1
|
Lundberg U, Hochreiter R, Timofoyeva Y, Kanevsky I, Meinke A, Anderson AS, Simon R. Preclinical Evidence for the Protective Capacity of Antibodies Induced by Lyme Vaccine Candidate VLA15 in People. Open Forum Infect Dis 2024; 11:ofae467. [PMID: 39233712 PMCID: PMC11372474 DOI: 10.1093/ofid/ofae467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/15/2024] [Indexed: 09/06/2024] Open
Abstract
Background Vaccine candidate VLA15 is designed to protect against the dominant Borrelia genospecies-causing Lyme disease in North America and Europe. Active immunization with VLA15 has protected in the mouse model of tick challenge. VLA15 is currently under evaluation in clinical studies for the prevention of Lyme borreliosis. Methods Mice were passively administered sera from clinical trial participants vaccinated with VLA15, or normal human serum from unvaccinated individuals as control. Posttransfer serum anti-outer surface protein A (OspA) immunoglobulin G titers were assessed by enzyme-linked immunosorbent assay. Following passive transfer, mice were challenged with Ixodes ticks colonized with Borrelia burgdorferi (OspA serotype 1) or Borrelia afzelii (OspA serotype 2) and infection was determined by serology for VlsE C6 or by polymerase chain reaction and culture to assess the presence of Borrelia bacteria. Results Passive transfer of immune sera prevented transmission of Borrelia from the tick vector and protected mice against challenge. Posttransfer protective threshold immunoglobulin G antibody titers were observed in this animal model of 131 U/mL for B burgdorferi (OspA serotype 1) and 352 U/mL for B afzelii (serotype 2). Conclusions Passive transfer of sera from trial participants immunized with VLA15 protected mice from borreliosis in a tick challenge model. This indicates that VLA15 induces functional immune responses in people that can be linked to efficacy in a stringent preclinical model.
Collapse
Affiliation(s)
| | | | | | - Isis Kanevsky
- Vaccine Research and Development, Pfizer Inc., Pearl River, New York, USA
| | | | | | - Raphael Simon
- Vaccine Research and Development, Pfizer Inc., Pearl River, New York, USA
| |
Collapse
|
2
|
Vance DJ, Basir S, Piazza CL, Willsey GG, Haque HME, Tremblay JM, Rudolph MJ, Muriuki B, Cavacini L, Weis DD, Shoemaker CB, Mantis NJ. Single-domain antibodies reveal unique borrelicidal epitopes on the Lyme disease vaccine antigen, outer surface protein A (OspA). Infect Immun 2024; 92:e0008424. [PMID: 38470113 PMCID: PMC11003225 DOI: 10.1128/iai.00084-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/13/2024] Open
Abstract
Camelid-derived, single-domain antibodies (VHHs) have proven to be extremely powerful tools in defining the antigenic landscape of immunologically heterogeneous surface proteins. In this report, we generated a phage-displayed VHH library directed against the candidate Lyme disease vaccine antigen, outer surface protein A (OspA). Two alpacas were immunized with recombinant OspA serotype 1 from Borrelia burgdorferi sensu stricto strain B31, in combination with the canine vaccine RECOMBITEK Lyme containing lipidated OspA. The phage library was subjected to two rounds of affinity enrichment ("panning") against recombinant OspA, yielding 21 unique VHHs within two epitope bins, as determined through competition enzyme linked immunosorbent assays (ELISAs) with a panel of OspA-specific human monoclonal antibodies. Epitope refinement was conducted by hydrogen exchange-mass spectrometry. Six of the monovalent VHHs were expressed as human IgG1-Fc fusion proteins and shown to have functional properties associated with protective human monoclonal antibodies, including B. burgdorferi agglutination, outer membrane damage, and complement-dependent borreliacidal activity. The VHHs displayed unique reactivity profiles with the seven OspA serotypes associated with B. burgdorferi genospecies in the United States and Europe consistent with there being unique epitopes across OspA serotypes that should be considered when designing and evaluating multivalent Lyme disease vaccines.
Collapse
Affiliation(s)
- David J. Vance
- Division of Infectious Diseases, New York State Department of Health, Wadsworth Center, Albany, New York, USA
- Department of Biomedical Sciences, University at Albany, Albany, New York, USA
| | - Saiful Basir
- Department of Biomedical Sciences, University at Albany, Albany, New York, USA
| | - Carol Lyn Piazza
- Division of Infectious Diseases, New York State Department of Health, Wadsworth Center, Albany, New York, USA
| | - Graham G. Willsey
- Division of Infectious Diseases, New York State Department of Health, Wadsworth Center, Albany, New York, USA
| | | | - Jacque M. Tremblay
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, USA
| | | | - Beatrice Muriuki
- Department of Medicine, University of Massachusetts Chan School of Medicine, Worcester, Massachusetts, USA
| | - Lisa Cavacini
- Department of Medicine, University of Massachusetts Chan School of Medicine, Worcester, Massachusetts, USA
| | - David D. Weis
- Department of Chemistry, The University of Kansas, Lawrence, Kansas, USA
| | - Charles B. Shoemaker
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, USA
| | - Nicholas J. Mantis
- Division of Infectious Diseases, New York State Department of Health, Wadsworth Center, Albany, New York, USA
- Department of Biomedical Sciences, University at Albany, Albany, New York, USA
| |
Collapse
|
3
|
Haque HME, Ejemel M, Vance DJ, Willsey G, Rudolph MJ, Cavacini LA, Wang Y, Mantis NJ, Weis DD. Human B Cell Epitope Map of the Lyme Disease Vaccine Antigen, OspA. ACS Infect Dis 2022; 8:2515-2528. [PMID: 36350351 DOI: 10.1021/acsinfecdis.2c00346] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The Lyme disease (LD) vaccine formerly approved for use in the United States consisted of recombinant outer surface protein A (OspA) from Borrelia burgdorferi sensu stricto (ss), the bacterial genospecies responsible for the vast majority of LD in North America. OspA is an ∼30 kDa lipoprotein made up of 21 antiparallel β-strands and a C-terminal α-helix. In clinical trials, protection against LD following vaccination correlated with serum antibody titers against a single epitope near the C-terminus of OspA, as defined by the mouse monoclonal antibody (MAb), LA-2. However, the breadth of the human antibody response to OspA following vaccination remains undefined even as next-generation multivalent OspA-based vaccines are under development. In this report, we employed hydrogen exchange-mass spectrometry (HX-MS) to localize the epitopes recognized by a unique panel of OspA human MAbs, including four shown to passively protect mice against experimental B. burgdorferi infection and one isolated from a patient with antibiotic refractory Lyme arthritis. The epitopes grouped into three spatially distinct bins that, together, encompass more than half the surface-exposed area of OspA. The bins corresponded to OspA β-strands 8-10 (bin 1), 11-13 (bin 2), and 16-20 plus the C-terminal α-helix (bin 3). Bin 3 was further divided into sub-bins relative to LA-2's epitope. MAbs with complement-dependent borreliacidal activity, as well as B. burgdorferi transmission-blocking activity in the mouse model were found within each bin. Therefore, the resulting B cell epitope map encompasses functionally important targets on OspA that likely contribute to immunity to B. burgdorferi.
Collapse
Affiliation(s)
- H M Emranul Haque
- Department of Chemistry, University of Kansas, Lawrence, Kansas66045, United States
| | - Monir Ejemel
- MassBiologics, Boston, Massachusetts02126, United States
| | - David J Vance
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York12208, United States
| | - Graham Willsey
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York12208, United States
| | - Michael J Rudolph
- New York Structural Biology Center, New York, New York10027, United States
| | | | - Yang Wang
- MassBiologics, Boston, Massachusetts02126, United States
| | - Nicholas J Mantis
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York12208, United States
| | - David D Weis
- Department of Chemistry, University of Kansas, Lawrence, Kansas66045, United States
| |
Collapse
|
4
|
Szamosvári D, Bae M, Bang S, Tusi BK, Cassilly CD, Park SM, Graham DB, Xavier RJ, Clardy J. Lyme Disease, Borrelia burgdorferi, and Lipid Immunogens. J Am Chem Soc 2022; 144:2474-2478. [PMID: 35129341 DOI: 10.1021/jacs.1c12202] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The human immune system detects potentially pathogenic microbes with receptors that respond to microbial metabolites. While the overall immune signaling pathway is known in considerable detail, the initial molecular signals, the microbially produced immunogens, for important diseases like Lyme disease (LD) are often not well-defined. The immunogens for LD are produced by the spirochete Borrelia burgdorferi, and a galactoglycerolipid (1) has been identified as a key trigger for the inflammatory immune response that characterizes LD. This report corrects the original structural assignment of 1 to 3, a change of an α-galactopyranose to an α-galactofuranose headgroup. The seemingly small change has important implications for the diagnosis, prevention, and treatment of LD.
Collapse
Affiliation(s)
- Dávid Szamosvári
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Blavatnik Institute, Boston, Massachusetts 02115, United States
| | - Munhyung Bae
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Blavatnik Institute, Boston, Massachusetts 02115, United States
| | - Sunghee Bang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Blavatnik Institute, Boston, Massachusetts 02115, United States
| | - Betsabeh Khoramian Tusi
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States.,Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States.,Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Chelsi D Cassilly
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Blavatnik Institute, Boston, Massachusetts 02115, United States
| | - Sung-Moo Park
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States.,Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States.,Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Daniel B Graham
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States.,Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States.,Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States.,Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States.,Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Blavatnik Institute, Boston, Massachusetts 02115, United States
| |
Collapse
|
5
|
Wormser GP. A brief history of OspA vaccines including their impact on diagnostic testing for Lyme disease. Diagn Microbiol Infect Dis 2021; 102:115572. [PMID: 34763193 DOI: 10.1016/j.diagmicrobio.2021.115572] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/03/2021] [Accepted: 10/04/2021] [Indexed: 11/30/2022]
Abstract
The only United States Food and Drug Administration approved vaccine preparation to prevent Lyme disease consisted of a single recombinant outer surface protein A (OspA), which was marketed for use from late 1998 until early 2002, with no vaccine currently available for humans for nearly 20 years. OspA vaccines generate an antibody-mediated, transmission blocking immunity, that prevents Borrelia burgdorferi from being transmitted during a tick bite. Although this OspA vaccine was safe and effective, it likely would have required booster doses to maintain immunity, and vaccination regularly caused false positive results on first-tier serologic testing for Lyme disease, when a whole cell-based enzyme immunoassay was used. Clinical trials are in progress to test a new multivalent OspA vaccine designed to prevent Lyme disease in both the United States and Europe.
Collapse
Affiliation(s)
- Gary P Wormser
- Division of Infectious Diseases, New York Medical College, Valhalla, NY, USA.
| |
Collapse
|
6
|
The Factor H-Binding Site of CspZ as a Protective Target against Multistrain, Tick-Transmitted Lyme Disease. Infect Immun 2020; 88:IAI.00956-19. [PMID: 32122944 DOI: 10.1128/iai.00956-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/27/2020] [Indexed: 01/13/2023] Open
Abstract
The spirochete Borrelia burgdorferi sensu lato is the causative agent of Lyme disease (LD). The spirochetes produce the CspZ protein that binds to a complement regulator, factor H (FH). Such binding downregulates activation of host complement to facilitate spirochete evasion of complement killing. However, vaccination with CspZ does not protect against LD infection. In this study, we demonstrated that immunization with CspZ-YA, a CspZ mutant protein with no FH-binding activity, protected mice from infection by several spirochete genotypes introduced via tick feeding. We found that the sera from CspZ-YA-vaccinated mice more efficiently eliminated spirochetes and blocked CspZ FH-binding activity than sera from CspZ-immunized mice. We also found that vaccination with CspZ, but not CspZ-YA, triggered the production of anti-FH antibodies, justifying CspZ-YA as an LD vaccine candidate. The mechanistic and efficacy information derived from this study provides insights into the development of a CspZ-based LD vaccine.
Collapse
|
7
|
Kruiswijk C, Richard G, Salverda MLM, Hindocha P, Martin WD, De Groot AS, Van Riet E. In silico identification and modification of T cell epitopes in pertussis antigens associated with tolerance. Hum Vaccin Immunother 2020; 16:277-285. [PMID: 31951773 PMCID: PMC7062413 DOI: 10.1080/21645515.2019.1703453] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The resurgence of whooping cough since the introduction of acellular (protein) vaccines has led to a renewed interest in the development of improved pertussis vaccines; Outer Membrane Vesicles (OMVs) carrying pertussis antigens have emerged as viable candidates. An in silico immunogenicity screen was carried out on 49 well-known Bordetella pertussis proteins in order to better understand their potential role toward the efficacy of pertussis OMVs for vaccine design; seven proteins were identified as being good candidates for including in optimized cellular and acellular pertussis vaccines. We then screened these antigens for putative tolerance-inducing sequences, as proteins with reduced tolerogenicity have improved vaccine potency in preclinical models. We used specialized homology tools (JanusMatrix) to identify peptides in the proteins that were cross-reactive with human sequences. Four of the 19 identified cross-reactive peptides were detolerized in silico using a separate tool, OptiMatrix, which disrupted the potential of these peptides to bind to human HLA and murine MHC. Four selected cross-reactive peptides and their detolerized variants were synthesized and their binding to a set of eight common HLA class II alleles was assessed in vitro. Reduced binding affinity to HLA class II was observed for the detolerized variants compared to the wild-type peptides, highlighting the potential of this approach for designing more efficacious pertussis vaccines.
Collapse
Affiliation(s)
- Corine Kruiswijk
- Department of Experimental Immunology & Clinical Research, Intravacc, Bilthoven, Netherlands
| | | | - Merijn L M Salverda
- Department of Experimental Immunology & Clinical Research, Intravacc, Bilthoven, Netherlands
| | | | | | | | - Elly Van Riet
- Department of Experimental Immunology & Clinical Research, Intravacc, Bilthoven, Netherlands
| |
Collapse
|
8
|
Federizon J, Frye A, Huang WC, Hart TM, He X, Beltran C, Marcinkiewicz AL, Mainprize IL, Wills MKB, Lin YP, Lovell JF. Immunogenicity of the Lyme disease antigen OspA, particleized by cobalt porphyrin-phospholipid liposomes. Vaccine 2019; 38:942-950. [PMID: 31727504 DOI: 10.1016/j.vaccine.2019.10.073] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/07/2019] [Accepted: 10/24/2019] [Indexed: 12/15/2022]
Abstract
Outer surface protein A (OspA) is a Borrelia lipoprotein and an established Lyme disease vaccine target. Admixing non-lipidated, recombinant B. burgdorferi OspA with liposomes containing cobalt porphyrin-phospholipid (CoPoP) resulted in rapid, particulate surface display of the conformationally intact antigen. Particleization was serum-stable and led to enhanced antigen uptake in murine macrophages in vitro. Mouse immunization using CoPoP liposomes that also contained a synthetic monophosphoryl lipid A (PHAD) elicited a Th1-biased OspA antibody response with higher IgG production compared to other vaccine adjuvants. Antibodies were reactive with intact B. burgdorferi spirochetes and Borrelia lysates, and induced complement-mediated borreliacidal activity in vitro. One year after initial immunization, mice maintained high levels of circulating borreliacidal antibodies capable of blocking B. burgdorferi transmission from infected ticks to human blood in a feeding chamber.
Collapse
Affiliation(s)
- Jasmin Federizon
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Amber Frye
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA; Department of Biomedical Sciences, State University of New York at Albany, Albany, NY 12222, USA
| | - Wei-Chiao Huang
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Thomas M Hart
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA; Department of Biological Sciences, State University of New York at Albany, Albany, NY 12222, USA
| | - Xuedan He
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Christopher Beltran
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Ashley L Marcinkiewicz
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Iain L Mainprize
- G. Magnotta Lyme Disease Research Lab, Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Melanie K B Wills
- G. Magnotta Lyme Disease Research Lab, Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Yi-Pin Lin
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA; Department of Biomedical Sciences, State University of New York at Albany, Albany, NY 12222, USA
| | - Jonathan F Lovell
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY 14260, USA.
| |
Collapse
|