1
|
Azargoonjahromi A. Immunotherapy in Alzheimer's disease: focusing on the efficacy of gantenerumab on amyloid-β clearance and cognitive decline. J Pharm Pharmacol 2024; 76:1115-1131. [PMID: 38767981 DOI: 10.1093/jpp/rgae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/08/2024] [Indexed: 05/22/2024]
Abstract
Gantenerumab, a human monoclonal antibody (mAb), has been thought of as a potential agent to treat Alzheimer's disease (AD) by specifically targeting regions of the amyloid-β (Aβ) peptide sequence. Aβ protein accumulation in the brain leads to amyloid plaques, causing neuroinflammation, oxidative stress, neuronal damage, and neurotransmitter dysfunction, thereby causing cognitive decline in AD. Gantenerumab involves disrupting Aβ aggregation and promoting the breakdown of larger Aβ aggregates into smaller fragments, which facilitates the action of Aβ-degrading enzymes in the brain, thus slowing down the progression of AD. Moreover, Gantenerumab acts as an opsonin, coating Aβ plaques and enhancing their recognition by immune cells, which, combined with its ability to improve the activity of microglia, makes it an intriguing candidate for promoting Aβ plaque clearance. Indeed, the multifaceted effects of Gantenerumab, including Aβ disaggregation, enhanced immune recognition, and improved microglia activity, may position it as a promising therapeutic approach for AD. Of note, reports suggest that Gantenerumab, albeit its capacity to reduce or eliminate Aβ, has not demonstrated effectiveness in reducing cognitive decline. This review, after providing an overview of immunotherapy approaches that target Aβ in AD, explores the efficacy of Gantenerumab in reducing Aβ levels and cognitive decline.
Collapse
|
2
|
Colpaert M, Singh PK, Donohue KJ, Pires NT, Fuller DD, Corti M, Byrne BJ, Sun RC, Vander Kooi CW, Gentry MS. Neurological glycogen storage diseases and emerging therapeutics. Neurotherapeutics 2024; 21:e00446. [PMID: 39277505 DOI: 10.1016/j.neurot.2024.e00446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/17/2024] Open
Abstract
Glycogen storage diseases (GSDs) comprise a group of inherited metabolic disorders characterized by defects in glycogen metabolism, leading to abnormal glycogen accumulation in multiple tissues, most notably affecting the liver, skeletal muscle, and heart. Recent findings have uncovered the importance of glycogen metabolism in the brain, sustaining a myriad of physiological functions and linking its perturbation to central nervous system (CNS) pathology. This link resulted in classification of neurological-GSDs (n-GSDs), a group of diseases with shared deficits in neurological glycogen metabolism. The n-GSD patients exhibit a spectrum of clinical presentations with common etiology while requiring tailored therapeutic approaches from the traditional GSDs. Recent research has elucidated the genetic and biochemical mechanisms and pathophysiological basis underlying different n-GSDs. Further, the last decade has witnessed some promising developments in novel therapeutic approaches, including enzyme replacement therapy (ERT), substrate reduction therapy (SRT), small molecule drugs, and gene therapy targeting key aspects of glycogen metabolism in specific n-GSDs. This preclinical progress has generated noticeable success in potentially modifying disease course and improving clinical outcomes in patients. Herein, we provide an overview of current perspectives on n-GSDs, emphasizing recent advances in understanding their molecular basis, therapeutic developments, underscore key challenges and the need to deepen our understanding of n-GSDs pathogenesis to develop better therapeutic strategies that could offer improved treatment and sustainable benefits to the patients.
Collapse
Affiliation(s)
- Matthieu Colpaert
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Pankaj K Singh
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | | | | | - David D Fuller
- Department of Physical Therapy and Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL, USA
| | - Manuela Corti
- Department of Pediatrics, Powell Gene Therapy Center, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Barry J Byrne
- Department of Pediatrics, Powell Gene Therapy Center, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Ramon C Sun
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Advanced Spatial Biomolecule Research (CASBR), University of Florida, Gainesville, FL, USA
| | - Craig W Vander Kooi
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Advanced Spatial Biomolecule Research (CASBR), University of Florida, Gainesville, FL, USA
| | - Matthew S Gentry
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA; Center for Advanced Spatial Biomolecule Research (CASBR), University of Florida, Gainesville, FL, USA.
| |
Collapse
|
3
|
Barker SJ, Thayer MB, Kim C, Tatarakis D, Simon MJ, Dial R, Nilewski L, Wells RC, Zhou Y, Afetian M, Akkapeddi P, Chappell A, Chew KS, Chow J, Clemens A, Discenza CB, Dugas JC, Dwyer C, Earr T, Ha C, Ho YS, Huynh D, Lozano EI, Jayaraman S, Kwan W, Mahon C, Pizzo M, Robles-Colmenares Y, Roche E, Sanders L, Stergioulis A, Tong R, Tran H, Zuchero Y, Estrada AA, Gadkar K, Koth CMM, Sanchez PE, Thorne RG, Watts RJ, Sandmann T, Kane LA, Rigo F, Dennis MS, Lewcock JW, DeVos SL. Targeting the transferrin receptor to transport antisense oligonucleotides across the mammalian blood-brain barrier. Sci Transl Med 2024; 16:eadi2245. [PMID: 39141703 DOI: 10.1126/scitranslmed.adi2245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/24/2024] [Indexed: 08/16/2024]
Abstract
Antisense oligonucleotides (ASOs) are promising therapeutics for treating various neurological disorders. However, ASOs are unable to readily cross the mammalian blood-brain barrier (BBB) and therefore need to be delivered intrathecally to the central nervous system (CNS). Here, we engineered a human transferrin receptor 1 (TfR1) binding molecule, the oligonucleotide transport vehicle (OTV), to transport a tool ASO across the BBB in human TfR knockin (TfRmu/hu KI) mice and nonhuman primates. Intravenous injection and systemic delivery of OTV to TfRmu/hu KI mice resulted in sustained knockdown of the ASO target RNA, Malat1, across multiple mouse CNS regions and cell types, including endothelial cells, neurons, astrocytes, microglia, and oligodendrocytes. In addition, systemic delivery of OTV enabled Malat1 RNA knockdown in mouse quadriceps and cardiac muscles, which are difficult to target with oligonucleotides alone. Systemically delivered OTV enabled a more uniform ASO biodistribution profile in the CNS of TfRmu/hu KI mice and greater knockdown of Malat1 RNA compared with a bivalent, high-affinity TfR antibody. In cynomolgus macaques, an OTV directed against MALAT1 displayed robust ASO delivery to the primate CNS and enabled more uniform biodistribution and RNA target knockdown compared with intrathecal dosing of the same unconjugated ASO. Our data support systemically delivered OTV as a potential platform for delivering therapeutic ASOs across the BBB.
Collapse
Affiliation(s)
| | - Mai B Thayer
- Denali Therapeutics Inc., South San Francisco, CA, USA
| | - Chaeyoung Kim
- Denali Therapeutics Inc., South San Francisco, CA, USA
| | | | | | - Rebekah Dial
- Denali Therapeutics Inc., South San Francisco, CA, USA
| | | | | | - Yinhan Zhou
- Denali Therapeutics Inc., South San Francisco, CA, USA
| | | | | | | | - Kylie S Chew
- Denali Therapeutics Inc., South San Francisco, CA, USA
| | - Johann Chow
- Denali Therapeutics Inc., South San Francisco, CA, USA
| | | | | | - Jason C Dugas
- Denali Therapeutics Inc., South San Francisco, CA, USA
| | | | - Timothy Earr
- Denali Therapeutics Inc., South San Francisco, CA, USA
| | - Connie Ha
- Denali Therapeutics Inc., South San Francisco, CA, USA
| | - Yvonne S Ho
- Denali Therapeutics Inc., South San Francisco, CA, USA
| | - David Huynh
- Denali Therapeutics Inc., South San Francisco, CA, USA
| | | | | | - Wanda Kwan
- Denali Therapeutics Inc., South San Francisco, CA, USA
| | - Cathal Mahon
- Denali Therapeutics Inc., South San Francisco, CA, USA
| | | | | | - Elysia Roche
- Denali Therapeutics Inc., South San Francisco, CA, USA
| | - Laura Sanders
- Denali Therapeutics Inc., South San Francisco, CA, USA
| | | | - Raymond Tong
- Denali Therapeutics Inc., South San Francisco, CA, USA
| | - Hai Tran
- Denali Therapeutics Inc., South San Francisco, CA, USA
| | - Y Zuchero
- Denali Therapeutics Inc., South San Francisco, CA, USA
| | | | - Kapil Gadkar
- Denali Therapeutics Inc., South San Francisco, CA, USA
| | | | | | | | - Ryan J Watts
- Denali Therapeutics Inc., South San Francisco, CA, USA
| | | | - Lesley A Kane
- Denali Therapeutics Inc., South San Francisco, CA, USA
| | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, CA, USA
| | - Mark S Dennis
- Denali Therapeutics Inc., South San Francisco, CA, USA
| | | | - Sarah L DeVos
- Denali Therapeutics Inc., South San Francisco, CA, USA
| |
Collapse
|
4
|
Li G, Salomonis N. RNA Isoforms as Broad Targets for Cancer Immunotherapy. DNA Cell Biol 2024; 43:363-368. [PMID: 38770618 DOI: 10.1089/dna.2024.0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
While immunotherapy is typically reserved for cancer patients with a high mutational burden, neoantigens produced from post-transcriptional regulation provide a possible untapped reservoir of common immunogenic targets for new targeted cancer therapies. In this review, we describe new and emerging technologies, unconventional molecular targets and challenges for the precision immune targeting of diverse malignancies. In particular, we focus on the unique potential of targeting alternative mRNA isoforms as a source for broadly presented neoantigens and cell surface proteins. Finally, we discuss emerging challenges for alternative isoform immune targeting, with an emphasis in silico prioritization and high-throughput target validation.
Collapse
Affiliation(s)
- Guangyuan Li
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Nathan Salomonis
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
5
|
Huang J, Fu Y, Wang A, Shi K, Peng Y, Yi Y, Yu R, Gao J, Feng J, Jiang G, Song Q, Jiang J, Chen H, Gao X. Brain Delivery of Protein Therapeutics by Cell Matrix-Inspired Biomimetic Nanocarrier. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405323. [PMID: 38718295 DOI: 10.1002/adma.202405323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Indexed: 05/24/2024]
Abstract
Protein therapeutics are anticipated to offer significant treatment options for central nervous system (CNS) diseases. However, the majority of proteins are unable to traverse the blood-brain barrier (BBB) and reach their CNS target sites. Inspired by the natural environment of active proteins, the cell matrix components hyaluronic acid (HA) and protamine (PRTM) are used to self-assemble with proteins to form a protein-loaded biomimetic core and then incorporated into ApoE3-reconstituted high-density lipoprotein (rHDL) to form a protein-loaded biomimetic nanocarrier (Protein-HA-PRTM-rHDL). This cell matrix-inspired biomimetic nanocarrier facilitates the penetration of protein therapeutics across the BBB and enables their access to intracellular target sites. Specifically, CAT-HA-PRTM-rHDL facilitates rapid intracellular delivery and release of catalase (CAT) via macropinocytosis-activated membrane fusion, resulting in improved spatial learning and memory in traumatic brain injury (TBI) model mice (significantly reduces the latency of TBI mice and doubles the number of crossing platforms), and enhances motor function and prolongs survival in amyotrophic lateral sclerosis (ALS) model mice (extended the median survival of ALS mice by more than 10 days). Collectively, this cell matrix-inspired nanoplatform enables the efficient CNS delivery of protein therapeutics and provides a novel approach for the treatment of CNS diseases.
Collapse
Affiliation(s)
- Jialin Huang
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Brain Injury Center, Renji Hospital, Shanghai Institute of Head Trauma, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yuli Fu
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Antian Wang
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Kexing Shi
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yidong Peng
- Brain Injury Center, Renji Hospital, Shanghai Institute of Head Trauma, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yao Yi
- Brain Injury Center, Renji Hospital, Shanghai Institute of Head Trauma, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Renhe Yu
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jinchao Gao
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Junfeng Feng
- Brain Injury Center, Renji Hospital, Shanghai Institute of Head Trauma, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Gan Jiang
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qingxiang Song
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jiyao Jiang
- Brain Injury Center, Renji Hospital, Shanghai Institute of Head Trauma, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Hongzhuan Chen
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shuguang Lab for Future Health, Academy of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200021, China
| | - Xiaoling Gao
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
6
|
Niazi SK, Mariam Z, Magoola M. Engineered Antibodies to Improve Efficacy against Neurodegenerative Disorders. Int J Mol Sci 2024; 25:6683. [PMID: 38928395 PMCID: PMC11203520 DOI: 10.3390/ijms25126683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/09/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Antibodies that can selectively remove rogue proteins in the brain are an obvious choice to treat neurodegenerative disorders (NDs), but after decades of efforts, only two antibodies to treat Alzheimer's disease are approved, dozens are in the testing phase, and one was withdrawn, and the other halted, likely due to efficacy issues. However, these outcomes should have been evident since these antibodies cannot enter the brain sufficiently due to the blood-brain barrier (BBB) protectant. However, all products can be rejuvenated by binding them with transferrin, preferably as smaller fragments. This model can be tested quickly and at a low cost and should be applied to bapineuzumab, solanezumab, crenezumab, gantenerumab, aducanumab, lecanemab, donanemab, cinpanemab, and gantenerumab, and their fragments. This paper demonstrates that conjugating with transferrin does not alter the binding to brain proteins such as amyloid-β (Aβ) and α-synuclein. We also present a selection of conjugate designs that will allow cleavage upon entering the brain to prevent their exocytosis while keeping the fragments connected to enable optimal binding to proteins. The identified products can be readily tested and returned to patients with the lowest regulatory cost and delays. These engineered antibodies can be manufactured by recombinant engineering, preferably by mRNA technology, as a more affordable solution to meet the dire need to treat neurodegenerative disorders effectively.
Collapse
Affiliation(s)
| | - Zamara Mariam
- Centre for Health and Life Sciences, Coventry University, Coventry City CV1 5FB, UK;
| | | |
Collapse
|
7
|
Jumapili NA, Zivalj M, Barthelmess RM, Raes G, De Groof TWM, Devoogdt N, Stijlemans B, Vincke C, Van Ginderachter JA. A few good reasons to use nanobodies for cancer treatment. Eur J Immunol 2023; 53:e2250024. [PMID: 37366246 DOI: 10.1002/eji.202250024] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/29/2023] [Accepted: 05/17/2023] [Indexed: 06/28/2023]
Abstract
mAbs have been instrumental for targeted cancer therapies. However, their relatively large size and physicochemical properties result in a heterogenous distribution in the tumor microenvironment, usually restricted to the first cell layers surrounding blood vessels, and a limited ability to penetrate the brain. Nanobodies are tenfold smaller, resulting in a deeper tumor penetration and the ability to reach cells in poorly perfused tumor areas. Nanobodies are rapidly cleared from the circulation, which generates a fast target-to-background contrast that is ideally suited for molecular imaging purposes but may be less optimal for therapy. To circumvent this problem, nanobodies have been formatted to noncovalently bind albumin, increasing their serum half-life without majorly increasing their size. Finally, nanobodies have shown superior qualities to infiltrate brain tumors as compared to mAbs. In this review, we discuss why these features make nanobodies prime candidates for targeted therapy of cancer.
Collapse
Affiliation(s)
- Neema Ahishakiye Jumapili
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Maida Zivalj
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Romina Mora Barthelmess
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Geert Raes
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Timo W M De Groof
- In Vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Nick Devoogdt
- In Vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Benoît Stijlemans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Cécile Vincke
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Jo A Van Ginderachter
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| |
Collapse
|
8
|
Aly AEE, Caron NS, Black HF, Schmidt ME, Anderson C, Ko S, Baddeley HJE, Anderson L, Casal LL, Rahavi RSM, Martin DDO, Hayden MR. Delivery of mutant huntingtin-lowering antisense oligonucleotides to the brain by intranasally administered apolipoprotein A-I nanodisks. J Control Release 2023; 360:913-927. [PMID: 37468110 DOI: 10.1016/j.jconrel.2023.07.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 07/21/2023]
Abstract
Lowering mutant huntingtin (mHTT) in the central nervous system (CNS) using antisense oligonucleotides (ASOs) is a promising approach currently being evaluated in clinical trials for Huntington disease (HD). However, the therapeutic potential of ASOs in HD patients is limited by their inability to cross the blood-brain barrier (BBB). In non-human primates, intrathecal infusion of ASOs results in limited brain distribution, with higher ASO concentrations in superficial regions and lower concentrations in deeper regions, such as the basal ganglia. To address the need for improved delivery of ASOs to the brain, we are evaluating the therapeutic potential of apolipoprotein A-I nanodisks (apoA-I NDs) as novel delivery vehicles for mHTT-lowering ASOs to the CNS after intranasal administration. Here, we have demonstrated the ability of apoA-I nanodisks to bypass the BBB after intranasal delivery in the BACHD model of HD. Following intranasal administration of apoA-I NDs, apoA-I protein levels were elevated along the rostral-caudal brain axis, with highest levels in the most rostral brain regions including the olfactory bulb and frontal cortex. Double-label immunohistochemistry indicates that both the apoA-I and ASO deposit in neurons. Most importantly, a single intranasal dose of apoA-I ASO-NDs significantly reduces mHTT levels in the brain regions most affected in HD, namely the cortex and striatum. This approach represents a novel non-invasive means for improving delivery and brain distribution of oligonucleotide therapies and enhancing likelihood of efficacy. Improved ASO delivery to the brain has widespread application for treatment of many other CNS disorders.
Collapse
Affiliation(s)
- Amirah E-E Aly
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Nicholas S Caron
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Hailey Findlay Black
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Mandi E Schmidt
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Christine Anderson
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC V5Z 4H4, Canada
| | - Seunghyun Ko
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC V5Z 4H4, Canada
| | - Helen J E Baddeley
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC V5Z 4H4, Canada
| | - Lisa Anderson
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC V5Z 4H4, Canada
| | - Lorenzo L Casal
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC V5Z 4H4, Canada
| | - Reza S M Rahavi
- Michael Cuccione Childhood Cancer Research Program, British Columbia Children's a Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Dale D O Martin
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada; Department of Biology, University of Waterloo, Ontario, Canada
| | - Michael R Hayden
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada.
| |
Collapse
|
9
|
Cegarra C, Cameron B, Chaves C, Dabdoubi T, Do TM, Genêt B, Roudières V, Shi Y, Tchepikoff P, Lesuisse D. An innovative strategy to identify new targets for delivering antibodies to the brain has led to the exploration of the integrin family. PLoS One 2022; 17:e0274667. [PMID: 36108060 PMCID: PMC9477330 DOI: 10.1371/journal.pone.0274667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/01/2022] [Indexed: 11/19/2022] Open
Abstract
Background
Increasing brain exposure of biotherapeutics is key to success in central nervous system disease drug discovery. Accessing the brain parenchyma is especially difficult for large polar molecules such as biotherapeutics and antibodies because of the blood-brain barrier. We investigated a new immunization strategy to identify novel receptors mediating transcytosis across the blood-brain barrier.
Method
We immunized mice with primary non-human primate brain microvascular endothelial cells to obtain antibodies. These antibodies were screened for their capacity to bind and to be internalized by primary non-human primate brain microvascular endothelial cells and Human Cerebral Microvascular Endothelial Cell clone D3. They were further evaluated for their transcytosis capabilities in three in vitro blood-brain barrier models. In parallel, their targets were identified by two different methods and their pattern of binding to human tissue was investigated using immunohistochemistry.
Results
12 antibodies with unique sequence and internalization capacities were selected amongst more than six hundred. Aside from one antibody targeting Activated Leukocyte Cell Adhesion Molecule and one targeting Striatin3, most of the other antibodies recognized β1 integrin and its heterodimers. The antibody with the best transcytosis capabilities in all blood-brain barrier in vitro models and with the best binding capacity was an anti-αnβ1 integrin. In comparison, commercial anti-integrin antibodies performed poorly in transcytosis assays, emphasizing the originality of the antibodies derived here. Immunohistochemistry studies showed specific vascular staining on human and non-human primate tissues.
Conclusions
This transcytotic behavior has not previously been reported for anti-integrin antibodies. Further studies should be undertaken to validate this new mechanism in vivo and to evaluate its potential in brain delivery.
Collapse
Affiliation(s)
- Céline Cegarra
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, Chilly Mazarin, France
- * E-mail:
| | | | - Catarina Chaves
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, Chilly Mazarin, France
| | | | - Tuan-Minh Do
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, Chilly Mazarin, France
| | - Bruno Genêt
- Integrated Drug Discovery, Sanofi, Vitry-Sur-Seine, France
| | - Valérie Roudières
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, Chilly Mazarin, France
| | - Yi Shi
- Histology, Translational Sciences, Sanofi, Vitry-Sur-Seine, France
| | | | - Dominique Lesuisse
- Rare and Neurologic Diseases Research Therapeutic Area, Sanofi, Chilly Mazarin, France
| |
Collapse
|
10
|
Exploring ITM2A as a new potential target for brain delivery. Fluids Barriers CNS 2022; 19:25. [PMID: 35313913 PMCID: PMC8935840 DOI: 10.1186/s12987-022-00321-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/04/2022] [Indexed: 12/22/2022] Open
Abstract
Background Integral membrane protein 2A (ITM2A) is a transmembrane protein expressed in a variety of tissues; little is known about its function, particularly in the brain. ITM2A was found to be highly enriched in human brain versus peripheral endothelial cells by transcriptomic and proteomic studies conducted within the European Collaboration on the Optimization of Macromolecular Pharmaceutical (COMPACT) Innovative Medicines Initiative (IMI) consortium. Here, we report the work that was undertaken to determine whether ITM2A could represent a potential target for delivering drugs to the brain. Methods A series of ITM2A constructs, cell lines and specific anti-human and mouse ITM2A antibodies were generated. Binding and internalization studies in Human Embryonic Kidney 293 (HEK293) cells overexpressing ITM2A and in brain microvascular endothelial cells from mouse and non-human primate (NHP) were performed with these tools. The best ITM2A antibody was evaluated in an in vitro human blood brain barrier (BBB) model and in an in vivo mouse pharmacokinetic study to investigate its ability to cross the BBB. Results Antibodies specifically recognizing extracellular parts of ITM2A or tags inserted in its extracellular domain showed selective binding and uptake in ITM2A-overexpressing cells. However, despite high RNA expression in mouse and human microvessels, the ITM2A protein was rapidly downregulated when endothelial cells were grown in culture, probably explaining why transcytosis could not be observed in vitro. An attempt to directly demonstrate in vivo transcytosis in mice was inconclusive, using either a cross-reactive anti-ITM2A antibody or in vivo phage panning of an anti-ITM2A phage library. Conclusions The present work describes our efforts to explore the potential of ITM2A as a target mediating transcytosis through the BBB, and highlights the multiple challenges linked to the identification of new brain delivery targets. Our data provide evidence that antibodies against ITM2A are internalized in ITM2A-overexpressing HEK293 cells, and that ITM2A is expressed in brain microvessels, but further investigations will be needed to demonstrate that ITM2A is a potential target for brain delivery. Supplementary Information The online version contains supplementary material available at 10.1186/s12987-022-00321-3.
Collapse
|
11
|
Arguello A, Mahon CS, Calvert ME, Chan D, Dugas JC, Pizzo ME, Thomsen ER, Chau R, Damo LA, Duque J, Fang M, Giese T, Kim DJ, Liang N, Nguyen HN, Solanoy H, Tsogtbaatar B, Ullman JC, Wang J, Dennis MS, Diaz D, Gunasekaran K, Henne KR, Lewcock JW, Sanchez PE, Troyer MD, Harris JM, Scearce-Levie K, Shan L, Watts RJ, Thorne RG, Henry AG, Kariolis MS. Molecular architecture determines brain delivery of a transferrin receptor–targeted lysosomal enzyme. J Exp Med 2022; 219:213038. [PMID: 35226042 PMCID: PMC8932535 DOI: 10.1084/jem.20211057] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 10/20/2021] [Accepted: 12/16/2021] [Indexed: 12/31/2022] Open
Abstract
Delivery of biotherapeutics across the blood–brain barrier (BBB) is a challenge. Many approaches fuse biotherapeutics to platforms that bind the transferrin receptor (TfR), a brain endothelial cell target, to facilitate receptor-mediated transcytosis across the BBB. Here, we characterized the pharmacological behavior of two distinct TfR-targeted platforms fused to iduronate 2-sulfatase (IDS), a lysosomal enzyme deficient in mucopolysaccharidosis type II (MPS II), and compared the relative brain exposures and functional activities of both approaches in mouse models. IDS fused to a moderate-affinity, monovalent TfR-binding enzyme transport vehicle (ETV:IDS) resulted in widespread brain exposure, internalization by parenchymal cells, and significant substrate reduction in the CNS of an MPS II mouse model. In contrast, IDS fused to a standard high-affinity bivalent antibody (IgG:IDS) resulted in lower brain uptake, limited biodistribution beyond brain endothelial cells, and reduced brain substrate reduction. These results highlight important features likely to impact the clinical development of TfR-targeting platforms in MPS II and potentially other CNS diseases.
Collapse
Affiliation(s)
| | | | | | - Darren Chan
- Denali Therapeutics Inc., South San Francisco, CA
| | | | | | | | - Roni Chau
- Denali Therapeutics Inc., South San Francisco, CA
| | | | - Joseph Duque
- Denali Therapeutics Inc., South San Francisco, CA
| | - Meng Fang
- Denali Therapeutics Inc., South San Francisco, CA
| | - Tina Giese
- Denali Therapeutics Inc., South San Francisco, CA
| | - Do Jin Kim
- Denali Therapeutics Inc., South San Francisco, CA
| | | | | | | | | | | | - Junhua Wang
- Denali Therapeutics Inc., South San Francisco, CA
| | | | - Dolores Diaz
- Denali Therapeutics Inc., South San Francisco, CA
| | | | | | | | | | | | | | | | - Lu Shan
- Denali Therapeutics Inc., South San Francisco, CA
| | | | - Robert G. Thorne
- Denali Therapeutics Inc., South San Francisco, CA
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN
| | | | | |
Collapse
|
12
|
Polgár TF, Meszlényi V, Nógrádi B, Körmöczy L, Spisák K, Tripolszki K, Széll M, Obál I, Engelhardt JI, Siklós L, Patai R. Passive Transfer of Blood Sera from ALS Patients with Identified Mutations Results in Elevated Motoneuronal Calcium Level and Loss of Motor Neurons in the Spinal Cord of Mice. Int J Mol Sci 2021; 22:ijms22189994. [PMID: 34576165 PMCID: PMC8470779 DOI: 10.3390/ijms22189994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 02/08/2023] Open
Abstract
Introduction: Previously, we demonstrated the degeneration of axon terminals in mice after repeated injections of blood sera from amyotrophic lateral sclerosis (ALS) patients with identified mutations. However, whether a similar treatment affects the cell body of motor neurons (MNs) remained unresolved. Methods: Sera from healthy individuals or ALS patients with a mutation in different ALS-related genes were intraperitoneally injected into ten-week-old male Balb/c mice (n = 3/serum) for two days. Afterward, the perikaryal calcium level was measured using electron microscopy. Furthermore, the optical disector method was used to evaluate the number of lumbar MNs. Results: The cytoplasmic calcium level of the lumbar MNs of the ALS-serum-treated mice, compared to untreated and healthy-serum-treated controls, was significantly elevated. While injections of the healthy serum did not reduce the number of MNs compared to the untreated control group, ALS sera induced a remarkable loss of MNs. Discussion: Similarly to the distant motor axon terminals, the injection of blood sera of ALS patients has a rapid degenerative effect on MNs. Analogously, the magnitude of the evoked changes was specific to the type of mutation; furthermore, the degeneration was most pronounced in the group treated with sera from ALS patients with a mutation in the chromosome 9 open reading frame 72 gene.
Collapse
Affiliation(s)
- Tamás F. Polgár
- Biological Research Centre, Institute of Biophysics, 62 Temesvári krt., 6726 Szeged, Hungary; (T.F.P.); (V.M.); (B.N.); (L.K.); (K.S.)
- Theoretical Medicine Doctoral School, University of Szeged, 97 Tisza Lajos krt., 6722 Szeged, Hungary
| | - Valéria Meszlényi
- Biological Research Centre, Institute of Biophysics, 62 Temesvári krt., 6726 Szeged, Hungary; (T.F.P.); (V.M.); (B.N.); (L.K.); (K.S.)
- Albert Szent-Györgyi Health Centre, Department of Neurology, University of Szeged, 6 Semmelweis u., 6725 Szeged, Hungary; (I.O.); (J.I.E.)
| | - Bernát Nógrádi
- Biological Research Centre, Institute of Biophysics, 62 Temesvári krt., 6726 Szeged, Hungary; (T.F.P.); (V.M.); (B.N.); (L.K.); (K.S.)
- Albert Szent-Györgyi Health Centre, Department of Neurology, University of Szeged, 6 Semmelweis u., 6725 Szeged, Hungary; (I.O.); (J.I.E.)
| | - Laura Körmöczy
- Biological Research Centre, Institute of Biophysics, 62 Temesvári krt., 6726 Szeged, Hungary; (T.F.P.); (V.M.); (B.N.); (L.K.); (K.S.)
| | - Krisztina Spisák
- Biological Research Centre, Institute of Biophysics, 62 Temesvári krt., 6726 Szeged, Hungary; (T.F.P.); (V.M.); (B.N.); (L.K.); (K.S.)
| | - Kornélia Tripolszki
- Department of Medical Genetics, University of Szeged, 4/B Szőkefalvi-Nagy Béla u., 6720 Szeged, Hungary; (K.T.); (M.S.)
| | - Márta Széll
- Department of Medical Genetics, University of Szeged, 4/B Szőkefalvi-Nagy Béla u., 6720 Szeged, Hungary; (K.T.); (M.S.)
- Dermatological Research Group, Hungarian Academy of Sciences, University of Szeged, 4/B Szőkefalvi-Nagy Béla u., 6720 Szeged, Hungary
| | - Izabella Obál
- Albert Szent-Györgyi Health Centre, Department of Neurology, University of Szeged, 6 Semmelweis u., 6725 Szeged, Hungary; (I.O.); (J.I.E.)
- Department of Neurology, Aalborg University Hospital, 15 Skovvej Sdr., 9000 Aalborg, Denmark
| | - József I. Engelhardt
- Albert Szent-Györgyi Health Centre, Department of Neurology, University of Szeged, 6 Semmelweis u., 6725 Szeged, Hungary; (I.O.); (J.I.E.)
| | - László Siklós
- Biological Research Centre, Institute of Biophysics, 62 Temesvári krt., 6726 Szeged, Hungary; (T.F.P.); (V.M.); (B.N.); (L.K.); (K.S.)
- Correspondence: (L.S.); (R.P.); Tel.: +36-62-599-611 (L.S.); +36-62-599-600/431 (R.P.)
| | - Roland Patai
- Biological Research Centre, Institute of Biophysics, 62 Temesvári krt., 6726 Szeged, Hungary; (T.F.P.); (V.M.); (B.N.); (L.K.); (K.S.)
- Correspondence: (L.S.); (R.P.); Tel.: +36-62-599-611 (L.S.); +36-62-599-600/431 (R.P.)
| |
Collapse
|
13
|
Kariolis MS, Wells RC, Getz JA, Kwan W, Mahon CS, Tong R, Kim DJ, Srivastava A, Bedard C, Henne KR, Giese T, Assimon VA, Chen X, Zhang Y, Solanoy H, Jenkins K, Sanchez PE, Kane L, Miyamoto T, Chew KS, Pizzo ME, Liang N, Calvert MEK, DeVos SL, Baskaran S, Hall S, Sweeney ZK, Thorne RG, Watts RJ, Dennis MS, Silverman AP, Zuchero YJY. Brain delivery of therapeutic proteins using an Fc fragment blood-brain barrier transport vehicle in mice and monkeys. Sci Transl Med 2021; 12:12/545/eaay1359. [PMID: 32461332 DOI: 10.1126/scitranslmed.aay1359] [Citation(s) in RCA: 163] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 02/10/2020] [Accepted: 04/02/2020] [Indexed: 12/14/2022]
Abstract
Effective delivery of protein therapeutics to the central nervous system (CNS) has been greatly restricted by the blood-brain barrier (BBB). We describe the development of a BBB transport vehicle (TV) comprising an engineered Fc fragment that exploits receptor-mediated transcytosis for CNS delivery of biotherapeutics by binding a highly expressed brain endothelial cell target. TVs were engineered using directed evolution to bind the apical domain of the human transferrin receptor (hTfR) without the use of amino acid insertions, deletions, or unnatural appendages. A crystal structure of the TV-TfR complex revealed the TV binding site to be away from transferrin and FcRn binding sites, which was further confirmed experimentally in vitro and in vivo. Recombinant expression of TVs fused to anti-β-secretase (BACE1) Fabs yielded antibody transport vehicle (ATV) molecules with native immunoglobulin G (IgG) structure and stability. Peripheral administration of anti-BACE1 ATVs to hTfR-engineered mice and cynomolgus monkeys resulted in substantially improved CNS uptake and sustained pharmacodynamic responses. The TV platform readily accommodates numerous additional configurations, including bispecific antibodies and protein fusions, yielding a highly modular CNS delivery platform.
Collapse
Affiliation(s)
- Mihalis S Kariolis
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA.
| | - Robert C Wells
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Jennifer A Getz
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Wanda Kwan
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Cathal S Mahon
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Raymond Tong
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Do Jin Kim
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Ankita Srivastava
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Catherine Bedard
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Kirk R Henne
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Tina Giese
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Victoria A Assimon
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Xiaocheng Chen
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Yin Zhang
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Hilda Solanoy
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Katherine Jenkins
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Pascal E Sanchez
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Lesley Kane
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Takashi Miyamoto
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Kylie S Chew
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Michelle E Pizzo
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Nicholas Liang
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Meredith E K Calvert
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Sarah L DeVos
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | | | - Sejal Hall
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Zachary K Sweeney
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Robert G Thorne
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Ryan J Watts
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Mark S Dennis
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Adam P Silverman
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Y Joy Yu Zuchero
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA.
| |
Collapse
|
14
|
Griffith JI, Rathi S, Zhang W, Zhang W, Drewes LR, Sarkaria JN, Elmquist WF. Addressing BBB Heterogeneity: A New Paradigm for Drug Delivery to Brain Tumors. Pharmaceutics 2020; 12:E1205. [PMID: 33322488 PMCID: PMC7763839 DOI: 10.3390/pharmaceutics12121205] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 12/11/2022] Open
Abstract
Effective treatments for brain tumors remain one of the most urgent and unmet needs in modern oncology. This is due not only to the presence of the neurovascular unit/blood-brain barrier (NVU/BBB) but also to the heterogeneity of barrier alteration in the case of brain tumors, which results in what is referred to as the blood-tumor barrier (BTB). Herein, we discuss this heterogeneity, how it contributes to the failure of novel pharmaceutical treatment strategies, and why a "whole brain" approach to the treatment of brain tumors might be beneficial. We discuss various methods by which these obstacles might be overcome and assess how these strategies are progressing in the clinic. We believe that by approaching brain tumor treatment from this perspective, a new paradigm for drug delivery to brain tumors might be established.
Collapse
Affiliation(s)
- Jessica I. Griffith
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455, USA; (S.R.); (W.Z.); (W.Z.)
| | - Sneha Rathi
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455, USA; (S.R.); (W.Z.); (W.Z.)
| | - Wenqiu Zhang
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455, USA; (S.R.); (W.Z.); (W.Z.)
| | - Wenjuan Zhang
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455, USA; (S.R.); (W.Z.); (W.Z.)
| | - Lester R. Drewes
- Department of Biomedical Sciences, University of Minnesota Medical School—Duluth, Duluth, MN 55812, USA;
| | - Jann N. Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55902, USA;
| | - William F. Elmquist
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455, USA; (S.R.); (W.Z.); (W.Z.)
| |
Collapse
|
15
|
Pozzi S, Codron P, Soucy G, Renaud L, Cordeau PJ, Dutta K, Bareil C, Julien JP. Monoclonal full-length antibody against TAR DNA binding protein 43 reduces related proteinopathy in neurons. JCI Insight 2020; 5:140420. [PMID: 33021970 PMCID: PMC7710295 DOI: 10.1172/jci.insight.140420] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/30/2020] [Indexed: 02/06/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD), 2 incurable neurodegenerative disorders, share the same pathological hallmark named TDP43 (TAR DNA binding protein 43) proteinopathy. This event is characterized by a consistent cytoplasmic mislocalization and aggregation of the protein TDP43, which loses its physiological properties, leading neurons to death. Antibody-based approaches are now emerging interventions in the field of neurodegenerative disorders. Here, we tested the target specificity, in vivo distribution, and therapeutic efficacy of a monoclonal full-length antibody, named E6, in TDP43-related conditions. We observed that the antibody recognizes specifically the cytoplasmic fraction of TDP43. We demonstrated its ability in targeting large neurons in the spinal cord of mice and in reducing TDP43 mislocalization and NF-κB activation. We also recognized the proteasome as well as the lysosome machineries as possible mechanisms used by the antibody to reduce TDP43 proteinopathy. To our knowledge, this is the first report showing the therapeutic efficacy and feasibility of a full-length antibody against TDP43 in reducing TDP43 proteinopathy in spinal neurons of an ALS/FTLD mouse model. A full-length antibody against TDP43 reduces TDP43 proteinopathy in spinal neurons of an amyotrophic lateral sclerosis/Frontotemporal lobar degeneration mouse model.
Collapse
Affiliation(s)
- Silvia Pozzi
- CERVO Brain Research Centre, Québec, Québec, Canada
| | - Philippe Codron
- UMR CNRS 6015, INSERM U1083, University of Angers, Angers, France
| | | | | | | | - Kallol Dutta
- CERVO Brain Research Centre, Québec, Québec, Canada
| | | | - Jean-Pierre Julien
- CERVO Brain Research Centre, Québec, Québec, Canada.,Department of Psychiatry and Neuroscience, University of Laval, Québec City, Canada
| |
Collapse
|
16
|
Pothin E, Lesuisse D, Lafaye P. Brain Delivery of Single-Domain Antibodies: A Focus on VHH and VNAR. Pharmaceutics 2020; 12:E937. [PMID: 33007904 PMCID: PMC7601373 DOI: 10.3390/pharmaceutics12100937] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
Abstract
Passive immunotherapy, i.e., treatment with therapeutic antibodies, has been increasingly used over the last decade in several diseases such as cancers or inflammation. However, these proteins have some limitations that single-domain antibodies could potentially solve. One of the main issues of conventional antibodies is their limited brain penetration because of the blood-brain barrier (BBB). In this review, we aim at exploring the different options single-domain antibodies (sDAbs) such as variable domain of heavy-chain antibodies (VHHs) and variable new antigen receptors (VNARs) have already taken to reach the brain allowing them to be used as therapeutic, diagnosis or transporter tools.
Collapse
Affiliation(s)
- Elodie Pothin
- Antibody Engineering Platform, Structural Biology and Chemistry Department, Institut Pasteur, 75015 Paris, France;
- Tissue Barriers, Rare and Neurological Diseases TA Department, Sanofi, 91161 Chilly-Mazarin, France
| | - Dominique Lesuisse
- Tissue Barriers, Rare and Neurological Diseases TA Department, Sanofi, 91161 Chilly-Mazarin, France
| | - Pierre Lafaye
- Antibody Engineering Platform, Structural Biology and Chemistry Department, Institut Pasteur, 75015 Paris, France;
| |
Collapse
|
17
|
Do TM, Capdevila C, Pradier L, Blanchard V, Lopez-Grancha M, Schussler N, Steinmetz A, Beninga J, Boulay D, Dugay P, Verdier P, Aubin N, Dargazanli G, Chaves C, Genet E, Lossouarn Y, Loux C, Michoux F, Moindrot N, Chanut F, Gury T, Eyquem S, Valente D, Bergis O, Rao E, Lesuisse D. Tetravalent Bispecific Tandem Antibodies Improve Brain Exposure and Efficacy in an Amyloid Transgenic Mouse Model. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 19:58-77. [PMID: 33005703 PMCID: PMC7502788 DOI: 10.1016/j.omtm.2020.08.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/19/2020] [Indexed: 11/17/2022]
Abstract
Most antibodies display very low brain exposure due to the blood-brain barrier (BBB) preventing their entry into brain parenchyma. Transferrin receptor (TfR) has been used previously to ferry antibodies to the brain by using different formats of bispecific constructs. Tetravalent bispecific tandem immunoglobulin Gs (IgGs) (TBTIs) containing two paratopes for both TfR and protofibrillar forms of amyloid-beta (Aβ) peptide were constructed and shown to display higher brain penetration than the parent anti-Aβ antibody. Additional structure-based mutations on the TfR paratopes further increased brain exposure, with maximal enhancement up to 13-fold in wild-type mice and an additional 4–5-fold in transgenic (Tg) mice harboring amyloid plaques, the main target of our amyloid antibody. Parenchymal target engagement of extracellular amyloid plaques was demonstrated using in vivo and ex vivo fluorescence imaging as well as histological methods. The best candidates were selected for a chronic study in an amyloid precursor protein (APP) Tg mouse model showing efficacy at reducing brain amyloid load at a lower dose than the corresponding monospecific antibody. TBTIs represent a promising format for enhancing IgG brain penetration using a symmetrical construct and keeping bivalency of the payload antibody.
Collapse
Affiliation(s)
- Tuan-Minh Do
- Rare and Neurologic Disease Research, Sanofi, Chilly Mazarin, France
| | | | - Laurent Pradier
- Rare and Neurologic Disease Research, Sanofi, Chilly Mazarin, France
| | | | | | | | - Anke Steinmetz
- Integrated Drug Discovery, Sanofi, Vitry-Sur-Seine, France
| | | | - Denis Boulay
- Translational In vivo Models, Sanofi, Chilly Mazarin, France
| | - Philippe Dugay
- Rare and Neurologic Disease Research, Sanofi, Chilly Mazarin, France
| | - Patrick Verdier
- Translational Medicine and Early Development, Sanofi, Alfortville, France
| | - Nadine Aubin
- Translational In vivo Models, Sanofi, Chilly Mazarin, France
| | | | - Catarina Chaves
- Rare and Neurologic Disease Research, Sanofi, Chilly Mazarin, France
| | - Elisabeth Genet
- Rare and Neurologic Disease Research, Sanofi, Chilly Mazarin, France
| | - Yves Lossouarn
- Drug Metabolism and Pharmacokinetics, Sanofi, Alfortville, France
| | | | | | - Nicolas Moindrot
- Rare and Neurologic Disease Research, Sanofi, Chilly Mazarin, France
| | - Franck Chanut
- Pathology Department, Sanofi, Vitry-Sur-Seine, France
| | - Thierry Gury
- Pathology Department, Sanofi, Vitry-Sur-Seine, France
| | - Stéphanie Eyquem
- Rare and Neurologic Disease Research, Sanofi, Chilly Mazarin, France
| | - Delphine Valente
- Drug Metabolism and Pharmacokinetics, Sanofi, Alfortville, France
| | - Olivier Bergis
- Translational In vivo Models, Sanofi, Chilly Mazarin, France
| | - Ercole Rao
- Biologics Research, Sanofi, Frankfurt, Germany
| | - Dominique Lesuisse
- Rare and Neurologic Disease Research, Sanofi, Chilly Mazarin, France
- Corresponding author:
| |
Collapse
|
18
|
Zipfel P, Rochais C, Baranger K, Rivera S, Dallemagne P. Matrix Metalloproteinases as New Targets in Alzheimer's Disease: Opportunities and Challenges. J Med Chem 2020; 63:10705-10725. [PMID: 32459966 DOI: 10.1021/acs.jmedchem.0c00352] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although matrix metalloproteinases (MMPs) are implicated in the regulation of numerous physiological processes, evidence of their pathological roles have also been obtained in the last decades, making MMPs attractive therapeutic targets for several diseases. Recent discoveries of their involvement in central nervous system (CNS) disorders, and in particular in Alzheimer's disease (AD), have paved the way to consider MMP modulators as promising therapeutic strategies. Over the past few decades, diverse approaches have been undertaken in the design of therapeutic agents targeting MMPs for various purposes, leading, more recently, to encouraging developments. In this article, we will present recent examples of inhibitors ranging from small molecules and peptidomimetics to biologics. We will also discuss the scientific knowledge that has led to the development of emerging tools and techniques to overcome the challenges of selective MMP inhibition.
Collapse
Affiliation(s)
- Pauline Zipfel
- Normandie Univ, UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), F-14032 Caen, France
| | - Christophe Rochais
- Normandie Univ, UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), F-14032 Caen, France
| | - Kévin Baranger
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Santiago Rivera
- Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France
| | - Patrick Dallemagne
- Normandie Univ, UNICAEN, CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie), F-14032 Caen, France
| |
Collapse
|
19
|
Loryan I, Hammarlund-Udenaes M, Syvänen S. Brain Distribution of Drugs: Pharmacokinetic Considerations. Handb Exp Pharmacol 2020; 273:121-150. [PMID: 33258066 DOI: 10.1007/164_2020_405] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
It is crucial to understand the basic principles of drug transport, from the site of delivery to the site of action within the CNS, in order to evaluate the possible utility of a new drug candidate for CNS action, or possible CNS side effects of non-CNS targeting drugs. This includes pharmacokinetic aspects of drug concentration-time profiles in plasma and brain, blood-brain barrier transport and drug distribution within the brain parenchyma as well as elimination processes from the brain. Knowledge of anatomical and physiological aspects connected with drug delivery is crucial in this context. The chapter is intended for professionals working in the field of CNS drug development and summarizes key pharmacokinetic principles and state-of-the-art experimental methodologies to assess brain drug disposition. Key parameters, describing the extent of unbound (free) drug across brain barriers, in particular blood-brain and blood-cerebrospinal fluid barriers, are presented along with their application in drug development. Special emphasis is given to brain intracellular pharmacokinetics and its role in evaluating target engagement. Fundamental neuropharmacokinetic differences between small molecular drugs and biologicals are discussed and critical knowledge gaps are outlined.
Collapse
Affiliation(s)
- Irena Loryan
- Translational PKPD Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden.
| | | | - Stina Syvänen
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| |
Collapse
|
20
|
Zhou Z, Austin GL, Shaffer R, Armstrong DD, Gentry MS. Antibody-Mediated Enzyme Therapeutics and Applications in Glycogen Storage Diseases. Trends Mol Med 2019; 25:1094-1109. [PMID: 31522955 PMCID: PMC6889062 DOI: 10.1016/j.molmed.2019.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/07/2019] [Accepted: 08/12/2019] [Indexed: 01/18/2023]
Abstract
The use of antibodies as targeting molecules or cell-penetrating tools has emerged at the forefront of pharmaceutical research. Antibody-directed therapies in the form of antibody-drug conjugates, immune modulators, and antibody-directed enzyme prodrugs have been most extensively utilized as hematological, rheumatological, and oncological therapies, but recent developments are identifying additional applications of antibody-mediated delivery systems. A novel application of this technology is for the treatment of glycogen storage disorders (GSDs) via an antibody-enzyme fusion (AEF) platform to penetrate cells and deliver an enzyme to the cytoplasm, nucleus, and/or other organelles. Exciting developments are currently underway for AEFs in the treatment of the GSDs Pompe disease and Lafora disease (LD). Antibody-based therapies are quickly becoming an integral part of modern disease therapeutics.
Collapse
Affiliation(s)
- Zhengqiu Zhou
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Grant L Austin
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | | | | | - Matthew S Gentry
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA; Lafora Epilepsy Cure Initiative, University of Kentucky College of Medicine, Lexington, KY 40536, USA; Epilepsy and Brain Metabolism Alliance, University of Kentucky College of Medicine, Lexington, KY 40536, USA.
| |
Collapse
|
21
|
Brewer MK, Uittenbogaard A, Austin GL, Segvich DM, DePaoli-Roach A, Roach PJ, McCarthy JJ, Simmons ZR, Brandon JA, Zhou Z, Zeller J, Young LEA, Sun RC, Pauly JR, Aziz NM, Hodges BL, McKnight TR, Armstrong DD, Gentry MS. Targeting Pathogenic Lafora Bodies in Lafora Disease Using an Antibody-Enzyme Fusion. Cell Metab 2019; 30:689-705.e6. [PMID: 31353261 PMCID: PMC6774808 DOI: 10.1016/j.cmet.2019.07.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 05/28/2019] [Accepted: 07/03/2019] [Indexed: 12/15/2022]
Abstract
Lafora disease (LD) is a fatal childhood epilepsy caused by recessive mutations in either the EPM2A or EPM2B gene. A hallmark of LD is the intracellular accumulation of insoluble polysaccharide deposits known as Lafora bodies (LBs) in the brain and other tissues. In LD mouse models, genetic reduction of glycogen synthesis eliminates LB formation and rescues the neurological phenotype. Therefore, LBs have become a therapeutic target for ameliorating LD. Herein, we demonstrate that human pancreatic α-amylase degrades LBs. We fused this amylase to a cell-penetrating antibody fragment, and this antibody-enzyme fusion (VAL-0417) degrades LBs in vitro and dramatically reduces LB loads in vivo in Epm2a-/- mice. Using metabolomics and multivariate analysis, we demonstrate that VAL-0417 treatment of Epm2a-/- mice reverses the metabolic phenotype to a wild-type profile. VAL-0417 is a promising drug for the treatment of LD and a putative precision therapy platform for intractable epilepsy.
Collapse
Affiliation(s)
- M Kathryn Brewer
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Annette Uittenbogaard
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Grant L Austin
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Dyann M Segvich
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Anna DePaoli-Roach
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Lafora Epilepsy Cure Initiative, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Peter J Roach
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Lafora Epilepsy Cure Initiative, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - John J McCarthy
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Zoe R Simmons
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Jason A Brandon
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Zhengqiu Zhou
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Jill Zeller
- Northern Biomedical Research, Spring Lake, MI 49456, USA
| | - Lyndsay E A Young
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Ramon C Sun
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - James R Pauly
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | | | | - Matthew S Gentry
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA; Lafora Epilepsy Cure Initiative, University of Kentucky College of Medicine, Lexington, KY 40536, USA; University of Kentucky Epilepsy & Brain Metabolism Alliance, University of Kentucky College of Medicine, Lexington, KY 40536, USA.
| |
Collapse
|
22
|
Austin GL, Simmons ZR, Klier JE, Rondon A, Hodges BL, Shaffer R, Aziz NM, McKnight TR, Pauly JR, Armstrong DD, Vander Kooi CW, Gentry MS. Central Nervous System Delivery and Biodistribution Analysis of an Antibody-Enzyme Fusion for the Treatment of Lafora Disease. Mol Pharm 2019; 16:3791-3801. [PMID: 31329461 DOI: 10.1021/acs.molpharmaceut.9b00396] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lafora disease (LD) is a fatal juvenile epilepsy characterized by the accumulation of aberrant glucan aggregates called Lafora bodies (LBs). Delivery of protein-based therapeutics to the central nervous system (CNS) for the clearance of LBs remains a unique challenge in the field. Recently, a humanized antigen-binding fragment (hFab) derived from a murine systemic lupus erythematosus DNA autoantibody (3E10) has been shown to mediate cell penetration and proposed as a broadly applicable carrier to mediate cellular targeting and uptake. We report studies on the efficacy and CNS delivery of VAL-0417, an antibody-enzyme fusion composed of the 3E10 hFab and human pancreatic α-amylase, in a mouse model of LD. An enzyme-linked immunosorbent assay has been developed to detect VAL-0417 post-treatment as a measure of delivery efficacy. We demonstrate the robust and sensitive detection of the fusion protein in multiple tissue types. Using this method, we measured biodistribution in different methods of delivery. We found that intracerebroventricular administration provided robust CNS delivery when compared to intrathecal administration. These data define critical steps in the translational pipeline of VAL-0417 for the treatment of LD.
Collapse
Affiliation(s)
| | | | | | | | - Brad L Hodges
- Valerion Therapeutics , Concord , Massachusetts 01742 , United States
| | - Robert Shaffer
- Valerion Therapeutics , Concord , Massachusetts 01742 , United States
| | - Nadine M Aziz
- Valerion Therapeutics , Concord , Massachusetts 01742 , United States
| | - Tracy R McKnight
- Valerion Therapeutics , Concord , Massachusetts 01742 , United States
| | - James R Pauly
- Department of Pharmaceutical Sciences , University of Kentucky College of Pharmacy , Lexington , Kentucky 40536 , United States
| | | | | | | |
Collapse
|