1
|
Ma X, Zhang Z, Barba-Bon A, Han D, Qi Z, Ge B, He H, Huang F, Nau WM, Wang X. A small-molecule carrier for the intracellular delivery of a membrane-impermeable protein with retained bioactivity. Proc Natl Acad Sci U S A 2024; 121:e2407515121. [PMID: 39436658 PMCID: PMC11536097 DOI: 10.1073/pnas.2407515121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024] Open
Abstract
Intracellular protein delivery has the potential to revolutionize cell-biological research and medicinal therapy, with broad applications in bioimaging, disease treatment, and genome editing. Herein, we demonstrate successful delivery of a functional protein, cytochrome c (CYC), by using a boron cluster anion as molecular carrier of the superchaotropic anion type (B12Br11OPr2-). CYC was delivered into lipid bilayer vesicles as well as living cells, with a cellular uptake ratio approaching 90%. Mechanistic studies showed that CYC was internalized into cells through a permeation pathway directly into the cytoplasm, bypassing endosomal entrapment. Upon carrier-assisted internalization, CYC retained its bioactivity, as reflected by an induced cell apoptosis rate of 25% at low dose (1 µM). This study furbishes a direct protein delivery method by a molecular carrier with high efficiency, confirming the potential of inorganic cluster ions as protein transport vehicles with an extensive range of future cell-biological or biomedical applications.
Collapse
Affiliation(s)
- Xiqi Ma
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao266580, China
| | - Zhixiong Zhang
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao266580, China
| | | | - Dongxue Han
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao266580, China
| | - Zichun Qi
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao266580, China
| | - Baosheng Ge
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao266580, China
| | - Hua He
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao266580, China
| | - Fang Huang
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao266580, China
| | - Werner M. Nau
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao266580, China
- School of Science, Constructor University, Bremen28759, Germany
| | - Xiaojuan Wang
- College of Chemical Engineering, China University of Petroleum (East China), Qingdao266580, China
| |
Collapse
|
2
|
Salluce G, Folgar-Cameán Y, Barba-Bon A, Nikšić-Franjić I, El Anwar S, Grüner B, Lostalé-Seijo I, Nau WM, Montenegro J. Size and Polarizability of Boron Cluster Carriers Modulate Chaotropic Membrane Transport. Angew Chem Int Ed Engl 2024; 63:e202404286. [PMID: 38712936 DOI: 10.1002/anie.202404286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/24/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024]
Abstract
Perhalogenated closo-borates represent a new class of membrane carriers. They owe this activity to their chaotropicity, which enables the transport of hydrophilic molecules across model membranes and into living cells. The transport efficiency of this new class of cluster carriers depends on a careful balance between their affinity to membranes and cargo, which varies with chaotropicity. However, the structure-activity parameters that define chaotropic transport remain to be elucidated. Here, we have studied the modulation of chaotropic transport by decoupling the halogen composition from the boron core size. The binding affinity between perhalogenated decaborate and dodecaborate clusters carriers was quantified with different hydrophilic model cargos, namely a neutral and a cationic peptide, phalloidin and (KLAKLAK)2. The transport efficiency, membrane-lytic properties, and cellular toxicity, as obtained from different vesicle and cell assays, increased with the size and polarizability of the clusters. These results validate the chaotropic effect as the driving force behind the membrane transport propensity of boron clusters. This work advances our understanding of the structural features of boron cluster carriers and establishes the first set of rational design principles for chaotropic membrane transporters.
Collapse
Affiliation(s)
- Giulia Salluce
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain
| | - Yeray Folgar-Cameán
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain
| | - Andrea Barba-Bon
- School of Science, Constructor University, Campus Ring 1, 28759, Bremen, Germany
| | - Ivana Nikšić-Franjić
- School of Science, Constructor University, Campus Ring 1, 28759, Bremen, Germany
| | - Suzan El Anwar
- Institute of Inorganic Chemistry, Czech Academy of Sciences, v.v.i. Hlavní 1001, CZ-250 68, Řež, Czech Republic
| | - Bohumír Grüner
- Institute of Inorganic Chemistry, Czech Academy of Sciences, v.v.i. Hlavní 1001, CZ-250 68, Řež, Czech Republic
| | - Irene Lostalé-Seijo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain
| | - Werner M Nau
- School of Science, Constructor University, Campus Ring 1, 28759, Bremen, Germany
| | - Javier Montenegro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15705, Santiago de Compostela, Spain
| |
Collapse
|
3
|
Gos M, Cebula J, Goszczyński TM. Metallacarboranes in Medicinal Chemistry: Current Advances and Future Perspectives. J Med Chem 2024; 67:8481-8501. [PMID: 38769934 DOI: 10.1021/acs.jmedchem.4c00157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Metallacarboranes, exemplified by cobalt bis(dicarbollide) ([COSAN]-), have excelled their historical metallocene analogue label to become promising in drug design, medical studies, and fundamental biological research. Serving as a unique platform for conjugation with biomolecules, they also constitute an auspicious building block for biologically active derivatives and a carrier for cellular transport of membrane-impermeable cargos. Modified [COSAN]- exhibits specific antimicrobial, antiviral, and anticancer actions showing promise for preclinical trials. Contributing to the ongoing development in medicinal chemistry, metallacarboranes offer desirable physicochemical properties and low acute toxicity. This article presents a critical look at metallacarboranes in the context of their application in medicinal chemistry, emphasizing [COSAN]- as a potential game-changer in drug design and biomedical sciences. As medicinal chemistry seeks innovative building blocks, metallacarboranes emerge as an important novelty with versatile solutions and promising implications.
Collapse
Affiliation(s)
- Michalina Gos
- Laboratory of Biomedical Chemistry, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
| | - Jakub Cebula
- Laboratory of Biomedical Chemistry, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
| | - Tomasz M Goszczyński
- Laboratory of Biomedical Chemistry, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
| |
Collapse
|
4
|
Supramolecular chemistry of anionic boron clusters and its applications in biology. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
EGFR-Targeted Cellular Delivery of Therapeutic Nucleic Acids Mediated by Boron Clusters. Int J Mol Sci 2022; 23:ijms232314793. [PMID: 36499115 PMCID: PMC9740766 DOI: 10.3390/ijms232314793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/15/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
New boron carriers with high boron content and targeted cancer-cell delivery are considered the first choice for boron neutron capture therapy (BNCT) for cancer treatment. Previously, we have shown that composites of antisense oligonucleotide and boron clusters are functional nanoparticles for the downregulation of expression of epidermal growth factor receptor (EGFR) and can be loaded into EGFR-overexpressing cancer cells without a transfection factor. In this study, we hypothesize that free cellular uptake is mediated by binding and activation of the EGFR by boron clusters. Proteomic analysis of proteins pulled-down from various EGFR-overexpressing cancer cells using short oligonucleotide probes, conjugated to 1,2-dicarba-closo-dodecaborane (1,2-DCDDB, [C2B10H12]) and [(3,3'-Iron-1,2,1',2'-dicarbollide)-] (FESAN, [Fe(C2B9H11)2]-), evidenced that boron cage binds to EGFR subdomains. Moreover, inductively coupled plasma mass spectrometry (ICP MS) and fluorescence microscopy analyses confirmed that FESANs-highly decorated B-ASOs were efficiently delivered and internalized by EGFR-overexpressing cells. Antisense reduction of EGFR in A431 and U87-MG cells resulted in decreased boron accumulation compared to control cells, indicating that cellular uptake of B-ASOs is related to EGFR-dependent internalization. The data obtained suggest that EGFR-mediated cellular uptake of B-ASO represents a novel strategy for cellular delivery of therapeutic nucleic acids (and possibly other medicines) conjugated to boron clusters.
Collapse
|
6
|
Druzina AA, Shmalko AV, Sivaev IB, Bregadze VI. Cyclic oxonium derivatives of cobalt and iron bis(dicarbollides) and their use in organic synthesis. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr5000] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
|
8
|
Gruzdev DA, Levit GL, Krasnov VP, Charushin VN. Carborane-containing amino acids and peptides: Synthesis, properties and applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213753] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Fink K, Goszczyński TM. Solid-State, Thermal Synthesis of Peptide/Protein-Boron Cluster Conjugates. Methods Mol Biol 2021; 2355:93-104. [PMID: 34386953 DOI: 10.1007/978-1-0716-1617-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Anionic boron clusters can be used to increase the pharmaceutical properties of the peptides. Here, we describe the method of synthesis of peptide/protein-boron cluster conjugates using solid-state, thermal reaction on two different peptides: thymosin β4 (Tβ4) and lysozyme. 1,4-dioxane oxonium derivatives of anionic boron clusters are used as donors of boron clusters. This procedure allows to conjugate anionic boron clusters to native peptides without loss of the activity of the peptides.
Collapse
Affiliation(s)
- Krzysztof Fink
- Laboratory of Biomedical Chemistry, Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Tomasz M Goszczyński
- Laboratory of Biomedical Chemistry, Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland.
| |
Collapse
|
10
|
Bregadze VI, Sivaev IB, Dubey RD, Semioshkin A, Shmal'ko AV, Kosenko ID, Lebedeva KV, Mandal S, Sreejyothi P, Sarkar A, Shen Z, Wu A, Hosmane NS. Boron-Containing Lipids and Liposomes: New Conjugates of Cholesterol with Polyhedral Boron Hydrides. Chemistry 2020; 26:13832-13841. [PMID: 32521076 DOI: 10.1002/chem.201905083] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Indexed: 12/16/2022]
Abstract
A series of boron-containing lipids were prepared by reactions of cyclic oxonium derivatives of polyhedron boranes and metallacarboranes (closo-dodecaborate anion, cobalt and iron bis(dicarbollides)) with amine and carboxylic acids which are derived from cholesterol. Stable liposomal formulations, on the basis of synthesized boron-containing lipids, hydrogenated soybean l-α-phosphatidylcholine and (HSPC) 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DSPE-PEG) as excipients, were prepared and then characterized by dynamic light scattering (DLS) that revealed the formation of particles to be smaller than 200 nm in diameter. The resulting liposomal formulations showed moderate to excellent loading and entrapment efficiency, thus justifying the design of the compounds to fit in the lipid bilayer and ensuring ease of in vivo use for future application. The liposomal formulations based on cobalt and iron bis(dicarbollide)-based lipids were found to be nontoxic against both human breast normal epithelial cells MCF-10A and human breast cancer cells MCF-7.
Collapse
Affiliation(s)
- Vladimir I Bregadze
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119991, Moscow, Russia
| | - Igor B Sivaev
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119991, Moscow, Russia
| | - Ravindra Dhar Dubey
- India Innovation Research Center, 465 Patparganj Industrial Area, Delhi, 110092, India
| | - Andrey Semioshkin
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119991, Moscow, Russia
| | - Akim V Shmal'ko
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119991, Moscow, Russia
| | - Irina D Kosenko
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119991, Moscow, Russia
| | - Kseniya V Lebedeva
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119991, Moscow, Russia
| | - Swadhin Mandal
- Indian Institute of Science Education and Research, Mohanpur, 741246, India
| | | | - Arindam Sarkar
- India Innovation Research Center, 465 Patparganj Industrial Area, Delhi, 110092, India
| | - Zheyu Shen
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of, Magnetic Materials and Devices, Ningbo Institute of Materials Technology, and Engineering, Chinese Academy of Sciences, 1219 Zhong-guan West Road, Ning-bo, Zhe-jiang, 315201, P. R. China
| | - Narayan S Hosmane
- Department of Chemistry & Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| |
Collapse
|
11
|
Kaniowski D, Kulik K, Ebenryter-Olbińska K, Wielgus E, Lesnikowski Z, Nawrot B. Metallacarborane Complex Boosts the Rate of DNA Oligonucleotide Hydrolysis in the Reaction Catalyzed by Snake Venom Phosphodiesterase. Biomolecules 2020; 10:biom10050718. [PMID: 32380792 PMCID: PMC7277537 DOI: 10.3390/biom10050718] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 12/17/2022] Open
Abstract
Antisense oligonucleotides conjugated with boron clusters (B-ASOs) have been described as potential gene expression inhibitors and carriers of boron for boron neutron capture therapy (BNCT), providing a dual-action therapeutic platform. In this study, we tested the nucleolytic stability of DNA oligonucleotides labeled with metallacarborane [(3,3'-iron-1,2,1',2'-dicarbollide)(-1)]ate [Fe(C2B9H11)2] (FESAN) against snake venom phosphodiesterase (svPDE, 3'→5'-exonuclease). Contrary to the previously observed protective effect of carborane (C2B10H12) modifications, the B-ASOs containing a metallacarborane moiety at the 5'-end of the oligonucleotide chain were hydrolyzed faster than their parent nonmodified oligomers. Interestingly, an enhancement in the hydrolysis rate was also observed in the presence of free metallacarborane, and this reaction was dependent on the concentration of the metallacarborane. Microscale thermophoresis (MST) analysis confirmed the high affinity (Kd nM range) of the binding of the metallacarborane to the proteins of crude snake venom and the moderate affinity (Kd µM range) between the metallacarborane and the short single-stranded DNA. We hypothesize that the metallacarborane complex covalently bound to B-ASO holds DNA molecules close to the protein surface, facilitating enzymatic cleavage. The addition of metallacarborane alone to the ASO/svPDE reaction mixture provides the interface to attract freely floating DNA molecules. In both cases, the local DNA concentration around the enzymes increases, giving rise to faster hydrolysis. It was experimentally shown that an allosteric effect, possibly attributable to the observed boost in the 3´→5´-exonucleolytic activity of snake venom phosphodiesterase, is much less plausible.
Collapse
Affiliation(s)
- Damian Kaniowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (D.K.); (K.K.); (K.E.-O.); (E.W.)
| | - Katarzyna Kulik
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (D.K.); (K.K.); (K.E.-O.); (E.W.)
| | - Katarzyna Ebenryter-Olbińska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (D.K.); (K.K.); (K.E.-O.); (E.W.)
| | - Ewelina Wielgus
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (D.K.); (K.K.); (K.E.-O.); (E.W.)
| | - Zbigniew Lesnikowski
- Institute of Medical Biology, Polish Academy of Sciences, Laboratory of Medicinal Chemistry, 106 Lodowa St., 92-232 Lodz, Poland;
| | - Barbara Nawrot
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (D.K.); (K.K.); (K.E.-O.); (E.W.)
- Correspondence: ; Tel.: +48-42-6803248
| |
Collapse
|
12
|
Fink K, Boratyński J, Paprocka M, Goszczyński TM. Metallacarboranes as a tool for enhancing the activity of therapeutic peptides. Ann N Y Acad Sci 2019; 1457:128-141. [PMID: 31407357 DOI: 10.1111/nyas.14201] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/19/2019] [Accepted: 07/09/2019] [Indexed: 12/27/2022]
Abstract
Metallacarboranes are anionic boron clusters with high affinity to serum albumin, ability to cross biological membranes, and no apparent toxicity in vitro and in vivo. Thus, conjugation with cobalt bis(1,2-dicarbollide), [COSAN]- , ([3,3'-Co(1,2-C2 B9 H11 )2 ]- ) may improve the properties of therapeutic peptides or proteins at both molecular and systemic levels. Here, we conjugated [COSAN]- with the therapeutic peptide thymosin β4 (Tβ4), which has a pleiotropic activity that results in enhanced healing and regeneration of injured tissues. Using fluorescence quenching of human serum albumin and surface plasmon resonance techniques, we showed that the conjugates have a high affinity to human serum albumin. Using an in vitro wound closure assay, we showed that conjugation with [COSAN]- enhances the activity of Tβ4 toward fibroblasts (MSU1.1 cell line). These results indicate an application of metallacarboranes in the development of analogs of various therapeutic peptides/proteins with superior pharmacological properties.
Collapse
Affiliation(s)
- Krzysztof Fink
- Laboratory of Biomedical Chemistry, Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy PAS, Wrocław, Poland
| | - Janusz Boratyński
- Laboratory of Biomedical Chemistry, Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy PAS, Wrocław, Poland
| | - Maria Paprocka
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy PAS, Wrocław, Poland
| | - Tomasz M Goszczyński
- Laboratory of Biomedical Chemistry, Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy PAS, Wrocław, Poland
| |
Collapse
|