1
|
Du Y, Yang HM, Zhang YM, Ma L, Gong XM, Tang JB. Development of a bioluminescent immunoassay based on Fc-specific conjugated antibody-nanoluciferase immunoreagents for determining aflatoxin B 1. Food Chem 2025; 463:141220. [PMID: 39265299 DOI: 10.1016/j.foodchem.2024.141220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 09/14/2024]
Abstract
Aflatoxin B1 (AFB1) is a potent carcinogen, and is among the most hazardous mycotoxins in agricultural products. Therefore, the development of sensitive and convenient detection methods for AFB1 is significant for food safety against mycotoxins. Herein, a bioluminescent enzyme immunoassay (BLEIA) was developed for ultrasensitive detection of AFB1, based on the novel Fc-specific antibody-nanoluciferase (Ab-Nluc) conjugates which were fabricated using an IgG-binding protein-assisted photo-conjugation strategy. In indirect competitive immunoassay format, the proposed BLEIA exhibited the detection limit of 0.0232 ng mL-1, which was 37.4-fold lower than that obtained using the classical enzyme-linked immunosorbent assay (ELISA) based on Ab-horseradish peroxidase (Ab-HRP) chemical conjugates (0.868 ng mL-1). Meanwhile, the BLEIA exhibited high accuracy and precision. Thus, the proposed Fc-specific Ab-Nluc conjugates-based BLEIA provides an ultrasensitive and reliable method for detecting toxins and has potential for use in food safety monitoring.
Collapse
Affiliation(s)
- Yue Du
- Department of Biochemical Drugs, School of Pharmacy, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Hong-Ming Yang
- Department of Biochemical Drugs, School of Pharmacy, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Yu-Min Zhang
- Department of Biochemical Drugs, School of Pharmacy, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Lan Ma
- Department of Biochemical Drugs, School of Pharmacy, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Xiao-Ming Gong
- Weifang Customs, Weifang 261031, Shandong Province, China
| | - Jin-Bao Tang
- Department of Biochemical Drugs, School of Pharmacy, Shandong Second Medical University, Weifang 261053, Shandong Province, China.
| |
Collapse
|
2
|
Soxpollard N, Strauss S, Jungmann R, MacPherson IS. Selection of antibody-binding covalent aptamers. Commun Chem 2024; 7:174. [PMID: 39117896 PMCID: PMC11310417 DOI: 10.1038/s42004-024-01255-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Aptamers are oligonucleotides with antibody-like binding function, selected from large combinatorial libraries. In this study, we modified a DNA aptamer library with N-hydroxysuccinimide esters, enabling covalent conjugation with cognate proteins. We selected for the ability to bind to mouse monoclonal antibodies, resulting in the isolation of two distinct covalent binding motifs. The covalent aptamers are specific for the Fc region of mouse monoclonal IgG1 and are cross-reactive with mouse IgG2a and other IgGs. Investigation into the covalent conjugation of the aptamers revealed a dependence on micromolar concentrations of Cu2+ ions which can be explained by residual catalyst remaining after modification of the aptamer library. The aptamers were successfully used as adapters in the formation of antibody-oligonucleotide conjugates (AOCs) for use in detection of HIV protein p24 and super-resolution imaging of actin. This work introduces a new method for the site-specific modification of native monoclonal antibodies and may be useful in applications requiring AOCs or other antibody conjugates.
Collapse
Affiliation(s)
- Noah Soxpollard
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, University of Hawaii, Honolulu, HI, 96813, USA
| | - Sebastian Strauss
- Max Planck Institute of Biochemistry, Planegg, Germany
- Faculty of Physics and Center for NanoScience, Ludwig Maximilian University, Munich, Germany
| | - Ralf Jungmann
- Max Planck Institute of Biochemistry, Planegg, Germany
- Faculty of Physics and Center for NanoScience, Ludwig Maximilian University, Munich, Germany
| | - Iain S MacPherson
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, University of Hawaii, Honolulu, HI, 96813, USA.
| |
Collapse
|
3
|
Delaney S, Nagy Á, Karlström AE, Zeglis BM. Site-Specific Photoaffinity Bioconjugation for the Creation of 89Zr-Labeled Radioimmunoconjugates. Mol Imaging Biol 2023; 25:1104-1114. [PMID: 37052759 PMCID: PMC10570397 DOI: 10.1007/s11307-023-01818-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/14/2023] [Accepted: 03/23/2023] [Indexed: 04/14/2023]
Abstract
PURPOSE Site-specific approaches to bioconjugation produce well-defined and homogeneous immunoconjugates with potential for superior in vivo behavior compared to analogs synthesized using traditional, stochastic methods. The possibility of incorporating photoaffinity chemistry into a site-specific bioconjugation strategy is particularly enticing, as it could simplify and accelerate the preparation of homogeneous immunoconjugates for the clinic. In this investigation, we report the synthesis, in vitro characterization, and in vivo evaluation of a site-specifically modified, 89Zr-labeled radioimmunoconjugate created via the reaction between an mAb and an Fc-binding protein bearing a photoactivatable 4-benzoylphenylalanine residue. PROCEDURES A variant of the Fc-binding Z domain of protein A containing a photoactivatable, 4-benzoylphenylalanine residue - Z(35BPA) - was modified with desferrioxamine (DFO), combined with the A33 antigen-targeting mAb huA33, and irradiated with UV light. The resulting immunoconjugate - DFOZ(35BPA)-huA33 - was purified and characterized via SDS-PAGE, MALDI-ToF mass spectrometry, surface plasmon resonance, and flow cytometry. The radiolabeling of DFOZ(35BPA)-huA33 was optimized to produce [89Zr]Zr-DFOZ(35BPA)-huA33, and the immunoreactivity of the radioimmunoconjugate was determined with SW1222 human colorectal cancer cells. Finally, the in vivo performance of [89Zr]Zr-DFOZ(35BPA)-huA33 in mice bearing subcutaneous SW1222 xenografts was interrogated via PET imaging and biodistribution experiments and compared to that of a stochastically labeled control radioimmunoconjugate, [89Zr]Zr-DFO-huA33. RESULTS HuA33 was site-specifically modified with Z(35BPA)-DFO, producing an immunoconjugate with on average 1 DFO/mAb, high in vitro stability, and high affinity for its target. [89Zr]Zr-DFOZ(35BPA)-huA33 was synthesized in 95% radiochemical yield and exhibited a specific activity of 2 mCi/mg and an immunoreactive fraction of ~ 0.85. PET imaging and biodistribution experiments revealed that high concentrations of the radioimmunoconjugate accumulated in tumor tissue (i.e., ~ 40%ID/g at 120 h p.i.) but also that the Z(35BPA)-bearing immunoPET probe produced higher uptake in the liver, spleen, and kidneys than its stochastically modified cousin, [89Zr]Zr-DFO-huA33. CONCLUSIONS Photoaffinity chemistry and an Fc-binding variant of the Z domain were successfully leveraged to create a novel site-specific strategy for the synthesis of radioimmunoconjugates. The probe synthesized using this method - DFOZ(35BPA)-huA33 - was well-defined and homogeneous, and the resulting radioimmunoconjugate ([89Zr]Zr-DFOZ(35BPA)-huA33) boasted high specific activity, stability, and immunoreactivity. While the site-specifically modified radioimmunoconjugate produced high activity concentrations in tumor tissue, it also yielded higher uptake in healthy organs than a stochastically modified analog, suggesting that optimization of this system is necessary prior to clinical translation.
Collapse
Affiliation(s)
- Samantha Delaney
- Department of Chemistry, Hunter College, City University of New York, New York, NY, USA
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ábel Nagy
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Amelie Eriksson Karlström
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden.
| | - Brian M Zeglis
- Department of Chemistry, Hunter College, City University of New York, New York, NY, USA.
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY, USA.
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, USA.
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
4
|
Qian L, Lin X, Gao X, Khan RU, Liao JY, Du S, Ge J, Zeng S, Yao SQ. The Dawn of a New Era: Targeting the "Undruggables" with Antibody-Based Therapeutics. Chem Rev 2023. [PMID: 37186942 DOI: 10.1021/acs.chemrev.2c00915] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The high selectivity and affinity of antibodies toward their antigens have made them a highly valuable tool in disease therapy, diagnosis, and basic research. A plethora of chemical and genetic approaches have been devised to make antibodies accessible to more "undruggable" targets and equipped with new functions of illustrating or regulating biological processes more precisely. In this Review, in addition to introducing how naked antibodies and various antibody conjugates (such as antibody-drug conjugates, antibody-oligonucleotide conjugates, antibody-enzyme conjugates, etc.) work in therapeutic applications, special attention has been paid to how chemistry tools have helped to optimize the therapeutic outcome (i.e., with enhanced efficacy and reduced side effects) or facilitate the multifunctionalization of antibodies, with a focus on emerging fields such as targeted protein degradation, real-time live-cell imaging, catalytic labeling or decaging with spatiotemporal control as well as the engagement of antibodies inside cells. With advances in modern chemistry and biotechnology, well-designed antibodies and their derivatives via size miniaturization or multifunctionalization together with efficient delivery systems have emerged, which have gradually improved our understanding of important biological processes and paved the way to pursue novel targets for potential treatments of various diseases.
Collapse
Affiliation(s)
- Linghui Qian
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xuefen Lin
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xue Gao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Rizwan Ullah Khan
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jia-Yu Liao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shubo Du
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Jingyan Ge
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544
| |
Collapse
|
5
|
Banijamali M, Höjer P, Nagy A, Hååg P, Gomero EP, Stiller C, Kaminskyy VO, Ekman S, Lewensohn R, Karlström AE, Viktorsson K, Ahmadian A. Characterizing single extracellular vesicles by droplet barcode sequencing for protein analysis. J Extracell Vesicles 2022; 11:e12277. [DOI: 10.1002/jev2.12277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/29/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Mahsan Banijamali
- Royal Institute of Technology (KTH), School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Gene Technology Science for Life Laboratory Solna Sweden
| | - Pontus Höjer
- Royal Institute of Technology (KTH), School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Gene Technology Science for Life Laboratory Solna Sweden
| | - Abel Nagy
- Royal Institute of Technology (KTH), School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Protein Science AlbaNova University Center Stockholm Sweden
| | - Petra Hååg
- Department of Oncology‐Pathology Karolinska Institutet Solna Sweden
| | - Elizabeth Paz Gomero
- Royal Institute of Technology (KTH), School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Protein Science AlbaNova University Center Stockholm Sweden
| | - Christiane Stiller
- Royal Institute of Technology (KTH), School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Protein Science AlbaNova University Center Stockholm Sweden
| | - Vitaliy O. Kaminskyy
- Department of Oncology‐Pathology Karolinska Institutet Solna Sweden
- Department of Physiology and Pharmacology Karolinska Institutet Stockholm Sweden
| | - Simon Ekman
- Department of Oncology‐Pathology Karolinska Institutet Solna Sweden
- Theme Cancer, Medical Unit head and Neck, Lung, and Skin Tumors, Thoracic Oncology Center Karolinska University Hospital Solna Sweden
| | - Rolf Lewensohn
- Department of Oncology‐Pathology Karolinska Institutet Solna Sweden
- Theme Cancer, Medical Unit head and Neck, Lung, and Skin Tumors, Thoracic Oncology Center Karolinska University Hospital Solna Sweden
| | - Amelie Eriksson Karlström
- Royal Institute of Technology (KTH), School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Protein Science AlbaNova University Center Stockholm Sweden
| | | | - Afshin Ahmadian
- Royal Institute of Technology (KTH), School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Gene Technology Science for Life Laboratory Solna Sweden
| |
Collapse
|
6
|
Watson EE, Winssinger N. Synthesis of Protein-Oligonucleotide Conjugates. Biomolecules 2022; 12:biom12101523. [PMID: 36291732 PMCID: PMC9599799 DOI: 10.3390/biom12101523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
Nucleic acids and proteins form two of the key classes of functional biomolecules. Through the ability to access specific protein-oligonucleotide conjugates, a broader range of functional molecules becomes accessible which leverages both the programmability and recognition potential of nucleic acids and the structural, chemical and functional diversity of proteins. Herein, we summarize the available conjugation strategies to access such chimeric molecules and highlight some key case study examples within the field to showcase the power and utility of such technology.
Collapse
Affiliation(s)
- Emma E. Watson
- Department of Chemistry, School of Physical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
- Correspondence: (E.E.W.); (N.W.)
| | - Nicolas Winssinger
- Department of Organic Chemistry, Faculty of Science, NCCR Chemical Biology, CH-1205 Geneva, Switzerland
- Correspondence: (E.E.W.); (N.W.)
| |
Collapse
|
7
|
Xu Z, Huang Y, Yin H, Zhu X, Tian Y, Min Q. DNA origami-based protein manipulation systems: From function regulation to biological application. Chembiochem 2021; 23:e202100597. [PMID: 34958167 DOI: 10.1002/cbic.202100597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/18/2021] [Indexed: 11/07/2022]
Abstract
Proteins directly participate in tremendous physiological processes and mediate a variety of cellular functions. However, precise manipulation of proteins with predefined relative position and stoichiometry for understanding protein-protein interactions and guiding cellular behaviors are still challenging. With superior programmability of DNA molecules, DNA origami technology is able to construct arbitrary nanostructures that can accurately control the arrangement of proteins with various functionalities to solve these problems. Herein, starting from the classification of DNA origami nanostructures and the category of assembled proteins, we summarize the existing DNA origami-based protein manipulation systems (PMSs), review the advances on the regulation of their functions, and discuss their applications in cellular behavior modulation and disease therapy. Moreover, the limitations and potential directions of DNA origami-based PMSs are also presented, which may offer guidance for rational construction and ingenious application.
Collapse
Affiliation(s)
- Ziqi Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Yide Huang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Hao Yin
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Xurong Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Ye Tian
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Qianhao Min
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
8
|
von Witting E, Hober S, Kanje S. Affinity-Based Methods for Site-Specific Conjugation of Antibodies. Bioconjug Chem 2021; 32:1515-1524. [PMID: 34369763 PMCID: PMC8377709 DOI: 10.1021/acs.bioconjchem.1c00313] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Conjugation of various reagents to antibodies has long been an elegant way to combine the superior binding features of the antibody with other desired but non-natural functions. Applications range from labels for detection in different analytical assays to the creation of new drugs by conjugation to molecules which improves the pharmaceutical effect. In many of these applications, it has been proven advantageous to control both the site and the stoichiometry of the conjugation to achieve a homogeneous product with predictable, and often also improved, characteristics. For this purpose, many research groups have, during the latest decade, reported novel methods and techniques, based on small molecules, peptides, and proteins with inherent affinity for the antibody, for site-specific conjugation of antibodies. This review provides a comprehensive overview of these methods and their applications and also describes a historical perspective of the field.
Collapse
Affiliation(s)
- Emma von Witting
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, AlbaNova University Centre, SE-114 19, Stockholm, Sweden
| | - Sophia Hober
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, AlbaNova University Centre, SE-114 19, Stockholm, Sweden
| | - Sara Kanje
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, AlbaNova University Centre, SE-114 19, Stockholm, Sweden
| |
Collapse
|
9
|
Westerlund K, Myrhammar A, Tano H, Gestin M, Karlström AE. Stability Enhancement of a Dimeric HER2-Specific Affibody Molecule through Sortase A-Catalyzed Head-to-Tail Cyclization. Molecules 2021; 26:2874. [PMID: 34066245 PMCID: PMC8150554 DOI: 10.3390/molecules26102874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 11/16/2022] Open
Abstract
Natural backbone-cyclized proteins have an increased thermostability and resistance towards proteases, characteristics that have sparked interest in head-to-tail cyclization as a method to stability-enhance proteins used in diagnostics and therapeutic applications, for example. In this proof-of principle study, we have produced and investigated a head-to-tail cyclized and HER2-specific ZHER2:342 Affibody dimer. The sortase A-mediated cyclization reaction is highly efficient (>95%) under optimized conditions, and renders a cyclic ZHER3:342-dimer with an apparent melting temperature, Tm, of 68 °C, which is 3 °C higher than that of its linear counterpart. Circular dichroism spectra of the linear and cyclic dimers looked very similar in the far-UV range, both before and after thermal unfolding to 90 °C, which suggests that cyclization does not negatively impact the helicity or folding of the cyclic protein. The cyclic dimer had an apparent sub-nanomolar affinity (Kd ~750 pM) to the HER2-receptor, which is a ~150-fold reduction in affinity relative to the linear dimer (Kd ~5 pM), but the anti-HER2 Affibody dimer remained a high-affinity binder even after cyclization. No apparent difference in proteolytic stability was detected in an endopeptidase degradation assay for the cyclic and linear dimers. In contrast, in an exopeptidase degradation assay, the linear dimer was shown to be completely degraded after 5 min, while the cyclic dimer showed no detectable degradation even after 60 min. We further demonstrate that a site-specifically DyLight 594-labeled cyclic dimer shows specific binding to HER2-overexpressing cells. Taken together, the results presented here demonstrate that head-to-tail cyclization can be an effective strategy to increase the stability of an Affibody dimer.
Collapse
Affiliation(s)
| | | | | | | | - Amelie Eriksson Karlström
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, SE-10691 Stockholm, Sweden; (K.W.); (A.M.); (H.T.); (M.G.)
| |
Collapse
|
10
|
Stiller C, Viktorsson K, Paz Gomero E, Hååg P, Arapi V, Kaminskyy VO, Kamali C, De Petris L, Ekman S, Lewensohn R, Karlström AE. Detection of Tumor-Associated Membrane Receptors on Extracellular Vesicles from Non-Small Cell Lung Cancer Patients via Immuno-PCR. Cancers (Basel) 2021; 13:cancers13040922. [PMID: 33671772 PMCID: PMC7926549 DOI: 10.3390/cancers13040922] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/11/2021] [Accepted: 02/18/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Lung cancer is often detected at late stages when metastases are present and the genomic make-ups of the tumors are heterogeneous. Analyses of genomic alterations in non-small-cell lung cancer (NSCLC) have revealed mutated tumor-associated membrane receptors and fusion proteins, which can be targeted via tyrosine kinase inhibitors (TKIs). TKIs initially often have a good effect, but a fraction of the tumor lesions may develop resistance through additional mutations in the targeted kinases or by increased expression/function of other membrane receptors. Detection of TKI-bypassing mechanisms is difficult in tissue biopsies as these analyze only a subpart of tumors or lesions. Liquid biopsies based on tumor-secreted small extracellular vesicles (sEVs) into body fluids can assess tumor heterogeneity. We present an immuno-PCR method for the detection of the epidermal growth factor receptor (EGFR), the human epidermal growth factor receptor 2 (HER2), and the insulin-like growth factor 1 receptor (IGF-1R) on sEVs. Initial investigations of sEVs from EGFR-mutant NSCLC tumor cells or pleural effusion (PE) fluid from patients with NSCLC or benign diseases showed different protein profiles for individual sEV samples. Further development of the immuno-PCR could complement DNA/mRNA-based assays detecting kinase mutations to allow longitudinal treatment monitoring of diverse TKI-bypassing mechanisms. Abstract Precision cancer medicine for non-small-cell lung cancer (NSCLC) has increased patient survival. Nevertheless, targeted agents towards tumor-associated membrane receptors only result in partial remission for a limited time, calling for approaches which allow longitudinal treatment monitoring. Rebiopsy of tumors in the lung is challenging, and metastatic lesions may have heterogeneous signaling. One way ahead is to use liquid biopsies such as circulating tumor DNA or small extracellular vesicles (sEVs) secreted by the tumor into blood or other body fluids. Herein, an immuno-PCR-based detection of the tumor-associated membrane receptors EGFR, HER2, and IGF-1R on CD9-positive sEVs from NSCLC cells and pleural effusion fluid (PE) of NSCLC patients is developed utilizing DNA conjugates of antibody mimetics and affibodies, as detection agents. Results on sEVs purified from culture media of NSCLC cells treated with anti-EGFR siRNA, showed that the reduction of EGFR expression can be detected via immuno-PCR. Protein profiling of sEVs from NSCLC patient PE samples revealed the capacity to monitor EGFR, HER2, and IGF-1R with the immuno-PCR method. We detected a significantly higher EGFR level in sEVs derived from a PE sample of a patient with an EGFR-driven NSCLC adenocarcinoma than in sEVs from PE samples of non-EGFR driven adenocarcinoma patients or in samples from patients with benign lung disease. In summary, we have developed a diagnostic method for sEVs in liquid biopsies of cancer patients which may be used for longitudinal treatment monitoring to detect emerging bypassing resistance mechanisms in a noninvasive way.
Collapse
Affiliation(s)
- Christiane Stiller
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, SE-10691 Stockholm, Sweden; (C.S.); (E.P.G.)
- Biomedical Centre, Department of Pharmaceutical Biosciences, Uppsala University, SE-75123 Uppsala, Sweden
| | - Kristina Viktorsson
- Department of Oncology-Pathology, Karolinska Institutet, SE-17177 Stockholm, Sweden; (K.V.); (P.H.); (V.A.); (V.O.K.); (C.K.); (L.D.P.); (S.E.); (R.L.)
| | - Elizabeth Paz Gomero
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, SE-10691 Stockholm, Sweden; (C.S.); (E.P.G.)
| | - Petra Hååg
- Department of Oncology-Pathology, Karolinska Institutet, SE-17177 Stockholm, Sweden; (K.V.); (P.H.); (V.A.); (V.O.K.); (C.K.); (L.D.P.); (S.E.); (R.L.)
| | - Vasiliki Arapi
- Department of Oncology-Pathology, Karolinska Institutet, SE-17177 Stockholm, Sweden; (K.V.); (P.H.); (V.A.); (V.O.K.); (C.K.); (L.D.P.); (S.E.); (R.L.)
| | - Vitaliy O. Kaminskyy
- Department of Oncology-Pathology, Karolinska Institutet, SE-17177 Stockholm, Sweden; (K.V.); (P.H.); (V.A.); (V.O.K.); (C.K.); (L.D.P.); (S.E.); (R.L.)
| | - Caroline Kamali
- Department of Oncology-Pathology, Karolinska Institutet, SE-17177 Stockholm, Sweden; (K.V.); (P.H.); (V.A.); (V.O.K.); (C.K.); (L.D.P.); (S.E.); (R.L.)
- Theme Cancer, Medical Unit Head and Neck, Lung, and Skin Tumors, Thoracic Oncology Center, Karolinska University Hospital, SE-17177 Stockholm, Sweden
| | - Luigi De Petris
- Department of Oncology-Pathology, Karolinska Institutet, SE-17177 Stockholm, Sweden; (K.V.); (P.H.); (V.A.); (V.O.K.); (C.K.); (L.D.P.); (S.E.); (R.L.)
- Theme Cancer, Medical Unit Head and Neck, Lung, and Skin Tumors, Thoracic Oncology Center, Karolinska University Hospital, SE-17177 Stockholm, Sweden
| | - Simon Ekman
- Department of Oncology-Pathology, Karolinska Institutet, SE-17177 Stockholm, Sweden; (K.V.); (P.H.); (V.A.); (V.O.K.); (C.K.); (L.D.P.); (S.E.); (R.L.)
- Theme Cancer, Medical Unit Head and Neck, Lung, and Skin Tumors, Thoracic Oncology Center, Karolinska University Hospital, SE-17177 Stockholm, Sweden
| | - Rolf Lewensohn
- Department of Oncology-Pathology, Karolinska Institutet, SE-17177 Stockholm, Sweden; (K.V.); (P.H.); (V.A.); (V.O.K.); (C.K.); (L.D.P.); (S.E.); (R.L.)
- Theme Cancer, Medical Unit Head and Neck, Lung, and Skin Tumors, Thoracic Oncology Center, Karolinska University Hospital, SE-17177 Stockholm, Sweden
| | - Amelie Eriksson Karlström
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Center, SE-10691 Stockholm, Sweden; (C.S.); (E.P.G.)
- Correspondence: ; Tel.: +46-8-790-99-78
| |
Collapse
|
11
|
Electrokinetic sandwich assay and DNA mediated charge amplification for enhanced sensitivity and specificity. Biosens Bioelectron 2020; 176:112917. [PMID: 33421763 DOI: 10.1016/j.bios.2020.112917] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/27/2020] [Accepted: 12/17/2020] [Indexed: 12/18/2022]
Abstract
An electrical immuno-sandwich assay utilizing an electrokinetic-based streaming current method for signal transduction is proposed. The method records the changes in streaming current, first when a target molecule binds to the capture probes immobilized on the inner surface of a silica micro-capillary, and then when the detection probes interact with the bound target molecules on the surface. The difference in signals in these two steps constitute the response of the assay, which offers better target selectivity and a linear concentration dependent response for a target concentration within the range 0.2-100 nM. The proof of concept is demonstrated by detecting different concentrations of Immunoglobulin G (IgG) in both phosphate buffered saline (PBS) and spiked in E. coli cell lysate. A superior target specificity for the sandwich assay compared to the corresponding direct assay is demonstrated along with a limit of detection of 90 pM in PBS. The prospect of improving the detection sensitivity was theoretically analysed, which indicated that the charge contrast between the target and the detection probe plays a crucial role in determining the signal. This aspect was then experimentally validated by modulating the zeta potential of the detection probe by conjugating negatively charged DNA oligonucleotides. The length of the conjugated DNA was varied from 5 to 30 nucleotides, altering the zeta potential of the detection probe from -9.3 ± 0.8 mV to -20.1 ± 0.9 mV. The measurements showed a clear and consistent enhancement of detection signal as a function of DNA lengths. The results presented here conclusively demonstrate the role of electric charge in detection sensitivity as well as the prospect for further improvement. The study therefore is a step forward in developing highly selective and sensitive electrokinetic assays for possible application in clinical investigations.
Collapse
|
12
|
Cho Y, Seo J, Sim Y, Chung J, Park CE, Park CG, Kim D, Chang JB. FRACTAL: Signal amplification of immunofluorescence via cyclic staining of target molecules. NANOSCALE 2020; 12:23506-23513. [PMID: 33215627 DOI: 10.1039/d0nr05800a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this article, we demonstrate fluorescent signal amplification via cyclic staining of target molecules (FRACTAL), a technique that can amplify the signal intensity of immunofluorescence staining more than nine-fold via simple cyclic staining of secondary antibodies. We also show that FRACTAL is compatible with four-color imaging and expansion microscopy imaging.
Collapse
Affiliation(s)
- Yehlin Cho
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Ko J, Wang Y, Carlson JCT, Marquard A, Gungabeesoon J, Charest A, Weitz D, Pittet MJ, Weissleder R. Single Extracellular Vesicle Protein Analysis Using Immuno-Droplet Digital Polymerase Chain Reaction Amplification. ADVANCED BIOSYSTEMS 2020; 4:e1900307. [PMID: 33274611 PMCID: PMC8491538 DOI: 10.1002/adbi.201900307] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/04/2020] [Accepted: 02/20/2020] [Indexed: 11/08/2022]
Abstract
There is a need for novel analytical techniques to study the composition of single extracellular vesicles (EV). Such techniques are required to improve the understanding of heterogeneous EV populations, to allow identification of unique subpopulations, and to enable earlier and more sensitive disease detection. Because of the small size of EV and their low protein content, ultrahigh sensitivity technologies are required. Here, an immuno-droplet digital polymerase chain reaction (iddPCR) amplification method is described that allows multiplexed single EV protein profiling. Antibody-DNA conjugates are used to label EV, followed by stochastic microfluidic incorporation of single EV into droplets. In situ PCR with fluorescent reporter probes converts and amplifies the barcode signal for subsequent read-out by droplet imaging. In these proof-of-principle studies, it is shown that multiplex protein analysis is possible in single EV, opening the door for future analyses.
Collapse
Affiliation(s)
- Jina Ko
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115
| | - Yongcheng Wang
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115
- John A. Paulson School of Engineering and Applied Sciences and Department of Physics, Harvard University, Cambridge, MA 02138
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Jonathan CT Carlson
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114
- Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Angela Marquard
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114
| | - Jeremy Gungabeesoon
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114
| | - Alain Charest
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215
| | - David Weitz
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115
- John A. Paulson School of Engineering and Applied Sciences and Department of Physics, Harvard University, Cambridge, MA 02138
| | - Mikael J. Pittet
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114
- Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
- Department of Systems Biology, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115
| |
Collapse
|
14
|
Evaluation of an antibody-PNA conjugate as a clearing agent for antibody-based PNA-mediated radionuclide pretargeting. Sci Rep 2020; 10:20777. [PMID: 33247180 PMCID: PMC7695838 DOI: 10.1038/s41598-020-77523-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
Radionuclide molecular imaging of cancer-specific targets is a promising method to identify patients for targeted antibody therapy. Radiolabeled full-length antibodies however suffer from slow clearance, resulting in high background radiation. To overcome this problem, a pretargeting system based on complementary peptide nucleic acid (PNA) probes has been investigated. The pretargeting relies on sequential injections of primary, PNA-tagged antibody and secondary, radiolabeled PNA probe, which are separated in time, to allow for clearance of non-bound primary agent. We now suggest to include a clearing agent (CA), designed for removal of primary tumor-targeting agent from the blood. The CA is based on the antibody cetuximab, which was conjugated to PNA and lactosaminated by reductive amination to improve hepatic clearance. The CA was evaluated in combination with PNA-labelled trastuzumab, T-ZHP1, for radionuclide HER2 pretargeting. Biodistribution studies in normal mice demonstrated that the CA cleared ca. 7 times more rapidly from blood than unmodified cetuximab. Injection of the CA 6 h post injection of the radiolabeled primary agent [131I]I-T-ZHP1 gave a moderate reduction of the radioactivity concentration in the blood after 1 h from 8.5 ± 1.8 to 6.0 ± 0.4%ID/g. These proof-of-principle results could guide future development of a more efficient CA.
Collapse
|
15
|
Reed SA, Brzovic DA, Takasaki SS, Boyko KV, Antos JM. Efficient Sortase-Mediated Ligation Using a Common C-Terminal Fusion Tag. Bioconjug Chem 2020; 31:1463-1473. [PMID: 32324377 PMCID: PMC7357393 DOI: 10.1021/acs.bioconjchem.0c00156] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sortase-mediated ligation is a powerful method for generating site-specifically modified proteins. However, this process is limited by the inherent reversibility of the ligation reaction. To address this, here we report the continued development and optimization of an experimentally facile strategy for blocking reaction reversibility. This approach, which we have termed metal-assisted sortase-mediated ligation (MA-SML), relies on the use of a solution additive (Ni2+) and a C-terminal tag (LPXTGGHH5) that is widely used for converting protein targets into sortase substrates. In a series of model systems utilizing a 1:1 molar ratio of sortase substrate and glycine amine nucleophile, we find that MA-SML consistently improves the extent of ligation. This enables the modification of proteins with fluorophores, PEG, and a bioorthogonal cyclooctyne moiety without the need to use precious reagents in excess. Overall, these results demonstrate the potential of MA-SML as a general strategy for improving reaction efficiency in a broad range of sortase-based protein engineering applications.
Collapse
Affiliation(s)
- Sierra A. Reed
- Department of Chemistry, Western Washington University, 516 High Street, Bellingham, WA, 98225, United States
| | - David A. Brzovic
- Department of Chemistry, Western Washington University, 516 High Street, Bellingham, WA, 98225, United States
| | - Savanna S. Takasaki
- Department of Chemistry, Western Washington University, 516 High Street, Bellingham, WA, 98225, United States
| | - Kristina V. Boyko
- Department of Chemistry, Western Washington University, 516 High Street, Bellingham, WA, 98225, United States
| | - John M. Antos
- Department of Chemistry, Western Washington University, 516 High Street, Bellingham, WA, 98225, United States
| |
Collapse
|