaluated.
Collapse
Affiliation(s)
- Riko Yoshikawa
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | - Shohei Hamada
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | - Jun-Ichi Matsuo
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| |
Collapse
|
2
|
Fu Y, Zhang X, Wu L, Wu M, James TD, Zhang R. Bioorthogonally activated probes for precise fluorescence imaging. Chem Soc Rev 2025; 54:201-265. [PMID: 39555968 DOI: 10.1039/d3cs00883e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Over the past two decades, bioorthogonal chemistry has undergone a remarkable development, challenging traditional assumptions in biology and medicine. Recent advancements in the design of probes tailored for bioorthogonal applications have met the increasing demand for precise imaging, facilitating the exploration of complex biological systems. These state-of-the-art probes enable highly sensitive, low background, in situ imaging of biological species and events within live organisms, achieving resolutions comparable to the size of the biomolecule under investigation. This review provides a comprehensive examination of various categories of bioorthogonally activated in situ fluorescent labels. It highlights the intricate design and benefits of bioorthogonal chemistry for precise in situ imaging, while also discussing future prospects in this rapidly evolving field.
Collapse
Affiliation(s)
- Youxin Fu
- College of Science, Nanjing Forestry University, Nanjing, 210037, P. R. China
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Xing Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.
- College of Ecology and Environment, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Luling Wu
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK.
| | - Miaomiao Wu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia.
| |
Collapse
|
3
|
Venrooij KR, de Bondt L, Bonger KM. Mutually Orthogonal Bioorthogonal Reactions: Selective Chemistries for Labeling Multiple Biomolecules Simultaneously. Top Curr Chem (Cham) 2024; 382:24. [PMID: 38971884 PMCID: PMC11227474 DOI: 10.1007/s41061-024-00467-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/13/2024] [Indexed: 07/08/2024]
Abstract
Bioorthogonal click chemistry has played a transformative role in many research fields, including chemistry, biology, and medicine. Click reactions are crucial to produce increasingly complex bioconjugates, to visualize and manipulate biomolecules in living systems and for various applications in bioengineering and drug delivery. As biological (model) systems grow more complex, researchers have an increasing need for using multiple orthogonal click reactions simultaneously. In this review, we will introduce the most common bioorthogonal reactions and discuss their orthogonal use on the basis of their mechanism and electronic or steric tuning. We provide an overview of strategies to create reaction orthogonality and show recent examples of mutual orthogonal chemistry used for simultaneous biomolecule labeling. We end by discussing some considerations for the type of chemistry needed for labeling biomolecules in a system of choice.
Collapse
Affiliation(s)
- Kevin R Venrooij
- Chemical Biology Group, Department of Synthetic Organic Chemistry, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Lucienne de Bondt
- Chemical Biology Group, Department of Synthetic Organic Chemistry, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Kimberly M Bonger
- Chemical Biology Group, Department of Synthetic Organic Chemistry, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| |
Collapse
|
4
|
Svatunek D. Computational Organic Chemistry: The Frontier for Understanding and Designing Bioorthogonal Cycloadditions. Top Curr Chem (Cham) 2024; 382:17. [PMID: 38727989 PMCID: PMC11087259 DOI: 10.1007/s41061-024-00461-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/06/2024] [Indexed: 05/13/2024]
Abstract
Computational organic chemistry has become a valuable tool in the field of bioorthogonal chemistry, offering insights and aiding in the progression of this branch of chemistry. In this review, I present an overview of computational work in this field, including an exploration of both the primary computational analysis methods used and their application in the main areas of bioorthogonal chemistry: (3 + 2) and [4 + 2] cycloadditions. In the context of (3 + 2) cycloadditions, detailed studies of electronic effects have informed the evolution of cycloalkyne/1,3-dipole cycloadditions. Through computational techniques, researchers have found ways to adjust the electronic structure via hyperconjugation to enhance reactions without compromising stability. For [4 + 2] cycloadditions, methods such as distortion/interaction analysis and energy decomposition analysis have been beneficial, leading to the development of bioorthogonal reactants with improved reactivity and the creation of orthogonal reaction pairs. To conclude, I touch upon the emerging fields of cheminformatics and machine learning, which promise to play a role in future reaction discovery and optimization.
Collapse
Affiliation(s)
- Dennis Svatunek
- Institute of Applied Synthetic Chemistry, Technische Universität Wien (TU Wien), Getreidemarkt 9, 1060, Vienna, Austria.
| |
Collapse
|
5
|
Zielke FM, Rutjes FPJT. Recent Advances in Bioorthogonal Ligation and Bioconjugation. Top Curr Chem (Cham) 2023; 381:35. [PMID: 37991570 PMCID: PMC10665463 DOI: 10.1007/s41061-023-00445-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/23/2023] [Indexed: 11/23/2023]
Abstract
The desire to create biomolecules modified with functionalities that go beyond nature's toolbox has resulted in the development of biocompatible and selective methodologies and reagents, each with different scope and limitations. In this overview, we highlight recent advances in the field of bioconjugation from 2016 to 2023. First, (metal-mediated) protein functionalization by exploiting the specific reactivity of amino acids will be discussed, followed by novel bioorthogonal reagents for bioconjugation of modified biomolecules.
Collapse
Affiliation(s)
- Florian M Zielke
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Floris P J T Rutjes
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| |
Collapse
|
6
|
Pol M, Gao H, Zhang H, George OJ, Fox JM, Jia X. Dynamic modulation of matrix adhesiveness induces epithelial-to-mesenchymal transition in prostate cancer cells in 3D. Biomaterials 2023; 299:122180. [PMID: 37267701 PMCID: PMC10330660 DOI: 10.1016/j.biomaterials.2023.122180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 04/27/2023] [Accepted: 05/25/2023] [Indexed: 06/04/2023]
Abstract
Synthetic matrices with dynamic presentation of cell guidance cues are needed for the development of physiologically relevant in vitro tumor models. Towards the goal of mimicking prostate cancer progression and metastasis, we engineered a tunable hyaluronic acid-based hydrogel platform with protease degradable and cell adhesive properties employing bioorthogonal tetrazine ligation with strained alkenes. The synthetic matrix was first fabricated via a slow tetrazine-norbornene reaction, then temporally modified via a diffusion-controlled method using trans-cyclooctene, a fierce dienophile that reacts with tetrazine with an unusually fast rate. The encapsulated DU145 prostate cancer single cells spontaneously formed multicellular tumoroids after 7 days of culture. In situ modification of the synthetic matrix via covalent tagging of cell adhesive RGD peptide induced tumoroid decompaction and the development of cellular protrusions. RGD tagging did not compromise the overall cell viability, nor did it induce cell apoptosis. In response to increased matrix adhesiveness, DU145 cells dynamically loosen cell-cell adhesion and strengthen cell-matrix interactions to promote an invasive phenotype. Characterization of the 3D cultures by immunocytochemistry and gene expression analyses demonstrated that cells invaded into the matrix via a mesenchymal like migration, with upregulation of major mesenchymal markers, and down regulation of epithelial markers. The tumoroids formed cortactin positive invadopodia like structures, indicating active matrix remodeling. Overall, the engineered tumor model can be utilized to identify potential molecular targets and test pharmacological inhibitors, thereby accelerating the design of innovative strategies for cancer therapeutics.
Collapse
Affiliation(s)
- Mugdha Pol
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Hanyuan Gao
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA
| | - He Zhang
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA
| | - Olivia J George
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA
| | - Joseph M Fox
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA; Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Xinqiao Jia
- Department of Biological Sciences, University of Delaware, Newark, DE, USA; Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA; Department of Biomedical Engineering, University of Delaware, Newark, DE, USA; Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA.
| |
Collapse
|
7
|
Utilization of sym-tetrazines as guanidine delivery cycloaddition reagents. An experimental and computational study. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Scinto SL, Reagle TR, Fox JM. Affinity Bioorthogonal Chemistry (ABC) Tags for Site-Selective Conjugation, On-Resin Protein-Protein Coupling, and Purification of Protein Conjugates. Angew Chem Int Ed Engl 2022; 61:e202207661. [PMID: 36058881 PMCID: PMC10029600 DOI: 10.1002/anie.202207661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Indexed: 11/12/2022]
Abstract
The site-selective functionalization of proteins has broad application in chemical biology, but can be limited when mixtures result from incomplete conversion or the formation of protein containing side products. It is shown here that when proteins are covalently tagged with pyridyl-tetrazines, the nickel-iminodiacetate (Ni-IDA) resins commonly used for His-tags can be directly used for protein affinity purification. These Affinity Bioorthogonal Chemistry (ABC) tags serve a dual role by enabling affinity-based protein purification while maintaining rapid kinetics in bioorthogonal reactions. ABC-tagging works with a range of site-selective bioconjugation methods with proteins tagged at the C-terminus, N-terminus or at internal positions. ABC-tagged proteins can also be purified from complex mixtures including cell lysate. The combination of site-selective conjugation and clean-up with ABC-tagged proteins also allows for facile on-resin reactions to provide protein-protein conjugates.
Collapse
Affiliation(s)
- Samuel L Scinto
- Department of Chemistry and Biochemistry, University of Delaware, Ammon Pinizzotto Biopharmaceutical Innovation Center, Newark, DE 19713, USA
| | - Tyler R Reagle
- Department of Chemistry and Biochemistry, University of Delaware, Ammon Pinizzotto Biopharmaceutical Innovation Center, Newark, DE 19713, USA
| | - Joseph M Fox
- Department of Chemistry and Biochemistry, University of Delaware, Ammon Pinizzotto Biopharmaceutical Innovation Center, Newark, DE 19713, USA
| |
Collapse
|
9
|
Knittel CH, Devaraj NK. Bioconjugation Strategies for Revealing the Roles of Lipids in Living Cells. Acc Chem Res 2022; 55:3099-3109. [PMID: 36215688 DOI: 10.1021/acs.accounts.2c00511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The structural boundaries of living cells are composed of numerous membrane-forming lipids. Lipids not only are crucial for the cellular compartmentalization but also are involved in cell signaling as well as energy storage. Abnormal lipid levels have been linked to severe human diseases such as cancer, multiple sclerosis, neurodegenerative diseases, as well as lysosomal storage disorders. Given their biological significance, there is immense interest in studying lipids and their effect on cells. However, limiting factors include the low solubility of lipids, their structural complexity, and the challenge of using genetic techniques to directly manipulate lipid structure. Current methods to study lipids rely mostly on lipidomics, which analyzes the composition of lipid extracts using mass spectrometry. Although, these efforts have successfully catalogued and profiled a great number of lipids in cells, many aspects about their exact functional role and subcellular distribution remain enigmatic.In this Account, we outline how our laboratory developed and applied different bioconjugation strategies to study the role of lipids and lipid modifications in cells. Inspired by our ongoing work on developing lipid bioconjugation strategies to generate artificial cell membranes, we developed a ceramide synthesis method in live cells using a salicylaldehyde ester that readily reacts with sphingosine in form of a traceless ceramide ligation. Our study not only confirmed existing knowledge about the association of ceramides with cell death, but also gave interesting new findings about the structure-function relationship of ceramides in apoptosis. Our initial efforts led us to investigate probes that detect endogenous sphingolipids using live cell imaging. We describe the development of a fluorogenic probe that reacts chemoselectively with sphingosine in living cells, enabling the detection of elevated endogenous levels of this biomarker in human disease. Building on our interest in the fluorescence labeling of lipids, we have also explored the use of bioorthogonal reactions to label chemically synthesized lipid probes. We discuss the development of photocaged dihydrotetrazine lipids, where the initiation of the bioorthogonal reaction can be triggered by visible light, allowing for live cell modification of membranes with spatiotemporal control.Finally, proteins are often post-translationally modified by lipids, which have important effects on protein subcellular localization and function. Controlling lipid modifications with small molecule probes could help reveal the function of lipid post-translational modifications and could potentially inspire novel therapeutic strategies. We describe how our previous studies on synthetic membrane formation inspired us to develop an amphiphilic cysteine derivative that depalmitoylates membrane-bound S-acylated proteins in live cells. Ultimately, we applied this amphiphile mediated depalmitoylation (AMD) in studies investigating the palmitoylation of cancer relevant palmitoylated proteins in healthy and diseased cells.
Collapse
Affiliation(s)
- Caroline H Knittel
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Neal K Devaraj
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
10
|
Elucidation of the molecular mechanisms of 1,2,3,5- and 1,2,4,5-tetrazines with strained and electron-rich alkynes. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
11
|
García-Vázquez R, Jørgensen JT, Bratteby KE, Shalgunov V, Hvass L, Herth MM, Kjær A, Battisti UM. Development of 18F-Labeled Bispyridyl Tetrazines for In Vivo Pretargeted PET Imaging. Pharmaceuticals (Basel) 2022; 15:ph15020245. [PMID: 35215356 PMCID: PMC8879724 DOI: 10.3390/ph15020245] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 02/05/2023] Open
Abstract
Pretargeted PET imaging is an emerging and fast-developing method to monitor immuno-oncology strategies. Currently, tetrazine ligation is considered the most promising bioorthogonal reaction for pretargeting in vivo. Recently, we have developed a method to 18F-label ultrareactive tetrazines by copper-mediated fluorinations. However, bispyridyl tetrazines—one of the most promising structures for in vivo pretargeted applications—were inaccessible using this strategy. We believed that our successful efforts to 18F-label H-tetrazines using low basic labeling conditions could also be used to label bispyridyl tetrazines via aliphatic nucleophilic substitution. Here, we report the first direct 18F-labeling of bispyridyl tetrazines, their optimization for in vivo use, as well as their successful application in pretargeted PET imaging. This strategy resulted in the design of [18F]45, which could be labeled in a satisfactorily radiochemical yield (RCY = 16%), molar activity (Am = 57 GBq/µmol), and high radiochemical purity (RCP > 98%). The [18F]45 displayed a target-to-background ratio comparable to previously successfully applied tracers for pretargeted imaging. This study showed that bispyridyl tetrazines can be developed into pretargeted imaging agents. These structures allow an easy chemical modification of 18F-labeled tetrazines, paving the road toward highly functionalized pretargeting tools. Moreover, bispyridyl tetrazines led to near-instant drug release of iTCO-tetrazine-based ‘click-to-release’ reactions. Consequently, 18F-labeled bispyridyl tetrazines bear the possibility to quantify such release in vivo in the future.
Collapse
Affiliation(s)
- Rocío García-Vázquez
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; (R.G.-V.); (K.E.B.); (V.S.)
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Jesper Tranekjær Jørgensen
- Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2100 Copenhagen, Denmark; (J.T.J.); (L.H.)
| | - Klas Erik Bratteby
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; (R.G.-V.); (K.E.B.); (V.S.)
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
- Department of Radiation Physics, Skåne University Hospital, Barngatan 3, 22242 Lund, Sweden
| | - Vladimir Shalgunov
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; (R.G.-V.); (K.E.B.); (V.S.)
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Lars Hvass
- Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2100 Copenhagen, Denmark; (J.T.J.); (L.H.)
| | - Matthias M. Herth
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; (R.G.-V.); (K.E.B.); (V.S.)
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
- Correspondence: (M.M.H.); (A.K.); (U.M.B.)
| | - Andreas Kjær
- Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2100 Copenhagen, Denmark; (J.T.J.); (L.H.)
- Correspondence: (M.M.H.); (A.K.); (U.M.B.)
| | - Umberto Maria Battisti
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; (R.G.-V.); (K.E.B.); (V.S.)
- Correspondence: (M.M.H.); (A.K.); (U.M.B.)
| |
Collapse
|
12
|
Hamsath A, Lederberg OL, Cui Q, Shieh M, Lam Y, Brummett BJ, Xu S, Robinson JR, Xian M. Intramolecular tetrazine-acryloyl cycloaddition: chemistry and applications. Chem Sci 2022; 13:10336-10341. [PMID: 36277625 PMCID: PMC9473534 DOI: 10.1039/d2sc04331a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022] Open
Abstract
An unprecedented intramolecular [4 + 2] tetrazine-olefin cycloaddition with α,β-unsaturated substrates was discovered. The reaction produces unique coumarin-dihydropyridazine heterocycles that exhibited strong fluorescence with large Stokes shifts and excellent photo- and pH-stability. This property can be used for reaction analysis. The rate of cycloaddition was found to be solvent dependent and was determined using experimental data with a kinetic modeling software (COPASI) as well as DFT calculations (k1 = 0.64 ± 0.019 s−1 and 4.1 s−1, respectively). The effects of steric and electronic properties of both the tetrazine and α,β-unsaturated carbonyl on the reaction were studied and followed the known trends characteristic of the intermolecular reaction. Based on these results, we developed a “release-then-click” strategy for the ROS triggered release of methylselenenic acid (MeSeOH) and a fluorescent tracer. This strategy was demonstrated in HeLa cells via fluorescence imaging. Tetrazines rapidly react with tethered acrylates/acrylamides to produce fused coumarin derivatives. This template can be used in prodrug designs by depleting toxic α,β-unsaturated byproducts while also producing an imaging agent.![]()
Collapse
Affiliation(s)
- Akil Hamsath
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Oren L. Lederberg
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Qi Cui
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Meg Shieh
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Yannie Lam
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Brock J. Brummett
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Shi Xu
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Jerome R. Robinson
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Ming Xian
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
13
|
Abstract
Bioorthogonal chemistry is a set of methods using the chemistry of non-native functional groups to explore and understand biology in living organisms. In this review, we summarize the most common reactions used in bioorthogonal methods, their relative advantages and disadvantages, and their frequency of occurrence in the published literature. We also briefly discuss some of the less common but potentially useful methods. We then analyze the bioorthogonal-related publications in the CAS Content Collection to determine how often different types of biomolecules such as proteins, carbohydrates, glycans, and lipids have been studied using bioorthogonal chemistry. The most prevalent biological and chemical methods for attaching bioorthogonal functional groups to these biomolecules are elaborated. We also analyze the publication volume related to different types of bioorthogonal applications in the CAS Content Collection. The use of bioorthogonal chemistry for imaging, identifying, and characterizing biomolecules and for delivering drugs to treat disease is discussed at length. Bioorthogonal chemistry for the surface attachment of proteins and in the use of modified carbohydrates is briefly noted. Finally, we summarize the state of the art in bioorthogonal chemistry and its current limitations and promise for its future productive use in chemistry and biology.
Collapse
Affiliation(s)
- Robert E Bird
- CAS, a division of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Steven A Lemmel
- CAS, a division of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Xiang Yu
- CAS, a division of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Qiongqiong Angela Zhou
- CAS, a division of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| |
Collapse
|
14
|
Ketkaew R, Creazzo F, Luber S. Closer Look at Inverse Electron Demand Diels–Alder and Nucleophilic Addition Reactions on s-Tetrazines Using Enhanced Sampling Methods. Top Catal 2021; 65:1-17. [PMID: 35153451 PMCID: PMC8816378 DOI: 10.1007/s11244-021-01516-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2021] [Indexed: 12/30/2022]
Abstract
Inverse electron demand [4+2] Diels–Alder (iEDDA) reactions as well as unprecedented nucleophilic (azaphilic) additions of R-substituted silyl-enol ethers (where R is Phenyl, Methyl, and Hydrogen) to 1,2,4,5-tetrazine (s-tetrazine) catalyzed by \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {BF}_{3}$$\end{document}BF3 have recently been discovered (Simon et al. in Org Lett 23(7):2426–2430, 2021), where static calculations were employed for calculation of activation energies. In order to have a more realistic dynamic description of these reactions in explicit solution at ambient conditions, in this work we use a semiempirical tight-binding method combined with enhanced sampling techniques to calculate free energy surfaces (FESs) of the iEDDA and azaphilic addition reactions. Relevant products of not only s-tetrazine but also its derivatives such as \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {BF}_{3}$$\end{document}BF3-mediated s-tetrazine adducts are investigated. We reconstruct the FESs of the iEDDA and azaphilic addition reactions using metadynamics and blue moon ensemble, and compare the ability of different collective variables (CVs) including bond distances, Social PeRmutation INvarianT (SPRINT) coordinates, and path-CV to describe the reaction pathway. We find that when a bulky Phenyl is used as a substituent at the dienophile the azaphilic addition is preferred over the iEDDA reaction. In addition, we also investigate the effect of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {BF}_{3}$$\end{document}BF3 in the diene and steric hindrance in the dienophile on the competition between the iEDDA and azaphilic addition reactions, providing chemical insight for reaction design.
Collapse
Affiliation(s)
- Rangsiman Ketkaew
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Fabrizio Creazzo
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Sandra Luber
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
15
|
Turlik A, Houk KN, Svatunek D. Origin of Increased Reactivity in Rhenium-Mediated Cycloadditions of Tetrazines. J Org Chem 2021; 86:13129-13133. [PMID: 34468143 PMCID: PMC8453624 DOI: 10.1021/acs.joc.1c01564] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pyridyl tetrazines coordinated to metals like rhenium have been shown to be more reactive in [4 + 2] cycloadditions than their uncomplexed counterparts. Using density functional theory calculations, we found a more favorable interaction energy caused by stronger orbital interactions as the origin of this increased reactivity. Additionally, the high regioselectivity is due to a greater degree of charge stabilization in the transition state, leading to the major product.
Collapse
Affiliation(s)
- Aneta Turlik
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Dennis Svatunek
- Institute of Applied Synthetic Chemistry, TU Wien, 1060 Vienna, Austria
| |
Collapse
|
16
|
Zawada Z, Guo Z, Oliveira BL, Navo CD, Li H, Cal PMSD, Corzana F, Jiménez-Osés G, Bernardes GJL. Arylethynyltrifluoroborate Dienophiles for on Demand Activation of IEDDA Reactions. Bioconjug Chem 2021; 32:1812-1822. [PMID: 34264651 PMCID: PMC8806140 DOI: 10.1021/acs.bioconjchem.1c00276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Strained
alkenes and alkynes are the predominant dienophiles used
in inverse electron demand Diels–Alder (IEDDA) reactions. However,
their instability, cross-reactivity, and accessibility are problematic.
Unstrained dienophiles, although physiologically stable and synthetically
accessible, react with tetrazines significantly slower relative to
strained variants. Here we report the development of potassium arylethynyltrifluoroborates
as unstrained dienophiles for fast, chemically triggered IEDDA reactions.
By varying the substituents on the tetrazine (e.g., pyridyl- to benzyl-substituents),
cycloaddition kinetics can vary from fast (k2 = 21 M–1 s–1) to no reaction
with an alkyne-BF3 dienophile. The reported system was
applied to protein labeling both in the test tube and fixed cells
and even enabled mutually orthogonal labeling of two distinct proteins.
Collapse
Affiliation(s)
- Zbigniew Zawada
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
| | - Zijian Guo
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
| | - Bruno L Oliveira
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Claudio D Navo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technological Park, Building 801A, 48160 Derio-Bizkaia, Spain
| | - He Li
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom
| | - Pedro M S D Cal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Francisco Corzana
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, 26006 Logroño, Spain
| | - Gonzalo Jiménez-Osés
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technological Park, Building 801A, 48160 Derio-Bizkaia, Spain.,lkerbasque, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Gonçalo J L Bernardes
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, United Kingdom.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| |
Collapse
|
17
|
|
18
|
Deb T, Tu J, Franzini RM. Mechanisms and Substituent Effects of Metal-Free Bioorthogonal Reactions. Chem Rev 2021; 121:6850-6914. [DOI: 10.1021/acs.chemrev.0c01013] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Titas Deb
- Department of Medicinal Chemistry, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112, United States
| | - Julian Tu
- Department of Medicinal Chemistry, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112, United States
| | - Raphael M. Franzini
- Department of Medicinal Chemistry, University of Utah, 30 S 2000 E, Salt Lake City, Utah 84112, United States
| |
Collapse
|
19
|
Wang Y, Zhang C, Wu H, Feng P. Activation and Delivery of Tetrazine-Responsive Bioorthogonal Prodrugs. Molecules 2020; 25:E5640. [PMID: 33266075 PMCID: PMC7731009 DOI: 10.3390/molecules25235640] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/18/2020] [Accepted: 11/26/2020] [Indexed: 02/05/2023] Open
Abstract
Prodrugs, which remain inert until they are activated under appropriate conditions at the target site, have emerged as an attractive alternative to drugs that lack selectivity and show off-target effects. Prodrugs have traditionally been activated by enzymes, pH or other trigger factors associated with the disease. In recent years, bioorthogonal chemistry has allowed the creation of prodrugs that can be chemically activated with spatio-temporal precision. In particular, tetrazine-responsive bioorthogonal reactions can rapidly activate prodrugs with excellent biocompatibility. This review summarized the recent development of tetrazine bioorthogonal cleavage reaction and great promise for prodrug systems.
Collapse
Affiliation(s)
- Yayue Wang
- Huaxi MR Research Center, Department of Nuclear Medicine, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.W.); (C.Z.)
| | - Chang Zhang
- Huaxi MR Research Center, Department of Nuclear Medicine, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.W.); (C.Z.)
| | - Haoxing Wu
- Huaxi MR Research Center, Department of Nuclear Medicine, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.W.); (C.Z.)
| | - Ping Feng
- Institute of Clinical Trials, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
20
|
Macias‐Contreras M, Zhu L. The Collective Power of Genetically Encoded Protein/Peptide Tags and Bioorthogonal Chemistry in Biological Fluorescence Imaging. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Miguel Macias‐Contreras
- Department of Chemistry and Biochemistry Florida State University 95 Chieftan Way Tallahassee FL 32306-4390 USA
| | - Lei Zhu
- Department of Chemistry and Biochemistry Florida State University 95 Chieftan Way Tallahassee FL 32306-4390 USA
| |
Collapse
|
21
|
Smeenk MLWJ, Agramunt J, Bonger KM. Recent developments in bioorthogonal chemistry and the orthogonality within. Curr Opin Chem Biol 2020; 60:79-88. [PMID: 33152604 DOI: 10.1016/j.cbpa.2020.09.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 02/09/2023]
Abstract
The emergence of bioorthogonal reactions has greatly advanced research in the fields of biology and medicine. They are not only valuable for labeling, tracking, and understanding biomolecules within living organisms, but also important for constructing advanced bioengineering and drug delivery systems. As the systems studied are increasingly complex, the simultaneous use of multiple bioorthogonal reactions is equally desirable. In this review, we take a look at the different bioorthogonal reactions that have recently been developed, the methods of cellular incorporation and the strategies to create orthogonality within the bioorthogonal landscape.
Collapse
Affiliation(s)
- Mike L W J Smeenk
- Department of Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| | - Jordi Agramunt
- Department of Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| | - Kimberly M Bonger
- Department of Synthetic Organic Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands.
| |
Collapse
|
22
|
Nguyen SS, Prescher JA. Developing bioorthogonal probes to span a spectrum of reactivities. Nat Rev Chem 2020; 4:476-489. [PMID: 34291176 DOI: 10.1038/s41570-020-0205-0] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bioorthogonal chemistries enable researchers to interrogate biomolecules in living systems. These reactions are highly selective and biocompatible and can be performed in many complex environments. However, like any organic transformation, there is no perfect bioorthogonal reaction. Choosing the "best fit" for a desired application is critical. Correspondingly, there must be a variety of chemistries-spanning a spectrum of rates and other features-to choose from. Over the past few years, significant strides have been made towards not only expanding the number of bioorthogonal chemistries, but also fine-tuning existing reactions for particular applications. In this Review, we highlight recent advances in bioorthogonal reaction development, focusing on how physical organic chemistry principles have guided probe design. The continued expansion of this toolset will provide more precisely tuned reagents for manipulating bonds in distinct environments.
Collapse
Affiliation(s)
- Sean S Nguyen
- Departments of Chemistry, University of California, Irvine, California 92697, United States
| | - Jennifer A Prescher
- Departments of Chemistry, University of California, Irvine, California 92697, United States.,Molecular Biology & Biochemistry, University of California, Irvine, California 92697, United States.,Pharmaceutical Sciences, University of California, Irvine, California 92697, United States
| |
Collapse
|
23
|
Rijpkema S, Langens SGHA, van der Kolk MR, Gavriel K, Toebes BJ, Wilson DA. Modular Approach to the Functionalization of Polymersomes. Biomacromolecules 2020; 21:1853-1864. [PMID: 32032491 PMCID: PMC7218747 DOI: 10.1021/acs.biomac.9b01734] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/06/2020] [Indexed: 01/17/2023]
Abstract
Functionalizing polymersomes remains a challenge due to the limitation in reaction conditions applicable to the chemistry on the surface, hindering their application for selective targeting. In order to overcome this limitation, functionalization can be introduced right before the self-assembly. Here, we have synthesized a library (32 examples) of PEG-b-PS and PEG-b-PDLLA with various functional groups derived from the amine-functionalized polymers, leading to functionally active polymersomes. We show that polymersome formation is possible via the general method with all functionalized groups and that these handles are present on the surface and are able to undergo reactions. Additionally, this methodology provides a general synthetic tool to tailor the functional group of the polymersome right before self-assembly, without limitation on the reaction conditions.
Collapse
Affiliation(s)
- Sjoerd
J. Rijpkema
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Sabine G. H. A. Langens
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Marnix R. van der Kolk
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Katerina Gavriel
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - B. Jelle Toebes
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Daniela A. Wilson
- Institute for Molecules and
Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
24
|
Feng H, Zhang H, Wang M, Vannam R, Wang H, Yan X, Ouyang W, Jia X, Fox JM, Li Z. Improving Tumor-to-Background Contrast through Hydrophilic Tetrazines: The Construction of 18 F-Labeled PET Agents Targeting Nonsmall Cell Lung Carcinoma. Chemistry 2020; 26:4690-4694. [PMID: 32030822 DOI: 10.1002/chem.202000028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/04/2020] [Indexed: 02/04/2023]
Abstract
Bioorthogonal reactions have been widely used in the biomedical field. 18 F-TCO/Tetrazine ligation is the most reactive radiolabelled inverse electron demand Diels-Alder reaction, but its application had been limited due to modest contrast ratios of the resulting conjugates. Herein, we describe the use of hydrophilic tetrazines to improve tumor-to-background contrast of neurotensin receptor targeted PET agents. PET agents were constructed using a rapid Diels-Alder reaction of the radiolabeled trans-cyclooctene (18 F-sTCO) with neurotensin (NT) conjugates of a 3,6-diaryltetrazine, 3-methyl-6-aryltetrazine, and a derivative of 3,6-di(2-hydroxyethyl)tetrazine. Although cell binding assays demonstrated all agents have comparable binding affinity, the conjugate derived from 3,6-di(2-hydroxyethyl)tetrazine demonstrated the highest tumor to muscle contrast, followed by conjugates of the 3-methyl-6-aryltetrazine and 3,6-diaryltetrazine.
Collapse
Affiliation(s)
- Huijuan Feng
- Department of Nuclear Medicine, ZhuJiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510280, P. R. China.,Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - He Zhang
- Department of Material Science and Engineering, University of Delaware, Newark, Delaware, 19716, USA
| | - Mengzhe Wang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Raghu Vannam
- Brown Laboratories, Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, 19716, USA
| | - Hui Wang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Xuefeng Yan
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| | - Wei Ouyang
- Department of Nuclear Medicine, ZhuJiang Hospital of Southern Medical University, Guangzhou, Guangdong, 510280, P. R. China
| | - Xinqiao Jia
- Department of Material Science and Engineering, University of Delaware, Newark, Delaware, 19716, USA
| | - Joseph M Fox
- Brown Laboratories, Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, 19716, USA
| | - Zibo Li
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, USA
| |
Collapse
|
25
|
Maruani A, Szijj PA, Bahou C, Nogueira JCF, Caddick S, Baker JR, Chudasama V. A Plug-and-Play Approach for the De Novo Generation of Dually Functionalized Bispecifics. Bioconjug Chem 2020; 31:520-529. [DOI: 10.1021/acs.bioconjchem.0c00002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Antoine Maruani
- Department of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ, London, United Kingdom
| | - Peter A. Szijj
- Department of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ, London, United Kingdom
| | - Calise Bahou
- Department of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ, London, United Kingdom
| | - João C. F. Nogueira
- Department of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ, London, United Kingdom
| | - Stephen Caddick
- Department of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ, London, United Kingdom
| | - James R. Baker
- Department of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ, London, United Kingdom
| | - Vijay Chudasama
- Department of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ, London, United Kingdom
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| |
Collapse
|
26
|
Meinecke J, Koert U. Copper-Free Click Reaction Sequence: A Chemoselective Layer-by-Layer Approach. Org Lett 2019; 21:7609-7612. [DOI: 10.1021/acs.orglett.9b02891] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jannick Meinecke
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, D-35032 Marburg, Germany
| | - Ulrich Koert
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, D-35032 Marburg, Germany
| |
Collapse
|
27
|
Li X, Duan R, Wang Y, Qu LB, Li Z, Wei D. Insights into N-Heterocyclic Carbene-Catalyzed Oxidative α-C(sp 3)-H Activation of Aliphatic Aldehydes and Cascade [2 + 2] Cycloaddition with Ketimines. J Org Chem 2019; 84:6117-6125. [PMID: 31012584 DOI: 10.1021/acs.joc.9b00295] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Predicting the chemoselectivity of [2 + 2] cyclizations is an important challenge in organic chemistry. Herein, we provided a valuable case for this issue. Density functional theory calculations were performed to systematically study the possible mechanisms and origin of selectivities for the N-heterocyclic carbene (NHC)-catalyzed oxidative α-C(sp3)-H activation of aliphatic aldehydes and the cascade [2 + 2] cycloaddition with ketimines. The [2 + 2] cycloaddition of azolium enolate intermediates to the C═N bond, rather than the C═O bond of ketimine, is revealed to be determined by chemo- and stereoselectivity. By comparing the energy gap between the frontier molecular orbitals (FMOs) of the two reacting parts involved in the [2 + 2] cycloaddition transition states, we propose a new strategy to determine the origin of the reaction chemoselectivity. Moreover, the local nucleophilic index can efficiently predict the active site of ketimines. Further analyses illustrate that NHC can increase the nucleophilicity of aldehydes and the acidity of the α-C(sp3)-H bond, and 3,3',5,5'-tetra- tert-butyl diphenoquinone (DQ) acts as an oxidant and promotes α-C(sp3)-H bond deprotonation. This work is useful not only for understanding the NHC-catalyzed oxidative [2 + 2] annulation but also for developing new applications of the FMO theory in organocatalytic cyclizations.
Collapse
Affiliation(s)
- Xue Li
- The College of Chemistry and Molecular Engineering , Zhengzhou University , 100 Science Avenue , Zhengzhou , Henan 450001 , P. R. China
| | - Ruihong Duan
- The College of Chemistry and Molecular Engineering , Zhengzhou University , 100 Science Avenue , Zhengzhou , Henan 450001 , P. R. China
| | - Yanyan Wang
- The College of Chemistry and Molecular Engineering , Zhengzhou University , 100 Science Avenue , Zhengzhou , Henan 450001 , P. R. China
| | - Ling-Bo Qu
- The College of Chemistry and Molecular Engineering , Zhengzhou University , 100 Science Avenue , Zhengzhou , Henan 450001 , P. R. China
| | - Zhongjun Li
- The College of Chemistry and Molecular Engineering , Zhengzhou University , 100 Science Avenue , Zhengzhou , Henan 450001 , P. R. China
| | - Donghui Wei
- The College of Chemistry and Molecular Engineering , Zhengzhou University , 100 Science Avenue , Zhengzhou , Henan 450001 , P. R. China
| |
Collapse
|
28
|
Baalmann M, Ziegler MJ, Werther P, Wilhelm J, Wombacher R. Enzymatic and Site-Specific Ligation of Minimal-Size Tetrazines and Triazines to Proteins for Bioconjugation and Live-Cell Imaging. Bioconjug Chem 2019; 30:1405-1414. [PMID: 30883100 DOI: 10.1021/acs.bioconjchem.9b00157] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Diels-Alder reactions with inverse electron demand (DAinv) have emerged as an indispensable tool for bioorthogonal labeling and the manipulation of biomolecules. In this context, reactions between tetrazines and strained dienophiles have received attention because of high reaction rates. Current methods for the DAinv-mediated functionalization of proteins suffer from slow reactivity, impaired stability, isomerization, or elimination of the incorporated strained dienophiles. We report here a versatile platform for the posttranslational, highly selective, and quantitative modification of proteins with stable dienes. New synthetic access to minimal size tetrazine and triazine derivatives enabled us to synthesize tailored diene substrates for the lipoic acid protein ligase A (LplA) from Escherichia coli, which we employ for the rapid, mild, and quantitative bioconjugation of proteins by DAinv. The presented method benefits from the minimal tag size for LplA recognition and can be applied to proteins from any source organism. We demonstrate its broad suitability by site-specific in vitro protein labeling and live cell labeling for fluorescence microscopy. With this work we expand the scope of DAinv bioorthogonal chemistry for site-specific protein labeling, providing additional experimental flexibility for preparing well-defined bioconjugates and addressing biological questions in complex biological environments.
Collapse
Affiliation(s)
- Mathis Baalmann
- Institute of Pharmacy and Molecular Biotechnology , Heidelberg University , Im Neuenheimer Feld 364 , 69120 Heidelberg , Germany
| | - Michael J Ziegler
- Institute of Pharmacy and Molecular Biotechnology , Heidelberg University , Im Neuenheimer Feld 364 , 69120 Heidelberg , Germany
| | - Philipp Werther
- Institute of Pharmacy and Molecular Biotechnology , Heidelberg University , Im Neuenheimer Feld 364 , 69120 Heidelberg , Germany
| | - Jonas Wilhelm
- Institute of Pharmacy and Molecular Biotechnology , Heidelberg University , Im Neuenheimer Feld 364 , 69120 Heidelberg , Germany
| | - Richard Wombacher
- Institute of Pharmacy and Molecular Biotechnology , Heidelberg University , Im Neuenheimer Feld 364 , 69120 Heidelberg , Germany
| |
Collapse
|
29
|
Lelieveldt LPWM, Eising S, Wijen A, Bonger KM. Vinylboronic acid-caged prodrug activation using click-to-release tetrazine ligation. Org Biomol Chem 2019; 17:8816-8821. [DOI: 10.1039/c9ob01881f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Vinylboronic acids react selectively with tetrazines containing a boron-coordinating substituent. The authors explore this coordination-assisted cycloaddition for the click-to-release activation of a therapeutic drug.
Collapse
Affiliation(s)
- Lianne P. W. M. Lelieveldt
- Department of Biomolecular Chemistry and Synthetic Organic Chemistry
- Radboud University Nijmegen
- The Netherlands
| | - Selma Eising
- Department of Biomolecular Chemistry and Synthetic Organic Chemistry
- Radboud University Nijmegen
- The Netherlands
| | - Abel Wijen
- Department of Biomolecular Chemistry and Synthetic Organic Chemistry
- Radboud University Nijmegen
- The Netherlands
| | - Kimberly M. Bonger
- Department of Biomolecular Chemistry and Synthetic Organic Chemistry
- Radboud University Nijmegen
- The Netherlands
| |
Collapse
|
30
|
Yu S, de Bruijn HM, Svatunek D, Hamlin TA, Bickelhaupt FM. Factors Controlling the Diels-Alder Reactivity of Hetero-1,3-Butadienes. ChemistryOpen 2018; 7:995-1004. [PMID: 30524925 PMCID: PMC6276106 DOI: 10.1002/open.201800193] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Indexed: 12/29/2022] Open
Abstract
We have quantum chemically explored the Diels-Alder reactivities of a systematic series of hetero-1,3-butadienes with ethylene by using density functional theory at the BP86/TZ2P level. Activation strain analyses provided physical insight into the factors controlling the relative cycloaddition reactivity of aza- and oxa-1,3-butadienes. We find that dienes with a terminal heteroatom, such as 2-propen-1-imine (NCCC) or acrolein (OCCC), are less reactive than the archetypal 1,3-butadiene (CCCC), primarily owing to weaker orbital interactions between the more electronegative heteroatoms with ethylene. Thus, the addition of a second heteroatom at the other terminal position (NCCN and OCCO) further reduces the reactivity. However, the introduction of a nitrogen atom in the backbone (CNCC) leads to enhanced reactivity, owing to less Pauli repulsion resulting from polarization of the diene HOMO in CNCC towards the nitrogen atom and away from the terminal carbon atom. The Diels-Alder reactions of ethenyl-diazene (NNCC) and 1,3-diaza-butadiene (NCNC), which contain heteroatoms at both the terminal and backbone positions, are much more reactive due to less activation strain compared to CCCC.
Collapse
Affiliation(s)
- Song Yu
- Department of Theoretical Chemistry, Amsterdam Center for Multiscale Modeling (ACMM) Vrije Universiteit Amsterdam De Boelelaan 1083 1081 HV Amsterdam The Netherlands
| | - Hans M de Bruijn
- Department of Theoretical Chemistry, Amsterdam Center for Multiscale Modeling (ACMM) Vrije Universiteit Amsterdam De Boelelaan 1083 1081 HV Amsterdam The Netherlands
- Leiden Institute of Chemistry, Gorlaeus Laboratories Leiden University P.O. Box 9502 2300 RA Leiden The Netherlands
| | - Dennis Svatunek
- Department of Theoretical Chemistry, Amsterdam Center for Multiscale Modeling (ACMM) Vrije Universiteit Amsterdam De Boelelaan 1083 1081 HV Amsterdam The Netherlands
- Institut für Angewandte Synthesechemie Technische Universität Wien (TU Wien) Getreidemarkt 9 1060 Vienna Austria
| | - Trevor A Hamlin
- Department of Theoretical Chemistry, Amsterdam Center for Multiscale Modeling (ACMM) Vrije Universiteit Amsterdam De Boelelaan 1083 1081 HV Amsterdam The Netherlands
| | - F Matthias Bickelhaupt
- Department of Theoretical Chemistry, Amsterdam Center for Multiscale Modeling (ACMM) Vrije Universiteit Amsterdam De Boelelaan 1083 1081 HV Amsterdam The Netherlands
- Institute for Molecules and Materials (IMM) Radboud University Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| |
Collapse
|